1
|
Xie Y, Zou W, Shang Y, Lu W, Li X, Chen Q, Shao R, Ku Y, Lin K. Cognitive and neural abnormalities: working memory deficits in bipolar disorder offspring. Psychol Med 2025; 55:e130. [PMID: 40314170 DOI: 10.1017/s0033291725001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
BACKGROUND Offspring of parents with bipolar disorder (BD offspring) face elevated risks for emotional dysregulation and cognitive deficits, particularly in working memory. This study investigates working memory deficits and their neural correlates in BD offspring. METHODS We assessed 41 BD offspring and 25 age-matched healthy controls (HCs) using a spatial N-back task and task-related functional magnetic resonance imaging (fMRI). RESULTS Compared to HCs, BD offspring exhibit reduced accuracy and lower signal-detection sensitivity (d') on the 1-back task. fMRI reveals hyperactivation in the right intracalcarine cortex/lingual gyrus (ICC/LG) in BD offspring, particularly during the 1-back condition. Psychophysiological interaction (PPI) analyses show reduced connectivity between the right ICC/LG and the left postcentral gyrus in BD offspring as task load increases from 0-back to 1-back. This connectivity positively correlates with 1-back task performance in HCs but not in BD offspring. Additionally, using bilateral dorsolateral prefrontal cortex (DLPFC) as regions of interest, PPI analyses show diminished condition-dependent connectivity between the left DLPFC and the left superior frontal gyrus/paracingulate cortex, and between the right DLPFC and the left postcentral gyrus/precentral gyrus in BD offspring as the task load increases. CONCLUSIONS These findings suggest that BD offspring exhibit working memory deficits and impaired neural connectivity involving both sensory processing and higher-order cognitive systems. Such deficits may emerge at a genetically predisposed stage of bipolar disorder, underscoring the significance of early identification and intervention strategies.
Collapse
Affiliation(s)
- Ye Xie
- School of Psychology, Shenzhen University, Shenzhen, P.R. China
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenjin Zou
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuanqi Shang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Qi Chen
- School of Psychology, Shenzhen University, Shenzhen, P.R. China
| | - Robin Shao
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, University of Hong Kong, Hong Kong, P.R. China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, P.R. China
- Peng Cheng Laboratory, Shenzhen, P.R. China
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
- Department of Neurology, Lecong Hospital of Shunde, Foshan, Guangdong, China
| |
Collapse
|
2
|
Sun K, Chen G, Liu C, Chu Z, Huang L, Li Z, Zhong S, Ye X, Zhang Y, Jia Y, Pan J, Zhou G, Liu Z, Yu C, Wang Y. A novel MSN-II feature extracted from T1-weighted MRI for discriminating between BD patients and MDD patients. J Affect Disord 2025; 371:36-44. [PMID: 39557301 DOI: 10.1016/j.jad.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Differentiating between patients with bipolar disorder (BD) and major depressive disorder (MDD) is clinically challenging. This study aimed to explore the potential of radiomic textural features for discriminating BD and MDD. METHODS A total 253 subjects (114 patients with BD, 139 patients with MDD) with T1-weighted MRI data were recruited. Radiomics features and gray matter volume (GMV) features were extracted from each brain region. A novel high-level MSN_II feature method based on radiomic features was proposed. And a total of 21 MSN features (5 MSN_I and 16 MSN_II) based on different combinations of the 5 types of radiomic textural feature were calculated. Classification models were constructed using various combinations of MSNs or GMV, and their performance and stability was evaluated through 2000 repeated experiments. RESULTS The model built with combined features (GMV and GMV + MSN_II_GLCM_GLSZM_NGTDM) showed the best classification performance (AUC = 0.896±0.058, ACC = 0.831±0.064) in the validation cohort. After MANOVA analysis and FDR correlation, the MSN_II_GLCM_GLSZM_NGTDM values in 4 regions (right rectus gyrus, right temporal pole: middle temporal gyrus, Vermis3 and Vermis10) showed significant difference between BD and MDD. LIMITATION The main limitation of this study is that the data is derived from a single center without an external independent test set. CONCLUSIONS Incorporating the high-level MSN_II based on radiomics features can improve the classification performance compared to models solely relying on GMV features alone. This result implied the potential application of the proposed high level MSN method and radiomics textural features on the MDD and BD clinical studies.
Collapse
Affiliation(s)
- Kai Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chunchen Liu
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihan Chu
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhou Li
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoying Ye
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingli Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guifei Zhou
- School of Information Science and Technology, Yunnan Normal University, Kunming, China.
| | - Zhenyu Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China.
| | - Changbin Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Parker N, Ching CRK. Mapping Structural Neuroimaging Trajectories in Bipolar Disorder: Neurobiological and Clinical Implications. Biol Psychiatry 2025:S0006-3223(25)00107-6. [PMID: 39956253 DOI: 10.1016/j.biopsych.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Neuroimaging is a powerful noninvasive method for studying brain alterations in bipolar disorder (BD). To date, most neuroimaging studies of BD have included smaller cross-sectional samples reporting case versus control comparisons, revealing small to moderate effect sizes. In this narrative review, we discuss the current state of structural neuroimaging studies using magnetic resonance imaging, which inform our understanding of altered brain trajectories in BD across the lifespan. Alternative methodologies such as those that model patient deviations from age-specific norms are discussed, which may help derive new markers of BD pathophysiology. We discuss evidence from neuroimaging genetics and transcriptomics studies, which attempt to bridge the gap between macroscale brain variations and underlying microscale neurodevelopmental mechanisms. We conclude with a look toward the future and how ambitious investments in longitudinal, deeply phenotyped, population-based cohorts can improve modeling of complex clinical factors and provide more clinically actionable brain markers for BD.
Collapse
Affiliation(s)
- Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, Los Angeles, California.
| |
Collapse
|
4
|
Buchholz F, Meffert M, Bazin PL, Trampel R, Turner R, Schönknecht P. Highfield imaging of the subgenual anterior cingulate cortex in uni- and bipolar depression. Front Psychiatry 2024; 15:1462919. [PMID: 39465046 PMCID: PMC11502385 DOI: 10.3389/fpsyt.2024.1462919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Background The subgenual Anterior Cingulate Cortex (sgACC), as a part of the Anterior Cingulate Cortex and the limbic system plays a crucial role in mood regulation. Previous structural and functional brain imaging studies of the sgACC have revealed alterations of Gray Matter (GM) volumes and Blood Oxygenation Level Dependent signals (BOLD) in patients with Major Depressive Disorder (MDD) and Bipolar Disorder (BD), suggesting potential biomarker traits for affective disorders. Method In this study we investigated the gray matter volume of the sgACC in 3 different patient groups: 40 MDD patients, of which 20 were medicated (MDDm) and 20 were unmedicated (MDDu), and 21 medicated BD patients, and compared them with 23 healthy volunteers. We examined GM volume alteration using high-resolution 7T Magnetic Resonance Imaging (MRI) which produced quantitative maps of the spin-lattice relaxation time (T1). T1 maps provide high contrast between gray and white matter, and at 7 Tesla voxels with submillimeter resolution can be acquired in a reasonable scan time. We developed a semi-automatic segmentation protocol based on refined landmarks derived from previous volumetric studies using quantitative T1 maps as raw input data for automatic tissue segmentation of GM, WM and CSF (cerebrospinal fluid) tissue. The sgACC ROI was then superimposed on these tissue probability maps and traced manually by two independent raters (F.B., M.M.) following our semi-automatic segmentation protocol. Interrater reliability was calculated on a subset of 10 brain scans for each hemisphere, showing an Intra-Class Correlation coefficient (ICC) r = 0.96 for left sgACC and r = 0.84 for right sgACC respectively. In summary, we have developed a reproducible and reliable semi-automatic segmentation protocol to measure gray matter volume in the sgACC. Based on previous findings from meta-analyses on morphometric studies of the sgACC, we hypothesized that patients with MDD would have lower gray matter sgACC volumes compared to healthy subjects. Results Post-hoc analysis revealed smaller subgenual volumes for the left hemisphere in both the medicated (MDDm) and non-medicated (MDDu) group versus healthy controls (p = .001, p = .008) respectively. For the right hemisphere, the (MDDu) and BD group exhibited significantly lower subgenual volumes than healthy controls (p < .001, p = .004) respectively. Conclusion To our knowledge, this is the first morphometric MRI study using T1 maps obtained in high-resolution 7 Tesla MRI to compare MDD and BD patients with healthy controls.
