1
|
Li Y, Yang W, Luo J, Zhu L, Lu D, Hu Q, Zhang Y, Zhang X, Liu H, Yang F, Liu Y. Structural and Functional Differences in Preterm Tracheal Epithelium Based on Mouse Airway Organoid Models. Stem Cell Rev Rep 2025:10.1007/s12015-025-10861-4. [PMID: 40056316 DOI: 10.1007/s12015-025-10861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Affiliation(s)
- Yingna Li
- Department of Children'S Healthcare, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Luo
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Zhu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Danli Lu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Department of Children'S Healthcare, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Zhang
- Department of Children'S Healthcare, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaohu Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Sichuan University-the Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Fan Yang
- Department of Children'S Healthcare, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yang Liu
- Department of Children'S Healthcare, West China Second University Hospital, Sichuan University, Chengdu, China.
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China.
- Sichuan University-the Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
秦 欣, 赵 小, 张 华. [Measurement of intrinsic positive end-expiratory pressure and clinical outcomes of infants with severe bronchopulmonary dysplasia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1034-1039. [PMID: 39467671 PMCID: PMC11527413 DOI: 10.7499/j.issn.1008-8830.2404133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES To investigate the levels of intrinsic positive end-expiratory pressure (PEEPi) in infants with severe bronchopulmonary dysplasia (sBPD) and the relationship between different levels of PEEPi and clinical outcomes. METHODS A retrospective analysis was conducted on the clinical data of 12 sBPD infants who underwent PEEPi measurement and were hospitalized at Guangzhou Women and Children's Medical Center from January 2022 to June 2023. The clinical manifestations and outcomes at discharge were compared between infants with very high PEEPi (≥10 cmH2O) and those with lower PEEPi (<10 cmH2O). RESULTS PEEPi measurements were taken in 12 sBPD infants between gestational age 31+3 and 67+2 weeks postmenstrual age, with the lowest PEEPi measured at 0.9 cmH2O and the highest at 19.6 cmH2O; 50% (6/12) of the infants had PEEPi ≥10 cmH2O. All infants with very high PEEPi exhibited ineffective triggering and patient-ventilator asynchrony. Among them, 5 infants could not be weaned off invasive ventilation, resulting in 4 deaths and 1 infant being discharged with a tracheostomy and ventilator support. In contrast, among the infants with PEEPi <10 cmH2O, only 1 infant died, while the others were successfully extubated and discharged. CONCLUSIONS Infants with sBPD may have elevated PEEPi levels, and very high PEEPi may be associated with adverse outcomes in these patients.
Collapse
|
4
|
Evans DJ, Hillas JK, Iosifidis T, Simpson SJ, Kicic A, Agudelo-Romero P. Transcriptomic analysis of primary nasal epithelial cells reveals altered interferon signalling in preterm birth survivors at one year of age. Front Cell Dev Biol 2024; 12:1399005. [PMID: 39114569 PMCID: PMC11303191 DOI: 10.3389/fcell.2024.1399005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Many survivors of preterm birth (<37 weeks gestation) have lifelong respiratory deficits, the drivers of which remain unknown. Influencers of pathophysiological outcomes are often detectable at the gene level and pinpointing these differences can help guide targeted research and interventions. This study provides the first transcriptomic analysis of primary nasal airway epithelial cells in survivors of preterm birth at approximately 1 year of age. Methods: Nasal airway epithelial brushings were collected, and primary cell cultures established from term (>37 weeks gestation) and very preterm participants (≤32 weeks gestation). Ex vivo RNA was collected from brushings with sufficient cell numbers and in vitro RNA was extracted from cultured cells, with bulk RNA sequencing performed on both the sample types. Differential gene expression was assessed using the limma-trend pipeline and pathway enrichment identified using Reactome and GO analysis. To corroborate gene expression data, cytokine concentrations were measured in cell culture supernatant. Results: Transcriptomic analysis to compare term and preterm cells revealed 2,321 genes differentially expressed in ex vivo samples and 865 genes differentially expressed in cultured basal cell samples. Over one third of differentially expressed genes were related to host immunity, with interferon signalling pathways dominating the pathway enrichment analysis and IRF1 identified as a hub gene. Corroboration of disrupted interferon release showed that concentrations of IFN-α2 were below measurable limits in term samples but elevated in preterm samples [19.4 (76.7) pg/ml/µg protein, p = 0.03]. IFN-γ production was significantly higher in preterm samples [3.3 (1.5) vs. 9.4 (17.7) pg/ml/µg protein; p = 0.01] as was IFN-β [7.8 (2.5) vs. 13.6 (19.5) pg/ml/µg protein, p = 0.01]. Conclusion: Host immunity may be compromised in the preterm nasal airway epithelium in early life. Altered immune responses may lead to cycles of repeated infections, causing persistent inflammation and tissue damage which can have significant impacts on long-term respiratory function.