Collapse
Affiliation(s)
- Frederik Buchholz
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Martin Meffert
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | | | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
- Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, University Hospital Leipzig, Leipzig, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Saxon State Hospital Altscherbitz, Leipzig, Germany
| |
Collapse
|
5
|
Rozovsky R, Bertocci M, Iyengar S, Stiffler RS, Bebko G, Skeba AS, Brady T, Aslam H, Phillips ML. Identifying tripartite relationship among cortical thickness, neuroticism, and mood and anxiety disorders. Sci Rep 2024; 14:8449. [PMID: 38600283 PMCID: PMC11006921 DOI: 10.1038/s41598-024-59108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The number of young adults seeking help for emotional distress, subsyndromal-syndromal mood/anxiety symptoms, including those associated with neuroticism, is rising and can be an early manifestation of mood/anxiety disorders. Identification of gray matter (GM) thickness alterations and their relationship with neuroticism and mood/anxiety symptoms can aid in earlier diagnosis and prevention of risk for future mood and anxiety disorders. In a transdiagnostic sample of young adults (n = 252;177 females; age 21.7 ± 2), Hypothesis (H) 1:regularized regression followed by multiple regression examined relationships among GM cortical thickness and clinician-rated depression, anxiety, and mania/hypomania; H2:the neuroticism factor and its subfactors as measured by NEO Personality Inventory (NEO-PI-R) were tested as mediators. Analyses revealed positive relationships between left parsopercularis thickness and depression (B = 4.87, p = 0.002), anxiety (B = 4.68, p = 0.002), mania/hypomania (B = 6.08, p ≤ 0.001); negative relationships between left inferior temporal gyrus (ITG) thickness and depression (B = - 5.64, p ≤ 0.001), anxiety (B = - 6.77, p ≤ 0.001), mania/hypomania (B = - 6.47, p ≤ 0.001); and positive relationships between left isthmus cingulate thickness (B = 2.84, p = 0.011), and anxiety. NEO anger/hostility mediated the relationship between left ITG thickness and mania/hypomania; NEO vulnerability mediated the relationship between left ITG thickness and depression. Examining the interrelationships among cortical thickness, neuroticism and mood and anxiety symptoms enriches the potential for identifying markers conferring risk for mood and anxiety disorders and can provide targets for personalized intervention strategies for these disorders.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| |
Collapse
|
6
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. Brain Struct Funct 2024; 229:387-402. [PMID: 38184493 DOI: 10.1007/s00429-023-02734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of the ventral para-intermediate frontal sulcus (pimfs-v) in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a key developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of WI-Madison, Madison, WI, USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528061. [PMID: 36798378 PMCID: PMC9934691 DOI: 10.1101/2023.02.10.528061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of one such sulcus in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus-the ventral para-intermediate frontal sulcus-was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a novel developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, WI USA
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A. Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Ji T, Ren X, Long T, Li X, Mei L, Ge W, Zhang J, Wang S, Guo Y, Xu Z, Peng Y, Liu J, Tai J, Ni X. Aberrant Topological Properties of Brain Functional Network in Children with Obstructive Sleep Apnea Derived from Resting-State fMRI. Brain Topogr 2023; 36:72-86. [PMID: 36258117 DOI: 10.1007/s10548-022-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/28/2022] [Indexed: 01/14/2023]
Abstract
To examine the difference in the topological properties of brain functional network between the children with obstructive sleep apnea (OSA) and healthy controls, and to explore the relationships between these properties and cognitive scores of OSA children. Twenty-four OSA children (6.5 ± 2.8 years, 15 males) and 26 healthy controls (8.0 ± 2.9 years, 11 males) underwent resting-state fMRI (rs-fMRI), based on which brain functional networks were constructed. We compared the global and regional topological properties of the network between OSA children and healthy controls. Partial correlation analysis was performed between topological properties and cognitive scores across OSA children. When comparing the OSA children with the healthy controls, lower full-scale intelligent quotient (FIQ) and verbal intelligent quotient (VIQ) were observed. Additionally, nodal degree centrality decreased in the bilateral anterior cingulate and paracingulate gyrus, but increased in the right middle frontal gyrus, the left fusiform gyrus, and the left supramarginal gyrus. Nodal efficiency decreased in the right precentral gyrus, and the bilateral anterior cingulate and paracingulate gyrus, but increased in the left fusiform gyrus. Nodal betweenness centrality increased in the dorsolateral part of the right superior frontal gyrus, the left fusiform gyrus, and the left supramarginal gyrus. Further, the nodal degree centrality in the left supramarginal gyrus was positively correlated with FIQ. In contrast, none of global topological properties showed difference between those two groups. The outcomes of OSA may impaired the regional topological properties of the brain functional network of OSA children, which may be potential neural mechanism underlying the cognitive declines of these patients.
Collapse
Affiliation(s)
- Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Xuemin Ren
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ting Long
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Lin Mei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Wentong Ge
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yongli Guo
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Department of Sleep Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yun Peng
- Department of Radiology, Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
| | - Jiangang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China. .,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Jun Tai
- Department of Otorhinolaryngology, Children's Hospital, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China. .,Department of Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
9
|
Working memory updating in individuals with bipolar and unipolar depression: fMRI study. Transl Psychiatry 2022; 12:441. [PMID: 36220840 PMCID: PMC9553934 DOI: 10.1038/s41398-022-02211-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/10/2023] Open
Abstract
Understanding neurobiological characteristics of cognitive dysfunction in distinct psychiatric disorders remains challenging. In this secondary data analysis, we examined neurobiological differences in brain response during working memory updating among individuals with bipolar disorder (BD), those with unipolar depression (UD), and healthy controls (HC). Individuals between 18-45 years of age with BD (n = 100), UD (n = 109), and HC (n = 172) were scanned using fMRI while performing 0-back (easy) and 2-back (difficult) tasks with letters as the stimuli and happy, fearful, or neutral faces as distractors. The 2(n-back) × 3(groups) × 3(distractors) ANCOVA examined reaction time (RT), accuracy, and brain activation during the task. HC showed more accurate and faster responses than individuals with BD and UD. Difficulty-related activation in the prefrontal, posterior parietal, paracingulate cortices, striatal, lateral occipital, precuneus, and thalamic regions differed among groups. Individuals with BD showed significantly lower difficulty-related activation differences in the left lateral occipital and the right paracingulate cortices than those with UD. In individuals with BD, greater difficulty-related worsening in accuracy was associated with smaller activity changes in the right precuneus, while greater difficulty-related slowing in RT was associated with smaller activity changes in the prefrontal, frontal opercular, paracingulate, posterior parietal, and lateral occipital cortices. Measures of current depression and mania did not correlate with the difficulty-related brain activation differences in either group. Our findings suggest that the alterations in the working memory circuitry may be a trait characteristic of reduced working memory capacity in mood disorders. Aberrant patterns of activation in the left lateral occipital and paracingulate cortices may be specific to BD.
Collapse
|
10
|
Choi KW, Han KM, Kim A, Kang W, Kang Y, Tae WS, Ham BJ. Decreased cortical gyrification in patients with bipolar disorder. Psychol Med 2022; 52:2232-2244. [PMID: 33190651 DOI: 10.1017/s0033291720004079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND An aberrant neural connectivity has been known to be associated with bipolar disorder (BD). Local gyrification may reflect the early neural development of cortical connectivity and has been studied as a possible endophenotype of psychiatric disorders. This study aimed to investigate differences in the local gyrification index (LGI) in each cortical region between patients with BD and healthy controls (HCs). METHODS LGI values, as measured using FreeSurfer software, were compared between 61 patients with BD and 183 HCs. The values were also compared between patients with BD type I and type II as a sub-group analysis. Furthermore, we evaluated whether there was a correlation between LGI values and illness duration or depressive symptom severity in patients with BD. RESULTS Patients with BD showed significant hypogyria in various cortical regions, including the left inferior frontal gyrus (pars opercularis), precentral gyrus, postcentral gyrus, superior temporal cortex, insula, right entorhinal cortex, and both transverse temporal cortices, compared to HCs after the Bonferroni correction (p < 0.05/66, 0.000758). LGI was not associated with clinical factors such as illness duration, depressive symptom severity, and lithium treatment. No significant differences in cortical gyrification according to the BD subtype were found. CONCLUSIONS BD appears to be characterized by a significant regionally localized hypogyria, in various cortical areas. This abnormality may be a structural and developmental endophenotype marking the risk for BD, and it might help to clarify the etiology of BD.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S, Li F, Radua J, Vieta E, Kemp GJ, Biswa BB, Gong Q. Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2022; 300:209-218. [PMID: 34971699 DOI: 10.1016/j.jad.2021.12.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/10/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND An increasing number of neuroimaging studies report alterations of cortical thickness (CT) related to the neuropathology of bipolar disorder (BD). We provide here a whole-brain vertex-wise meta-analysis, which may help improve the spatial precision of these identifications. METHODS A comprehensive meta-analysis was performed to investigate the differences in CT between patients with BD and healthy controls (HCs) by using a newly developed mask for CT analysis in seed-based d mapping (SDM) meta-analytic software. We used meta-regression to explore the effects of demographics and clinical characteristics on CT. This meta-review was conducted in accordance with PRISMA guideline. RESULTS We identified 21 studies meeting criteria for the systematic review, of which 11 were eligible for meta-analysis. The meta-analysis comprising 649 BD patients and 818 HCs showed significant cortical thinning in the left insula extending to left Rolandic operculum and Heschl gyrus, the orbital part of left inferior frontal gyrus (IFG), the medial part of left superior frontal gyrus (SFG) as well as bilateral anterior cingulate cortex (ACC) in BD. In meta-regression analyses, mean patient age was negatively correlated with reduced CT in the left insula. LIMITATIONS All enrolled studies were cross-sectional; we could not explore the potential effects of medication and mood states due to the limited data. CONCLUSIONS Our results suggest that BD patients have significantly thinner frontoinsular cortex than HCs, and the results may be helpful in revealing specific neuroimaging biomarkers of BD patients.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Joaquim Radua