Collapse
Affiliation(s)
- Denby J. Evans
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and The University of Western Australia, Crawley, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Jessica K. Hillas
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - Thomas Iosifidis
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Shannon J. Simpson
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Molecular Science, University of Western Australia, Nedlands, WA, Australia
- European Virus Bioinformatics Centre, Jena, Thuringia, Germany
| |
Collapse
|
5
|
Abugisisa L, Royse EX, Kemp MW, Jobe AH, Hillman NH. Preterm ovine respiratory epithelial cell responses to mechanical ventilation, lipopolysaccharide, and interleukin-13. Am J Physiol Lung Cell Mol Physiol 2023; 324:L815-L824. [PMID: 37096911 PMCID: PMC10259867 DOI: 10.1152/ajplung.00355.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Mechanical ventilation causes airway injury, respiratory epithelial cell proliferation, and lung inflammation in preterm sheep. Whether preterm epithelial cells respond similarly to adult epithelial cells or are altered by mechanical ventilation is unknown. We test the hypothesis that mechanical ventilation alters the responses of preterm airway epithelium to stimulation in culture. Respiratory epithelial cells from the trachea, left mainstem bronchi (LMSB), and distal bronchioles were harvested from unventilated preterm lambs, ventilated preterm lambs, and adult ewes. Epithelial cells were grown in culture or on air-liquid interface (ALI) and challenged with combinations of either media only, lipopolysaccharide (LPS; 10 ng/mL), bronchoalveolar fluid (BALF), or interleukin-13 (IL-13). Cell lysates were evaluated for mRNA changes in cytokine, cell type markers, Notch pathway, and acute phase markers. Mechanical ventilation altered preterm respiratory epithelium cell types. Preterm respiratory epithelial cells responded to LPS in culture with larger IL-8 induction than adults, and mechanical ventilation further increased cytokines IL-1β and IL-8 mRNA induction at 2 h. IL-8 protein is detected in cell media after LPS stimulation. The addition of BALF from ventilated preterm animals increased IL-1β mRNA to LPS (fivefold) in both preterm and adult cells and suppressed IL-8 mRNA (twofold) in adults. Preterm respiratory epithelial cells, when grown on ALI, responded to IL-13 with an increase in goblet cell mRNA. Preterm respiratory epithelial cells responded to LPS and IL-13 with responses similar to adults. Mechanical ventilation or exposure to BALF from mechanically ventilated animals alters the responses to LPS.NEW & NOTEWORTHY Preterm lamb respiratory epithelial cells can be extracted from the trachea and bronchi and frozen, and the preterm cells can respond in culture to stimulation with LPS or IL-13. Brief mechanical ventilation changes the distribution and cell type of preterm respiratory cells toward an adult phenotype, and mechanical ventilation alters the response to LPS in culture. Bronchoalveolar lavage fluid from preterm lambs receiving mechanical ventilation also alters unventilated preterm and adult responses to LPS.