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, Northern Ireland United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bharat B Biswa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
12
|
Yu C, Li CQ, Ge QM, Shu HY, Liao XL, Pan YC, Wu JL, Su T, Zhang LJ, Liang RB, Shao Y, Zeng EM. Altered Resting State Functional Activity of Brain Regions in Neovascular Glaucoma: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:800466. [PMID: 34966259 PMCID: PMC8710777 DOI: 10.3389/fnins.2021.800466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Neovascular glaucoma (NVG) is a serious eye disease that causes irreversible damage to the eye. It can significantly increase intraocular pressure and cause severe pain, as well as abnormal activity in the cortical and pre-cortical visual systems. However, there are few studies in this area. This trial assessed the altered regional brain activity in patients with NVG using the percentage of fluctuation amplitude (PerAF) method. Methods: Resting-state functional MRI (rs-fMRI) scans were conducted in 18 individuals with NVG and 18 healthy controls (HCs), matched for education level, gender, and age. The PerAF method was applied to assess brain activity. Mean PerAF values of brain regions in NVG and HCs were compared using receiver operating characteristic (ROC) curves. Results: Lower PerAF values were found in the NVG group than in controls in the right anterior cingulate and paracingulate gyri (ACG.R), right superior occipital gyrus (SOG.R) and left superior frontal gyrus (orbital part) (ORBsup.L) (p < 0.001). In contrast, PerAF value was higher in NVG patients than in controls in the left inferior temporal gyrus (ITG.L) (p < 0.001). The hospital anxiety and depression scale (HADS) and visual analog score (VAS) were significantly and positively correlated with PerAF in ITG.L (r = 0.9331, p < 0.0001; and r = 0.7816, p = 0.0001, respectively). Conclusion: Abnormal activity in the patient’s brain regions further confirms that the NVG affects the entire brain, not just the visual pathways and posterior retinal mechanisms (including the hypothalamic lateral geniculate nucleus and the primary visual cortex). This strengthens our understanding of the NVG and provides potential diagnostic and therapeutic support for patients who are difficult to diagnose and treat early.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Chu-Qi Li
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Cong Pan
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie-Li Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, China
| | - Ting Su
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, China.,Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Li-Juan Zhang
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Er-Ming Zeng
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Woo Y, Kang W, Kang Y, Kim A, Han KM, Tae WS, Ham BJ. Cortical Thickness and Surface Area Abnormalities in Bipolar I and II Disorders. Psychiatry Investig 2021; 18:850-863. [PMID: 34500506 PMCID: PMC8473857 DOI: 10.30773/pi.2021.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Although bipolar II disorder (BD II) is not simply a mitigated form of bipolar I disorder (BD I), their neurobiological differences have not been elucidated. The present study aimed to explore cortical thickness (CT) and surface area (SA) in patients with BD I and BD II and healthy controls (HCs) to investigate the shared and unique neurobiological mechanisms of BD subtypes. METHODS We enrolled 30 and 44 patients with BD I and BD II, respectively, and 100 HCs. We evaluated CT and SA using FreeSurfer and estimated differences in CT and SA among the three groups (BD I vs. BD II vs. HC). We adjusted for age, sex, educational level, and intracranial volume as confounding factors. RESULTS We found widespread cortical thinning in the bilateral frontal, temporal, and occipital regions; cingulate gyrus; and insula in patients with BD. Alterations in SA, including increased SA of the pars triangularis and decreased SA of the insula, were noted in patients with BD. Overall, we found BD II patients demonstrated decreased SA in the right long insula compared to BD I patients. CONCLUSION Our results suggest that decreased SA in the right long insula is crucial for differentiating BD subtypes.
Collapse
Affiliation(s)
- Yoonmi Woo
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Achalia R, Raju VB, Jacob A, Nahar A, Achalia G, Nagendra B, Kaginalkar V, Choudhary S, Venkatasubramanian G, Rao NP. Comparison of first-episode and multiple-episode bipolar disorder: A surface-based morphometry study. Psychiatry Res Neuroimaging 2020; 302:111110. [PMID: 32505904 DOI: 10.1016/j.pscychresns.2020.111110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
It is still unclear whether the structural abnormalities in Bipolar disorder (BD) are static or progressive. We aimed to compare differences in cortical thickness, surface area, and volume between patients with BD and healthy volunteers (HV) and to examine whether there are differences between patients who have had a single manic episode and those with multiple episodes. We recruited 30 patients with Type I BD and 30 age and sex matched HV. All participants underwent structural magnetic resonance imaging. Cortical volume, thickness, and surface area were measured using the QDEC tool from the Freesurfer software with age and intracranial volume as covariates. Study groups were comparable across age, sex distribution, and intracranial volume. Patients had significantly lower surface area in bilateral cuneus, right postcentral gyrus, and rostral middle frontal gyri; and lower cortical volume in the left middle temporal gyrus, right postcentral gyrus, and right cuneus. BD patients with multiple episodes had lower cortical measures while those with single episode had cortical measures comparable to HV. Findings indicate that the pathophysiological processes in BD are possibly progressive in nature. Our findings underscore the potential importance of early diagnosis and intervention in preventing deterioration and improving functional recovery.
Collapse
Affiliation(s)
| | - Vikas B Raju
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Arpitha Jacob
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Abhinav Nahar
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Bhargavi Nagendra
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | - Naren P Rao
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
15
|
Komaitis S, Skandalakis GP, Kalyvas AV, Drosos E, Lani E, Emelifeonwu J, Liakos F, Piagkou M, Kalamatianos T, Stranjalis G, Koutsarnakis C. Dorsal component of the superior longitudinal fasciculus revisited: novel insights from a focused fiber dissection study. J Neurosurg 2020; 132:1265-1278. [PMID: 30835690 DOI: 10.3171/2018.11.jns182908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous. METHODS Fifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III. RESULTS The SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre-supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex. CONCLUSIONS Study results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.
Collapse
Affiliation(s)
- Spyridon Komaitis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Georgios P Skandalakis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Aristotelis V Kalyvas
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Evangelos Drosos
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - Evgenia Lani
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | - John Emelifeonwu
- 4Department of Clinical Neurosciences, Western General Hospital; and
- 5Edinburgh Microneurosurgery Education Laboratory, Department of Clinical Neurosciences, Edinburgh, United Kingdom
| | - Faidon Liakos
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
| | - Maria Piagkou
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
| | | | - George Stranjalis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 6Hellenic Center for Neurosurgical Research, "Petros Kokkalis," Athens, Greece
| | - Christos Koutsarnakis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- Departments of2Neurosurgery and
- 3Anatomy, National and Kapodistrian University of Athens, School of Medicine
- 5Edinburgh Microneurosurgery Education Laboratory, Department of Clinical Neurosciences, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Mucci F, Avella MT, Marazziti D. ADHD with Comorbid Bipolar Disorders: A Systematic Review of Neurobiological, Clinical and Pharmacological Aspects Across the Lifespan. Curr Med Chem 2020; 26:6942-6969. [PMID: 31385763 DOI: 10.2174/0929867326666190805153610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/05/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Attention deficit hyperactivity (ADHD) disorder is a neurodevelopmental disorder characterized by inattention, hyperactivity, disruptive behaviour, and impulsivity. Despite considered typical of children for a long time, the persistence of ADHD symptoms in adulthood gained increasing interest during the last decades. Indeed, its diagnosis, albeit controversial, is rarely carried out even because ADHD is often comorbid with several other psychiatric diosrders, in particular with bipolar disorders (BDs), a condition that complicates the clinical picture, assessment and treatment. AIMS The aim of this paper was to systematically review the scientific literature on the neurobiological, clinical features and current pharmacological management of ADHD comorbid with BDs across the entire lifespan, with a major focus on the adulthood. DISCUSSION The pharmacology of ADHD-BD in adults is still empirical and influenced by the individual experience of the clinicians. Stimulants are endowed of a prompt efficacy and safety, whilst non-stimulants are useful when a substance abuse history is detected, although they require some weeks in order to be fully effective. In any case, an in-depth diagnostic and clinical evaluation of the single individual is mandatory. CONCLUSION The comorbidity of ADHD with BD is still a controversial matter, as it is the notion of adult ADHD as a distinct nosological category. Indeed, some findings highlighted the presence of common neurobiological mechanisms and overlapping clinical features, although disagreement does exist. In any case, while expecting to disentangle this crucial question, a correct management of this comorbidity is essential, which requires the co-administration of mood stabilizers. Further controlled clinical studies in large samples of adult ADHD-BD patients appear extremely urgent in order to better define possible therapeutic guidelines, as well as alternative approaches for this potentially invalidating condition.
Collapse
Affiliation(s)
- Federico Mucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Fondazione BRF, Istituto per la Ricerca Scientifica in Psichiatria e Neuroscienze, Lucca, Italy
| | - Maria Teresa Avella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Fondazione BRF, Istituto per la Ricerca Scientifica in Psichiatria e Neuroscienze, Lucca, Italy
| |
Collapse
|
17
|
Delvecchio G, Ciappolino V, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Cingulate abnormalities in bipolar disorder relate to gender and outcome: a region-based morphometry study [corrected]. Eur Arch Psychiatry Clin Neurosci 2019; 269:777-784. [PMID: 29594394 DOI: 10.1007/s00406-018-0887-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
Abstract
Structural magnetic resonance imaging (MRI) studies reported gray matter (GM) loss in bipolar disorder (BD) in cingulate cortices, key regions subserving emotional regulation and cognitive functions in humans. The aim of this study was to further explore cingulate GM volumes in a sizeable group of BD patients with respect to healthy controls, particularly investigating the impact of gender and clinical variables. 39 BD patients (mean Age = 48.6 ± 9.7, 15 males and 24 females) and 39 demographically matched healthy subjects (mean Age = 47.9 ± 9.1, 15 males and 24 females) underwent a 1.5T MRI scan. GM volumes within the cingulate cortex were manually detected, including anterior and posterior regions. BD patients had decreased left anterior cingulate volumes compared with healthy controls (F = 6.7, p = 0.01). Additionally, a significant gender effect was observed, with male patients showing reduced left anterior cingulate cortex (ACC) volumes compared to healthy controls (F = 5.1, p = 0.03). Furthermore, a significant inverse correlation between right ACC volumes and number of hospitalizations were found in the whole group of BD patients (r = - 0.51, p = 0.04) and in male BD patients (r = - 0.88, p = 0.04). Finally, no statistically significant correlations were observed in female BD patients. Our findings further confirm the putative role of the ACC in the pathophysiology of BD. Interestingly, this study also suggested the presence of gender-specific GM volume reductions in ACC in BD, which may also be associated to poor outcome.
Collapse
Affiliation(s)
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20122, Milan, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Interuniversity Centre for Behavioural Neurosciences, AOUI Verona, Verona, Italy
| | - Marco Barillari
- Section of Radiology, Department of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy
| | - Mirella Ruggeri
- Interuniversity Centre for Behavioural Neurosciences, AOUI Verona, Verona, Italy.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20122, Milan, Italy
| | - Marcella Bellani
- Interuniversity Centre for Behavioural Neurosciences, AOUI Verona, Verona, Italy.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20122, Milan, Italy. .,Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Yalin N, Saricicek A, Hidiroglu C, Zugman A, Direk N, Ada E, Cavusoglu B, Er A, Isik G, Ceylan D, Tunca Z, Kempton MJ, Ozerdem A. Cortical thickness and surface area as an endophenotype in bipolar disorder type I patients and their first-degree relatives. Neuroimage Clin 2019; 22:101695. [PMID: 30738374 PMCID: PMC6370861 DOI: 10.1016/j.nicl.2019.101695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVES So far, few studies have investigated cortical thickness (CT) and surface area (SA) measures in bipolar disorder type I (BDI) in comparison to a high genetic risk group such as first-degree relatives (FR). This study aimed to examine CT and SA differences between BDI, FR and healthy controls (HC). METHODS 3D T1 magnetic resonance images were acquired from 27 euthymic BDI patients, 24 unaffected FR and 29 HC. CT and SA measures were obtained with FreeSurfer version 5.3.0. Generalized estimating equations were used to compare CT and SA between groups. Group comparisons were repeated with restricting the FR group to 17 siblings (FR-SB) only. RESULTS \Mean age in years was 36.3 ± 9.5 for BDI, 32.1 ± 10.9 for FR, 34.7 ± 9.8 for FR-SB and 33.1 ± 9.0 for HC group respectively. BDI patients revealed larger SA of left pars triangularis (LPT) compared to HC (p = .001). In addition, increased SA in superior temporal cortex (STC) in FR-SB group compared to HC was identified (p = .0001). CONCLUSIONS Our result of increased SA in LPT of BDI could be a disease marker and increased SA in STC of FR-SB could be a marker related with resilience to illness.
Collapse
Affiliation(s)
- Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Aybala Saricicek
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| | - Ceren Hidiroglu
- Department of Psychology, Faculty of Arts, Dokuz Eylul University, Izmir, Turkey
| | - Andre Zugman
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Nese Direk
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Emel Ada
- Department of Radiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Berrin Cavusoglu
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe Er
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Gizem Isik
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Ceylan
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Zeliha Tunca
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aysegul Ozerdem
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
19
|
Teixeira AL, Colpo GD, Fries GR, Bauer IE, Selvaraj S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 2018; 19:67-81. [PMID: 30451546 DOI: 10.1080/14737175.2019.1550361] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic psychiatric disorder marked by clinical and pathophysiological heterogeneity. There is a high expectation that personalized approaches can improve the management of patients with BD. For that, identification and validation of potential biomarkers are fundamental. Areas covered: This manuscript will critically review the current status of different biomarkers for BD, including peripheral, genetic, neuroimaging, and neurophysiological candidates, discussing the challenges to move the field forward. Expert commentary: There are no lab or complementary tests currently recommended for the diagnosis or management of patients with BD. Panels composed by multiple biomarkers will probably contribute to stratifying patients according to their clinical stage, therapeutic response, and prognosis.
Collapse
Affiliation(s)
- Antonio L Teixeira
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA.,b Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , Brazil
| | - Gabriela D Colpo
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Gabriel R Fries
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Isabelle E Bauer
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Sudhakar Selvaraj
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| |
Collapse
|
20
|
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, et alHibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, van Haren NEM, Horn NR, Freimer NB, Gruber O, Schofield PR, Mitchell PB, Kahn RS, Lenroot R, Machado-Vieira R, Ophoff RA, Sarró S, Frangou S, Satterthwaite TD, Hajek T, Dannlowski U, Malt UF, Arolt V, Gattaz WF, Drevets WC, Caseras X, Agartz I, Thompson PM, Andreassen OA. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 2018; 23:932-942. [PMID: 28461699 PMCID: PMC5668195 DOI: 10.1038/mp.2017.73] [Show More Authors] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen's d=-0.293; P=1.71 × 10-21), left fusiform gyrus (d=-0.288; P=8.25 × 10-21) and left rostral middle frontal cortex (d=-0.276; P=2.99 × 10-19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.
Collapse
Affiliation(s)
- D P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA,Janssen Research & Development, San Diego, CA, USA
| | - L T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - N T Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - N Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - J W Cheung
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - C R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA,Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A C Bilderbeck
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK
| | - A Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,MRC Unit on Anxiety and Stress Disorders, Groote Schuur Hospital (J-2), University of Cape Town, Cape Town, South Africa
| | - B Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - B Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - B Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - C B Hartberg
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C Abé
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden
| | - D Dima
- Department of Psychology, City University London, London, UK,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster, Germany
| | - E Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - E Jimenez
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - F M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - G Delvecchio
- IRCCS "E. Medea" Scientific Institute, San Vito al Tagliamento, Italy
| | - H Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J Starke
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J R C Almeida
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - J M Goikolea
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - J Houenou
- INSERM U955 Team 15 ‘Translational Psychiatry’, University Paris East, APHP, CHU Mondor, Fondation FondaMental, Créteil, France,NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif Sur Yvette, France
| | - L M Beard
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - L Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - L Abramovic
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Bonnin
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - M F Ponteduro
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Keil
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - M M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - N Yao
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - N Yalin
- Centre for Affective Disorders, King’s College London, London, UK
| | - P Najt
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - P G Rosa
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - S Trost
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - S Hagenaars
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S C Fears
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA,West Los Angeles Veterans Administration, Los Angeles, CA, USA
| | - S Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - T Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - T M Chaim-Avancini
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - T B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA,Laureate Institute for Brain Research, Tulsa, OK, USA
| | - T Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - U K Haukvik
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Adult Psychiatry, University of Oslo, Oslo, Norway
| | - W H Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A H Schene
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - A J Lloyd
- Academic Psychiatry and Northern Centre for Mood Disorders, Newcastle University/Northumberland Tyne & Wear NHS Foundation Trust, Newcastle, UK
| | - A H Young
- Centre for Affective Disorders, King’s College London, London, UK
| | - A Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - A M Dale
- MMIL, Department of Radiology, University of California San Diego, San Diego, CA, USA,Department of Cognitive Science, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - A Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - B Lafer
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - B T Baune
- Department of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - C J Ekman
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden
| | - C A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - C E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Henry
- INSERM U955 Team 15 ‘Translational Psychiatry’, University Paris East, APHP, CHU Mondor, Fondation FondaMental, Créteil, France,Institut Pasteur, Unité Perception et Mémoire, Paris, France
| | - C Simhandl