Collapse
Affiliation(s)
- Leenah Abugisisa
- Division of Neonatology, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University, St. Louis, Missouri, United States
| | - Emily X Royse
- Division of Neonatology, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University, St. Louis, Missouri, United States
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Western Australia, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States
| | - Noah H Hillman
- Division of Neonatology, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University, St. Louis, Missouri, United States
| |
Collapse
|
6
|
Dimitroglou M, Iliodromiti Z, Christou E, Volaki P, Petropoulou C, Sokou R, Boutsikou T, Iacovidou N. Human Breast Milk: The Key Role in the Maturation of Immune, Gastrointestinal and Central Nervous Systems: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12092208. [PMID: 36140609 PMCID: PMC9498242 DOI: 10.3390/diagnostics12092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/22/2022] Open
Abstract
Premature birth is a major cause of mortality and morbidity in the pediatric population. Because their immune, gastrointestinal and nervous systems are not fully developed, preterm infants (<37 weeks of gestation) and especially very preterm infants (VPIs, <32 weeks of gestation) are more prone to infectious diseases, tissue damage and future neurodevelopmental impairment. The aim of this narrative review is to report the immaturity of VPI systems and examine the role of Human Breast Milk (HBM) in their development and protection against infectious diseases, inflammation and tissue damage. For this purpose, we searched and synthesized the data from the existing literature published in the English language. Studies revealed the significance of HBM and indicate HBM as the best dietary choice for VPIs.
Collapse
|
7
|
Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021; 11:125. [PMID: 35011687 PMCID: PMC8750550 DOI: 10.3390/cells11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Motile cilia are hairlike organelles that project outward from a tissue-restricted subset of cells to direct fluid flow. During human development motile cilia guide determination of the left-right axis in the embryo, and in the fetal and neonatal periods they have essential roles in airway clearance in the respiratory tract and regulating cerebral spinal fluid flow in the brain. Dysregulation of motile cilia is best understood through the lens of the genetic disorder primary ciliary dyskinesia (PCD). PCD encompasses all genetic motile ciliopathies resulting from over 60 known genetic mutations and has a unique but often underrecognized neonatal presentation. Neonatal respiratory distress is now known to occur in the majority of patients with PCD, laterality defects are common, and very rarely brain ventricle enlargement occurs. The developmental function of motile cilia and the effect and pathophysiology of motile ciliopathies are incompletely understood in humans. In this review, we will examine the current understanding of the role of motile cilia in human development and clinical considerations when assessing the newborn for suspected motile ciliopathies.
Collapse
Affiliation(s)
- Rachael M. Hyland
- Department of Pediatrics, Division of Newborn Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110,USA;
| | - Steven L. Brody
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Eenjes E, van Riet S, Kroon AA, Slats AM, Khedoe PPSJ, Boerema-de Munck A, Buscop-van Kempen MJ, Ninaber DK, Reiss IKM, Clevers H, Rottier RJ, Hiemstra PS. Disease modelling following organoid-based expansion of airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321:L775-L786. [PMID: 34378410 DOI: 10.1152/ajplung.00234.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Air-liquid interface (ALI) cultures are frequently used in lung research but require substantial cell numbers that cannot readily be obtained from patients. We explored whether organoid expansion (3D) can be used to establish ALI cultures from clinical samples with low epithelial cell numbers. Airway epithelial cells were obtained from tracheal aspirates (TA) from preterm newborns, and from bronchoalveolar lavage (BAL) or bronchial tissue (BT) from adults. TA and BAL cells were 3D-expanded, whereas cells from BT were expanded in 3D and 2D. Following expansion, cells were cultured at ALI to induce differentiation. The impact of cell origin and 2D or 3D expansion was assessed with respect to (i) cellular composition; (ii) response to cigarette smoke exposure; (iii) effect of Notch inhibition or IL-13 stimulation on cellular differentiation. We established well-differentiated ALI cultures from all samples. Cellular compositions (basal, ciliated and goblet cells) were comparable. All 3D-expanded cultures showed a similar stress response following cigarette smoke exposure but differed from the 2D-expanded cultures. Higher peak levels of antioxidant genes HMOX1 and NQO1 and a more rapid return to baseline, and a lower unfolded protein response was observed after cigarette smoke exposure in 3D-derived cultures compared to 2D-derived cultures. Additionally, TA- and BAL-derived cultures were less sensitive to modulation by DAPT or IL-13 than BT-derived cultures. Organoid-based expansion of clinical samples with low cell numbers, such as TA from preterm newborns is a valid method and tool to establish ALI cultures.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdamnn, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Andre A Kroon
- Department of Neonatology, Erasmus MC- Sophia, Rotterdam, Netherlands
| | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdamnn, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdamnn, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Irwin K M Reiss
- Department of Neonatology, Erasmus MC- Sophia, Rotterdam, Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdamnn, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55. Biomolecules 2021; 11:biom11081146. [PMID: 34439812 PMCID: PMC8393629 DOI: 10.3390/biom11081146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Intra-amniotic infections (IAI) are one of the reasons for preterm birth. High mobility group box 1 (HMGB1) is a nuclear protein with various physiological functions, including tissue healing. Its excessive extracellular release potentiates inflammatory reaction and can revert its action from beneficial to detrimental. We infected the amniotic fluid of a pig on the 80th day of gestation with 1 × 104 colony forming units (CFUs) of E. coli O55 for 10 h, and evaluated the appearance of HMGB1, receptor for glycation endproducts (RAGE), and Toll-like receptor (TLR) 4 in the amniotic membrane and fluid. Sham-infected amniotic fluid served as a control. The expression and release of HMGB1 were evaluated by Real-Time PCR, immunofluorescence, immunohistochemistry, and ELISA. The infection downregulated HMGB1 mRNA expression in the amniotic membrane, changed the distribution of HMGB1 protein in the amniotic membrane, and increased its level in amniotic fluid. All RAGE mRNA, protein expression in the amniotic membrane, and soluble RAGE level in the amniotic fluid were downregulated. TLR4 mRNA and protein expression and soluble TLR4 were all upregulated. HMGB1 is a potential target for therapy to suppress the exaggerated inflammatory response. This controlled expression and release can, in some cases, prevent the preterm birth of vulnerable infants. Studies on suitable animal models can contribute to the development of appropriate therapy.
Collapse
|
10
|
Shui JE, Wang W, Liu H, Stepanova A, Liao G, Qian J, Ai X, Ten V, Lu J, Cardoso WV. Prematurity alters the progenitor cell program of the upper respiratory tract of neonates. Sci Rep 2021; 11:10799. [PMID: 34031475 PMCID: PMC8144386 DOI: 10.1038/s41598-021-90093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
The impact of prematurity on human development and neonatal diseases, such as bronchopulmonary dysplasia, has been widely reported. However, little is known about the effects of prematurity on the programs of stem cell self-renewal and differentiation of the upper respiratory epithelium, which is key for adaptation to neonatal life. We developed a minimally invasive methodology for isolation of neonatal basal cells from nasopharyngeal (NP) aspirates and performed functional analysis in organotypic cultures to address this issue. We show that preterm NP progenitors have a markedly distinct molecular signature of abnormal proliferation and mitochondria quality control compared to term progenitors. Preterm progenitors had lower oxygen consumption at baseline and were unable to ramp up consumption to the levels of term cells when challenged. Although they formed a mucociliary epithelium, ciliary function tended to decline in premature cells as they differentiated, compared to term cells. Together, these differences suggested increased sensitivity of preterm progenitors to environmental stressors under non-homeostatic conditions.