- Bipolar Center Wiener Neustadt, Wiener Neustadt, Austria
| | - C McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - C Bourne
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK,Department of Psychology & Counselling, Newman University, Birmingham, UK
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,MRC Unit on Anxiety and Stress Disorders, Groote Schuur Hospital (J-2), University of Cape Town, Cape Town, South Africa
| | - D H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - D M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - D C Glahn
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - D J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - E Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - E Vieta
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - E J Canales-Rodriguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - F G Nery
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - F L S Duran
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - G F Busatto
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - G Roberts
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - G D Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - G M Goodwin
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK
| | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - H G Ruhe
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK,Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - J K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - J Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA,Faculty of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | - K T Chaim
- Department of Radiology, University of São Paulo, São Paulo, Brazil,LIM44-Laboratory of Magnetic Resonance in Neuroradiology, University of São Paulo, São Paulo, Brazil
| | - M Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - M G Soeiro-de-Souza
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - M P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M V Zanetti
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - M C G Otaduy
- Department of Radiology, University of São Paulo, São Paulo, Brazil,LIM44-Laboratory of Magnetic Resonance in Neuroradiology, University of São Paulo, São Paulo, Brazil
| | - M S Schaufelberger
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - M Ingvar
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - M L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M J Kempton
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Landén
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden,Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Goteborg, Sweden
| | - N S Lawrence
- Department of Psychology, University of Exeter, Exeter, UK
| | - N E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N R Horn
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - N B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - O Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - P R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - P B Mitchell
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Lenroot
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - R Machado-Vieira
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - R A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - S Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - T Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada,National Institute of Mental Health, Klecany, Czech Republic
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - U F Malt
- Division of Clinical Neuroscience, Department of Research and Education, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - V Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - W F Gattaz
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - W C Drevets
- Janssen Research & Development, Titusville, NJ, USA
| | - X Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - I Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - P M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - O A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,NORMENT, KG Jebsen Centre for Psychosis Research—TOP Study, Oslo University Hospital, Ullevål, Building 49, Kirkeveien 166, PO Box 4956, Nydalen, 0424, Oslo, Norway. E-mail:
| |
Collapse
|
21
|
|
22
|
Bora E, Özerdem A. Meta-analysis of longitudinal studies of cognition in bipolar disorder: comparison with healthy controls and schizophrenia. Psychol Med 2017; 47:2753-2766. [PMID: 28585513 DOI: 10.1017/s0033291717001490] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is associated with significant cognitive impairment. Recent evidence suggests that cognitive deficits are already evident after first-episode mania. However, it is not clear whether BP is associated with further decline in cognitive functions in individuals with established illness. Aim of this meta-analytic review was to examine longitudinal neurocognitive changes in BP and to compare trajectory of cognitive deficits in BP with schizophrenia and healthy controls. METHODS Electronic databases were searched for the studies published between January 1987 and November 2016. In total 22 reports were included in the current meta-analysis. The main analysis assessed the longitudinal change in cognition in 643 patients with BP. Further analyses were conducted in studies investigating cognitive changes in BP along with healthy controls (459 BP and 367 healthy controls) and schizophrenia (172 BP and 168 schizophrenia). RESULTS There was no cognitive decline overtime neither in short-term (mean duration = 1.5 years) nor in long-term (mean duration = 5.5 years) follow-up studies in BP. In contrast, there was evidence for modest improvements in task performance in memory and working memory at follow-up. The trajectory of cognitive functioning in BP was not significantly different from changes in schizophrenia and healthy controls. CONCLUSIONS Together with the findings in early BP and individuals at genetic risk for BP, current findings suggest that neurodevelopmental factors might play a significant role in cognitive deficits in BP and do not support the notion of progressive cognitive decline in most patients with BP.
Collapse
Affiliation(s)
- E Bora
- Faculty of Medicine,Department of Psychiatry,Dokuz Eylül University,Izmir,Turkey
| | - A Özerdem
- Faculty of Medicine,Department of Psychiatry,Dokuz Eylül University,Izmir,Turkey
| |
Collapse
|
23
|
Paracingulate Sulcus Asymmetry in the Human Brain: Effects of Sex, Handedness, and Race. Sci Rep 2017; 7:42033. [PMID: 28195205 PMCID: PMC5307317 DOI: 10.1038/srep42033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
The anterior cingulate cortex (ACC), which is thought to play a key role in cognitive and affective regulation, has been widely reported to have a high degree of morphological inter-individual variability and asymmetry. An obvious difference is in the morphology of the paracingulate sulcus (PCS). Three types of PCS have been identified: prominent, present, and absent. In this study, we examined the relationship between PCS asymmetry and whether the asymmetry of the PCS is affected by sex, handedness, or race. PCS measurements were obtained from four datasets. The statistical results revealed that the PCS was more often prominent and present in the left hemisphere than in the right. The percentage of right-handed males with a prominent PCS was greater than that of right-handed females, but the percentage of left-handed males with a prominent PCS was lower than that of left-handed females. In addition, both male and female and both left-handed and right-handed subjects showed a leftward asymmetry of the PCS. Furthermore there were no significant racial differences in the leftward asymmetry of the PCS. Our findings about the morphological characteristics of the PCS may facilitate future clinical and cognitive studies of this area.
Collapse
|
24
|
Roberts G, Lenroot R, Frankland A, Yeung PK, Gale N, Wright A, Lau P, Levy F, Wen W, Mitchell PB. Abnormalities in left inferior frontal gyral thickness and parahippocampal gyral volume in young people at high genetic risk for bipolar disorder. Psychol Med 2016; 46:2083-2096. [PMID: 27067698 DOI: 10.1017/s0033291716000507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fronto-limbic structural brain abnormalities have been reported in patients with bipolar disorder (BD), but findings in individuals at increased genetic risk of developing BD have been inconsistent. We conducted a study in adolescents and young adults (12-30 years) comparing measures of fronto-limbic cortical and subcortical brain structure between individuals at increased familial risk of BD (at risk; AR), subjects with BD and controls (CON). We separately examined cortical volume, thickness and surface area as these have distinct neurodevelopmental origins and thus may reflect differential effects of genetic risk. METHOD We compared fronto-limbic measures of grey and white matter volume, cortical thickness and surface area in 72 unaffected-risk individuals with at least one first-degree relative with bipolar disorder (AR), 38 BD subjects and 72 participants with no family history of mental illness (CON). RESULTS The AR group had significantly reduced cortical thickness in the left pars orbitalis of the inferior frontal gyrus (IFG) compared with the CON group, and significantly increased left parahippocampal gyral volume compared with those with BD. CONCLUSIONS The finding of reduced cortical thickness of the left pars orbitalis in AR subjects is consistent with other evidence supporting the IFG as a key region associated with genetic liability for BD. The greater volume of the left parahippocampal gyrus in those at high risk is in line with some prior reports of regional increases in grey matter volume in at-risk subjects. Assessing multiple complementary morphometric measures may assist in the better understanding of abnormal developmental processes in BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - R Lenroot
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P K Yeung
- Neuroscience Research Australia,Sydney,Australia
| | - N Gale
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - A Wright
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P Lau
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - F Levy
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - W Wen
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales,Sydney,Australia
| |
Collapse
|
25
|
Knöchel C, Reuter J, Reinke B, Stäblein M, Marbach K, Feddern R, Kuhlmann K, Alves G, Prvulovic D, Wenzler S, Linden DEJ, Oertel-Knöchel V. Cortical thinning in bipolar disorder and schizophrenia. Schizophr Res 2016; 172:78-85. [PMID: 26876312 DOI: 10.1016/j.schres.2016.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/08/2023]
Abstract
Although schizophrenia (SZ) and bipolar disorder (BD) share some clinical features such as psychotic symptoms and cognitive dysfunctions, little is known about possible pathophysiological similarities between both diseases. Therefore, we investigated the potential topographical overlap and segregation of cortical thickness abnormalities in SZ and BD patients. We analyzed 3D-anatomical magnetic resonance imaging datasets with the FreeSurfer 5.1.0 software to examine cortical thickness and volumes in three groups of participants: n=34 BD patients, n=32 SZ patients and n=38 healthy controls. We observed similar bilateral cortical thickness reductions in BD and SZ patients predominantly in the pars opercularis of the inferior frontal gyrus and in the anterior and posterior cingulate. We also found disease-specific cortical reductions in the orbitofrontal cortex for BD patients and in dorsal frontal and temporal areas for SZ. Furthermore, inferior frontal gyrus cortical thinning was associated with deficits in psychomotor speed and executive functioning in SZ patients and with age at onset in both groups. Our findings support the hypothesis that thinning of the frontal cortex may represent a biological feature shared by both disease groups. The associations between cognitive deficits and the reported findings in SZ and to a lesser degree in BD patients add to the functional relevance of our results. However, further studies are needed to corroborate a model of shared pathophysiological disease features across BD and SZ.
Collapse
Affiliation(s)
- Christian Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany.
| | - Johanna Reuter
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Michael Stäblein
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Katharina Marbach
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Richard Feddern
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Kristina Kuhlmann
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer's Disease and Related Disorders, Universidade Federal do Rio de Janeiro, Brazil
| | - David Prvulovic
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Sofia Wenzler
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Viola Oertel-Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
26
|
Hanford LC, Nazarov A, Hall GB, Sassi RB. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord 2016; 18:4-18. [PMID: 26851067 DOI: 10.1111/bdi.12362] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a debilitating illness, the psychopathology of which is associated with aberrant structural and functional differences in the brain. Despite the many advances in psychiatric research, our understanding of the complex neurobiological underpinnings of BD remains incomplete. The aim of this review was to critically examine all available published magnetic resonance imaging (MRI) research reporting cortical thickness in BD with respect to a healthy population and/or other psychiatric samples. METHODS The systematic search encompassed all relevant studies published until November 2014. Relevant papers were identified through an online search of select databases (MEDLINE and EMBASE) using key terms bipolar disorder or mania, and cortical thickness. Two independent raters determined the eligibility of papers and performed separate data extraction to ensure quality and accuracy of reporting. RESULTS A total of 17 papers met the criteria and were included in this review. Compared to a healthy population, the majority of studies reported decreased cortical thickness in the left anterior cingulate/paracingulate and the left superior temporal gyrus, as well as several prefrontal regions bilaterally in patients with BD. Studies also show consistency of cortical thinning in individuals with BD and schizophrenia in frontal and temporal regions, suggesting some common neuropathology. CONCLUSIONS This systematic review further supports a link between specific structural brain abnormalities and BD. Future studies should investigate cortical thickness with respect to at-risk populations to determine whether these neuropathologies develop before or after the onset of BD.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Anthony Nazarov
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Roberto B Sassi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Mood Disorders Outpatient Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
27
|
Ahn JY, Tae HJ, Cho JH, Kim IH, Ahn JH, Park JH, Kim DW, Cho JH, Won MH, Hong S, Lee JC, Seo JY. Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction. Neural Regen Res 2015; 10:1251-7. [PMID: 26487852 PMCID: PMC4590237 DOI: 10.4103/1673-5374.162757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction.
Collapse
Affiliation(s)
- Ji Yun Ahn
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Dong Won Kim
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Yeol Seo
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
28
|
Ehrlich A, Schubert F, Pehrs C, Gallinat J. Alterations of cerebral glutamate in the euthymic state of patients with bipolar disorder. Psychiatry Res 2015; 233:73-80. [PMID: 26050195 DOI: 10.1016/j.pscychresns.2015.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/08/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
The pathophysiology of bipolar disorder (BD) mostly remains unclear. However, some findings argue for a dysfunction in glutamatergic neurotransmission in BD. Proton magnetic resonance spectroscopy at 3T was used to determine glutamate concentrations in the anterior cingulate cortex (ACC) and the hippocampus (HC) of euthymic outpatients with BP-I disorder and age- and sex-matched healthy controls. In patients with BD, glutamate concentrations were significantly increased in the ACC and decreased in the HC compared with concentrations in controls. Significant group differences were also measured for N-acetyl aspartate and choline; no differences were found for other metabolites examined. An inverse correlation was observed for glutamate concentrations in the ACC and number of episodes. The findings of the study add to the concept of abnormalities in glutamatergic regulation in the ACC and HC in patients with BD.
Collapse
Affiliation(s)
- André Ehrlich
- Department of Psychiatry and Psychotherapy, Psychiatric University Hospital, St. Hedwig Krankenhaus, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Florian Schubert
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Corinna Pehrs
- Cluster Languages of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
29
|
Oertel-Knöchel V, Reuter J, Reinke B, Marbach K, Feddern R, Alves G, Prvulovic D, Linden DEJ, Knöchel C. Association between age of disease-onset, cognitive performance and cortical thickness in bipolar disorders. J Affect Disord 2015; 174:627-35. [PMID: 25577157 DOI: 10.1016/j.jad.2014.10.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Neuroimaging studies in patients with bipolar disorder (BD) have indicated a number of structural brain changes, including reduced cortical thickness. However, the effects of the course of illness, clinical and cognitive variables on cortical thickness in BD patients have not yet been evaluated. METHODS A total of 67 individuals (32 patients with euthymic BD and 35 healthy and age-matched controls) underwent 3D-anatomical magnetic resonance imaging (MRI). Whole-brain cortical thickness and group differences were assessed using the Freesurfer software. Course of disease variables, clinical and cognitive parameters were correlated with cortical thickness measures. RESULTS We found reduced cortical thickness in BD patients compared with controls in the frontal and temporal lobes and in several limbic areas. We also report significant associations between cortical thickness and age of disease-onset, speed of cognitive processing, executive function and depression severity in BD patients. CONCLUSIONS Cortical thickness reduction across frontal and limbic areas is a structural correlate of affective symptom severity and cognitive impairments in BD as well of age of disease-onset. We may assume that frontal lobe structural abnormalities are present in bipolar disorder, and might lead to dysfunctional cognitive functioning. The causality and functional relevance beyond mere correlation, however, is yet to be established. Our findings encourage further longitudinal studies in BD patients and in healthy at-risk subjects in order to discern the temporal order and development of morphological changes and clinical symptoms.
Collapse
Affiliation(s)
- Viola Oertel-Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany.
| | - Johanna Reuter
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Katharina Marbach
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Richard Feddern
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer׳s Disease and Related Disorders, Universidade Federal do Rio de Janeiro, Brazil
| | - David Prvulovic
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - David E J Linden
- School of Psychology, Cardiff University, United Kingdom; MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Christian Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
30
|
Giakoumatos CI, Nanda P, Mathew IT, Tandon N, Shah J, Bishop JR, Clementz BA, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS. Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. J Psychiatr Res 2015; 61:180-187. [PMID: 25563516 PMCID: PMC4859940 DOI: 10.1016/j.jpsychires.2014.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Relative to healthy controls, lithium free bipolar patients exhibit significant gray matter abnormalities. Lithium, the long-time reference standard medication treatment for bipolar disorder, has been proposed to be neuro-protective against these abnormalities. However, its effects on cortical thickness and hippocampal subfield (HSF) volumes remain unstudied and unclear, respectively, in bipolar disorder. This study included 342 healthy controls (HC), 51 lithium free PBD patients (NoLi), and 51 PBD patients taking lithium (Li). Regional gray matter thickness and HSF volume values were extracted from 3T MRI images. After matching NoLi and Li samples, regions where HC differed from either Li or NoLi were identified. In regions of significant or trending HC-NoLi difference, Li-NoLi comparisons were made. No significant HC-Li thickness or HSF volume differences were found. Significantly thinner occipital cortices were observed in NoLi compared to HC. In these regions, Li consistently exhibited non-significant trends for greater cortical thickness relative to NoLi. Significantly less volume was observed in NoLi compared to both HC and Li in right HSFs. Our results suggest that PBD in patients not treated with Li is associated with thinner occipital cortices and reduced HSF volumes compared with HC. Patients treated with Li exhibited significantly larger HSF volumes than NoLi, and those treated with Li were no different from HC in cortical thickness or hippocampal volumes. This evidence directly supports the hypothesis that Li may counteract the locally thinner and smaller gray matter structure found in PBD.
Collapse
Affiliation(s)
- C I Giakoumatos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard South Shore Psychiatry Residency Program, Harvard Medical School, Brockton, MA, USA
| | - P Nanda
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| | - I T Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - N Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Baylor College of Medicine, Texas Medical Center, Houston, TX, USA
| | - J Shah
- Program for Prevention and Early Intervention for Psychosis, Douglas Mental Health University Institute, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - J R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - B A Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA; Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - G D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA; Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - J A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Cai Y, Liu J, Zhang L, Liao M, Zhang Y, Wang L, Peng H, He Z, Li Z, Li W, Lu S, Ding Y, Li L. Grey matter volume abnormalities in patients with bipolar I depressive disorder and unipolar depressive disorder: a voxel-based morphometry study. Neurosci Bull 2014; 31:4-12. [PMID: 25502401 DOI: 10.1007/s12264-014-1485-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/14/2014] [Indexed: 12/26/2022] Open
Abstract
Bipolar disorder and unipolar depressive disorder (UD) may be different in brain structure. In the present study, we performed voxel-based morphometry (VBM) to quantify the grey matter volumes in 23 patients with bipolar I depressive disorder (BP1) and 23 patients with UD, and 23 age-, gender-, and education-matched healthy controls (HCs) using magnetic resonance imaging. We found that compared with the HC and UD groups, the BP1 group showed reduced grey matter volumes in the right inferior frontal gyrus and middle cingulate gyrus, while the UD group showed reduced volume in the right inferior frontal gyrus compared to HCs. In addition, correlation analyses revealed that the grey matter volumes of these regions were negatively correlated with the Hamilton depression rating scores. Taken together, the results of our study suggest that decreased grey matter volume of the right inferior frontal gyrus is a common abnormality in BP1 and UD, and decreased grey matter volume in the right middle cingulate gyrus may be specific to BP1.