Collapse
Affiliation(s)
- Jessica E Shui
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Wang
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Helu Liu
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Liao
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jun Qian
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Ten
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jining Lu
- Division of Lung Diseases, NHLBI, NIH, Bethesda, MD, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Rocha G. Pulmonary pneumatoceles in neonates. Pediatr Pulmonol 2020; 55:2532-2541. [PMID: 32691976 DOI: 10.1002/ppul.24969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Pulmonary pneumatoceles were relatively common in neonates in the pre-surfactant era. In the current era of surfactant, noninvasive and gentle invasive ventilation there is a paucity of data on clinical characteristics and outcomes of pneumatoceles in neonates. The lesion generally resolves spontaneously, but a few cases follow a complicated course with formation of extensive and expanding lesions. To better understand the pathophysiology, clinical significance, natural history, complications, treatment options and prognosis of pulmonary pneumatoceles in neonates, an extensive research was performed on the databases of medical literature. The information collected in this review is important for the clinicians in decision-making, especially in the most difficult cases.
Collapse
Affiliation(s)
- Gustavo Rocha
- Department of Neonatology, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
12
|
Kapur N, Nixon G, Robinson P, Massie J, Prentice B, Wilson A, Schilling S, Twiss J, Fitzgerald DA. Respiratory management of infants with chronic neonatal lung disease beyond the NICU: A position statement from the Thoracic Society of Australia and New Zealand. Respirology 2020; 25:880-888. [PMID: 32510776 PMCID: PMC7496866 DOI: 10.1111/resp.13876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
Chronic neonatal lung disease (CNLD) is defined as continued need for any form of respiratory support (supplemental oxygen and/or assisted ventilation) beyond 36 weeks PMA. Low-flow supplemental oxygen facilitates discharge from hospital of infants with CNLD who are hypoxic in air and is widely used despite lack of evidence on the most appropriate minimum mean target oxygen saturations. Furthermore, there are minimal data to guide the home monitoring, titration or weaning of supplemental oxygen in these infants. The purpose of this position statement is to provide a guide for the respiratory management of infants with CNLD, with special emphasis on role and logistics of supplemental oxygen therapy beyond the NICU stay. Reflecting a variety of clinical practices and infant comorbidities (presence of pulmonary hypertension, retinopathy of prematurity and adequacy of growth), it is recommended that the minimum mean target range for SpO2 during overnight oximetry to be 93-95% with less than 5% of total recording time to be below 90% SpO2 . Safety of short-term disconnection from supplemental oxygen should be assessed before discharge, with majority of infants with CNLD not ready for discharge until supplemental oxygen requirement is ≤0.5 L/min. Sleep-time assessment of oxygenation with continuous overnight oximetry is recommended when weaning supplemental oxygen. Palivizumab is considered safe and effective for the reduction of hospital admissions with RSV infection in this group. This statement would be useful for paediatricians, neonatologists, respiratory and sleep physicians and general practitioners managing children with CNLD.
Collapse
Affiliation(s)
- Nitin Kapur
- Department of Respiratory and Sleep MedicineQueensland Children's HospitalBrisbaneQLDAustralia
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
| | - Gillian Nixon
- Melbourne Children's Sleep CentreMonash Children's HospitalMelbourneVICAustralia
- Department of PaediatricsMonash UniversityMelbourneVICAustralia
| | - Philip Robinson
- Respiratory and Sleep MedicineRoyal Children's Hospital, Murdoch Children's Research InstituteMelbourneVICAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVICAustralia
| | - John Massie
- Department of Respiratory MedicineRoyal Children's HospitalMelbourneVICAustralia
| | - Bernadette Prentice
- Department of Respiratory MedicineSydney Children's HospitalSydneyNSWAustralia
| | - Andrew Wilson
- Department of Respiratory and Sleep MedicinePrincess Margaret Hospital for ChildrenPerthWAAustralia
| | - Sandra Schilling
- Department of Respiratory and Sleep MedicineQueensland Children's HospitalBrisbaneQLDAustralia
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
| | - Jacob Twiss
- Respiratory DepartmentStarship Children's HospitalAucklandNew Zealand
| | - Dominic A. Fitzgerald
- Discipline of Child and Adolescent Health, Faculty of Medicine and HealthUniversity of Sydney and the Children's Hospital at WestmeadSydneyNew South WalesAustralia
| |
Collapse
|