Collapse
Affiliation(s)
- Yi Cai
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhong S, Wang Y, Zhao G, Xiang Q, Ling X, Liu S, Huang L, Jia Y. Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: a proton magnetic resonance spectroscopy study. J Affect Disord 2014; 168:380-6. [PMID: 25106035 DOI: 10.1016/j.jad.2014.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Depression in the context of bipolar disorder (BD) is often misdiagnosed as major depressive disorder (MDD), leading to mistreatments and poor clinical outcomes for many bipolar patients. Previous neuroimaging studies found mixed results on brain structure, and biochemical metabolism of the two disorders. To eliminate the compounding effects of medication, and aging, this study sought to investigate the brain biochemical changes of treatment-naïve, non-late-life patients with MDD and BD in white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC) and hippocampus by using proton magnetic resonance spectroscopy ((1)H-MRS). METHODS Three groups of participants were recruited: 26 MDD patients, 20 depressed BD patients, and 13 healthy controls. The multi-voxel (1)H-MRS [repetition time (TR)=1000ms; echo-time (TE)=144ms] was used for the measurement of N-acetylaspartate(NAA), choline containg compounds (Cho), and creatine (Cr) in three brain locations: white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC), and hippocampus. Two ratios of NAA/Cr and Cho/Cr as a measure of brain biochemical changes were compared among three experimental groups. RESULTS On the comparison of brain biochemical changes, both MDD patients and BD patients showed many similarities compared to the controls. They both had a significantly lower NAA/Cr ratio in the left WMP lobe. There were no significant differences among three experimental groups for Cho/Cr ratio in the WMP lobe, and for the ratios of NAA/Cr and Cho/Cr in the bilateral ACC and hippocampus. The only difference between MDD and BD patients existed for the NAA/Cr ratio in the right WMP lobe. While MDD patients had a significantly lower NAA/Cr ratio than controls, BD patients showed no such differences. On the comparison of correlation of medical variables and brain biochemical changes, all participants demonstrated no significant correlations. CONCLUSION Reduced NAA/Cr ratio at the left WMP lobe indicated the dysfunction of neuronal viability in deep white matter, in both MDD and BD patients who shared similarities of brain biochemical abnormalities, which might imply an overlap in neuropathology of depression.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guoxiang Zhao
- Department of Science and Education, Guangdong Emergency Hospital, Guangzhou 510316, China
| | - Qi Xiang
- Institute of Biomedicine, Jinan University, Guangzhou 510630, China
| | - Xueying Ling
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sirun Liu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
33
|
Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. The impact of alcohol and tobacco use on in vivo glutathione in youth with bipolar disorder: an exploratory study. J Psychiatr Res 2014; 55:59-67. [PMID: 24755258 DOI: 10.1016/j.jpsychires.2014.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Risky alcohol consumption and tobacco smoking is highly prevalent in bipolar disorder (BD) and is associated with increased formation of neural reactive oxygen species. Proton magnetic resonance spectroscopy ((1)H-MRS) is an in vivo imaging modality that allows quantification of glutathione (GSH) concentration, the brains primary antioxidant. Sixty-four patients with BD and 49 controls (18-30 years) completed self-report questionnaires regarding alcohol and tobacco use and underwent (1)H-MRS. Levels of GSH in the hippocampus and anterior cingulate cortex (ACC) were determined. Within-group Pearson's correlations were used to explore the relationship between alcohol use and GSH concentration for BD and controls, covarying for age, gender, family history of alcohol dependence and smoking status. Relationships between GSH and presence/severity of alcohol-induced blackouts were determined using Spearman's correlations. In BD, reduced hippocampal-GSH associated with higher alcohol use (R = -0.489, p < 0.021). Reduction of ACC-GSH with increased drinking was non-significant when controlling for tobacco use. Independent samples t-test revealed a significantly decreased ACC-GSH in smokers with BD (t (53) = 4.162, p < 0.001). In controls, alcohol use was not correlated to GSH in either region. In both patients and controls, reduced hippocampal-GSH was associated with blackout presence/severity, supporting a role for the hippocampus in the continuum of alcohol-induced memory impairments. Our preliminary findings suggest that in youth with BD reduced hippocampal-GSH is associated with risky alcohol use and alcohol and tobacco use is associated with reduced ACC-GSH, highlighting the role of these substances as modifiable risk factors for decreased anti-oxidant capacity in BD.
Collapse
Affiliation(s)
- Kate M Chitty
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia.
| | - Jim Lagopoulos
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| | - Daniel F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Lan MJ, Chhetry BT, Oquendo MA, Sublette ME, Sullivan G, Mann JJ, Parsey RV. Cortical thickness differences between bipolar depression and major depressive disorder. Bipolar Disord 2014; 16:378-88. [PMID: 24428430 PMCID: PMC4047134 DOI: 10.1111/bdi.12175] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/26/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a psychiatric disorder with high morbidity and mortality that cannot be distinguished from major depressive disorder (MDD) until the first manic episode. A biomarker able to differentiate BD and MDD could help clinicians avoid risks of treating BD with antidepressants without mood stabilizers. METHODS Cortical thickness differences were assessed using magnetic resonance imaging in BD depressed patients (n = 18), MDD depressed patients (n = 56), and healthy volunteers (HVs) (n = 54). A general linear model identified clusters of cortical thickness difference between diagnostic groups. RESULTS Compared to the HV group, the BD group had decreased cortical thickness in six regions, after controlling for age and sex, located within the frontal and parietal lobes, and the posterior cingulate cortex. Mean cortical thickness changes in clusters ranged from 7.6 to 9.6% (cluster-wise p-values from 1.0 e-4 to 0.037). When compared to MDD, three clusters of lower cortical thickness in BD were identified that overlapped with clusters that differentiated the BD and HV groups. Mean cortical thickness changes in the clusters ranged from 7.5 to 8.2% (cluster-wise p-values from 1.0 e-4 to 0.023). The difference in cortical thickness was more pronounced when the subgroup of subjects with bipolar I disorder (BD-I) was compared to the MDD group. CONCLUSIONS Cortical thickness patterns were distinct between BD and MDD. These results are a step toward developing an imaging test to differentiate the two disorders.
Collapse
Affiliation(s)
- Martin J Lan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY
| | - Binod Thapa Chhetry
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY
| | - Maria A Oquendo
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY
| | - M Elizabeth Sublette
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY
| | - Gregory Sullivan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY,Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Ramin V Parsey
- Presently at Department of Psychiatry and Behavioral Health Sciences and Department of Radiology, Stony Brook University Medical Center, Stony Brook, NY, USA
| |
Collapse
|
35
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA; Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| | - Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA; Janssen Pharmaceuticals of Johnson & Johnson, Inc., Titusville, NJ, USA
| |
Collapse
|
36
|
A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic versus psychotic depression. J Affect Disord 2013; 146:197-204. [PMID: 23021193 DOI: 10.1016/j.jad.2012.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 06/01/2012] [Accepted: 09/04/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Volumetric studies examining brain structure in depression subtypes are limited and inconclusive. The aim of the current study was to compare the volumes of brain regions previously implicated in depression among patients with melancholic major depressive disorder (MDD), patients with psychotic MDD and normal controls. METHODS Twenty two patients with melancholic MDD, 17 with psychotic MDD and 18 normal controls were included in the study. Hippocampal (HV), amygdala (AV), anterior (ASCV) and posterior (PSCV) subgenual cortex volumes were measured on magnetic resonance volumetric images. RESULTS There were no volumetric differences between patients with melancholic and psychotic subgroups. We identified larger AVs and smaller left ASCVs in both patient groups compared to controls with medium to large effect sizes. Regression analysis revealed that AVs were predicted by the presence of depression, late depression-onset, insomnia and left hippocampal tail volume in patients, but not in controls. There were no differences in HVs, right ASCVs and PSCVs across the 3 groups. LIMITATIONS Small sample size, a possible inclusion of paracingulate gyrus in ASCV and PSCV tracings, significant differences in education level and medication status are discussed as limitations. CONCLUSIONS Diagnostically delineated melancholic and psychotic MDD patients do not differ in medial temporal and cingulate volumes. However, significant volumetric differences were detected between both patient-groups and controls.
Collapse
|
37
|
Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013; 27:135-53. [PMID: 23371914 DOI: 10.1007/s40263-013-0039-0] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy. Overall, it is clear that the processes which underpin the therapeutic actions of lithium are sophisticated and most likely inter-related.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, and Department of Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
38
|
Gama CS, Kunz M, Magalhães PV, Kapczinski F. Staging and Neuroprogression in Bipolar Disorder: A Systematic Review of the Literature. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35:70-4. [DOI: 10.1016/j.rbp.2012.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023]
|
39
|
Hegarty CE, Foland-Ross LC, Narr KL, Sugar CA, McGough JJ, Thompson PM, Altshuler LL. ADHD comorbidity can matter when assessing cortical thickness abnormalities in patients with bipolar disorder. Bipolar Disord 2012; 14:843-55. [PMID: 23167934 PMCID: PMC3506177 DOI: 10.1111/bdi.12024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Attention-deficit hyperactivity disorder (ADHD) is prevalent in patients with bipolar disorder (BP), but very few studies consider this when interpreting magnetic resonance imaging findings. No studies, to our knowledge, have screened for or controlled for the presence of ADHD when examining cortical thickness in patients with BP. We used a 2 × 2 design to evaluate the joint effects of BP and ADHD on cortical thickness and uncover the importance of ADHD comorbidity in BP subjects. METHODS The study included 85 subjects: 31 healthy controls, 17 BP-only, 19 ADHD-only, and 18 BP/ADHD. All patients with BP were subtype I, euthymic, and not taking lithium. Groups did not differ significantly in age or gender distribution. We used cortical thickness measuring tools combined with cortical pattern matching methods to align sulcal/gyral anatomy across participants. Significance maps were used to check for both main effects of BP and ADHD and their interaction. Post-hoc comparisons assessed how the effects of BP on cortical thickness varied as a function of the presence or absence of ADHD. RESULTS Interactions of BP and ADHD diagnoses were found in the left subgenual cingulate and right orbitofrontal cortex, demonstrating that the effect of BP on cortical thickness depends on ADHD status. CONCLUSIONS Some brain abnormalities attributed to BP may result from the presence of ADHD. Diagnostic interactions were found in regions previously implicated in the pathophysiology of BP, making it vital to control for an ADHD comorbid diagnosis when attempting to isolate neural or genetic abnormalities specific to BP.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles
| | - Lara C Foland-Ross
- Mood and Anxiety Disorders Laboratory, Department of Psychology, Stanford University, Stanford
| | - Katherine L Narr
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, UCLA
| | - Catherine A Sugar
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Biostatistics, School of Public Health, UCLA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, UCLA, Los Angeles, USA
| | - James J McGough
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Paul M Thompson
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, UCLA
| | - Lori L Altshuler
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, UCLA, Los Angeles, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, USA
| |
Collapse
|
40
|
Sinka L, Kovari E, Santos M, Herrmann FR, Gold G, Hof PR, Bouras C, Giannakopoulos P. Microvascular changes in late-life schizophrenia and mood disorders: stereological assessment of capillary diameters in anterior cingulate cortex. Neuropathol Appl Neurobiol 2012; 38:696-709. [DOI: 10.1111/j.1365-2990.2012.01263.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Tu PC, Chen LF, Hsieh JC, Bai YM, Li CT, Su TP. Regional cortical thinning in patients with major depressive disorder: a surface-based morphometry study. Psychiatry Res 2012; 202:206-13. [PMID: 22521631 DOI: 10.1016/j.pscychresns.2011.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 06/02/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
This study uses surfaced-based morphometry to investigate cortical thinning and its functional correlates in patients with major depressive disorder (MDD). Subjects with MDD (N=36) and healthy control subjects (N=36) were enrolled in the study. Each subject received T1 structural magnetic resonance imaging (MRI), clinical evaluations, and neuropsychological examinations of executive functions with the Color Trail Test (CTT) and the Wisconsin Card Sorting Test (WCST). This study used an automated surface-based method (FreeSurfer) to measure cortical thickness and to generate the thickness maps for each subject. Statistical comparisons were performed using a general linear model. Compared with healthy controls, subjects with MDD showed the largest area of cortical thinning in the prefrontal cortex. This study also noted smaller areas of cortical thinning in the bilateral inferior parietal cortex, left middle temporal gyrus, left entorhinal cortex, left lingual cortex, and right postcentral gyrus. Regression analysis demonstrated cortical thinning in several frontoparietal regions, predicting worse executive performance measured by CTT 2, though the patterns of cortical thickness/executive performance correlation differed in healthy controls and MDD subjects. In conclusion, the results provide further evidence for the significant role of a prefrontal structural deficit and an aberrant structural/functional relationship in patients with MDD.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Blond BN, Fredericks CA, Blumberg HP. Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disord 2012; 14:340-55. [PMID: 22631619 PMCID: PMC3880745 DOI: 10.1111/j.1399-5618.2012.01015.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In past decades, neuroimaging research in bipolar disorder has demonstrated a convergence of findings in an amygdala-anterior paralimbic cortex neural system. This paper reviews behavioral neurology literature that first suggested a central role for this neural system in the disorder and the neuroimaging evidence that supports it. METHODS Relevant articles are reviewed to provide an amygdala-anterior paralimbic cortex neural system model of bipolar disorder, including articles from the fields of behavioral neurology and neuroanatomy, and neuroimaging. RESULTS The literature is highly supportive of key roles for the amygdala, anterior paralimbic cortices, and connections among these structures in the emotional dysregulation of bipolar disorder. The functions subserved by their more widely distributed connection sites suggest that broader system dysfunction could account for the range of functions-from neurovegetative to cognitive-disrupted in the disorder. Abnormalities in some components of this neural system are apparent by adolescence, while others, such as those in rostral prefrontal regions, appear to progress over adolescence and young adulthood, suggesting a neurodevelopmental model of the disorder. However, some findings conflict, which may reflect the small sample sizes of some studies, and clinical heterogeneity and methodological differences across studies. CONCLUSIONS Consistent with models derived from early behavioral neurology studies, neuroimaging studies support a central role for an amygdala-anterior paralimbic neural system in bipolar disorder, and implicate abnormalities in the development of this system in the disorder. This system will be an important focus of future studies on the developmental pathophysiology, detection, treatment, and prevention of the disorder.
Collapse
Affiliation(s)
- Benjamin N Blond
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Carolyn A Fredericks
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Department of Diagnostic Radiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,The Child Study Center, Yale School of Medicine, New Haven, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Research Enhancement Award Program Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
43
|
Further understanding of the comorbidity between Attention-Deficit/Hyperactivity Disorder and bipolar disorder in adults: an MRI study of cortical thickness. Psychiatry Res 2012; 202:1-11. [PMID: 22640688 PMCID: PMC3380145 DOI: 10.1016/j.pscychresns.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022]
Abstract
Although Attention-Deficit/Hyperactivity Disorder (ADHD) and Bipolar Disorder (BPD) frequently co-occur and represent a particularly morbid clinical form of both disorders, neuroimaging research addressing this comorbidity is scarce. Our aim was to evaluate cortical thickness in ADHD and BPD, testing the hypothesis that comorbid subjects (ADHD+BPD) would have neuroanatomical correlates of both disorders. Magnetic Resonance Imaging (MRI) findings were compared between 31 adults with ADHD+BPD, 18 with BPD, 26 with ADHD, and 23 healthy controls. Cortical thickness analysis of regions of interest was estimated as a function of ADHD and BPD status, using linear regression models. BPD was associated with significantly thicker cortices in 13 regions, independently of ADHD status and ADHD was associated with significantly thinner neocortical gray matter in 28 regions, independent of BPD. In the comorbid state of ADHD plus BPD, the profile of cortical abnormalities consisted of structures that are altered in both disorders individually. Results support the hypothesis that ADHD and BPD independently contribute to cortical thickness alterations of selective and distinct brain structures, and that the comorbid state represents a combinatory effect of the two. Attention to comorbidity is necessary to help clarify the heterogeneous neuroanatomy of both BPD and ADHD.
Collapse
|
44
|
Preißler S, Feiler J, Dietrich C, Hofmann GO, Miltner WHR, Weiss T. Gray Matter Changes Following Limb Amputation with High and Low Intensities of Phantom Limb Pain. Cereb Cortex 2012; 23:1038-48. [DOI: 10.1093/cercor/bhs063] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
45
|
Cousins DA, Grunze H. Interpreting magnetic resonance imaging findings in bipolar disorder. CNS Neurosci Ther 2012; 18:201-207. [PMID: 22449107 PMCID: PMC6493435 DOI: 10.1111/j.1755-5949.2011.00280.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/13/2011] [Accepted: 08/04/2011] [Indexed: 02/05/2023] Open
Abstract
The episodic nature of bipolar disorder together with the ostensibly polar extremes of mania and depression have favored the acceptance of a functional model postulating regionally disturbed brain activity returning to normal with time or treatment. Seemingly contrary to that view, anatomical imaging studies have demonstrated abnormalities in brain structure which could reflect neurodegeneration or represent disturbed neuronal development. Resolution may come from an appreciation of adult neurogenesis, especially given the neuroprotective properties of drugs, such as lithium and their effects on brain volume. The brain regions vulnerable to structural changes also show evidence of dysfunction, giving rise to corticolimbic dysregulation interpretations of bipolar disorder. This article reviews the structural and functional magnetic resonance imaging data in bipolar disorder. Its focus is on the interpretation of findings in light of recent developments in the fields of neurobiology and image analysis, with particular attention paid to both the confounding effects of medication and the baseline energy state of the brain.
Collapse
Affiliation(s)
- David A Cousins
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
46
|
Bora E, Fornito A, Yücel M, Pantelis C. The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 2012; 42:295-307. [PMID: 21835091 DOI: 10.1017/s0033291711001450] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent evidence from genetic and familial studies revitalized the debate concerning the validity of the distinction between schizophrenia and bipolar disorder. Comparing brain imaging findings is an important avenue to examine similarities and differences and, therefore, the validity of the distinction between these conditions. However, in contrast to bipolar disorder, most patient samples in studies of schizophrenia are predominantly male. This a limiting factor for comparing schizophrenia and bipolar disorder since male gender is associated with more severe neurodevelopmental abnormalities, negative symptoms and cognitive deficits in schizophrenia. METHOD We used a coordinate-based meta-analysis technique to compare grey matter (GM) abnormalities in male-dominated schizophrenia, gender-balanced schizophrenia and bipolar disorder samples based on published voxel-based morphometry (VBM) studies. In total, 72 English-language, peer reviewed articles published prior to January 2011 were included. All reports used VBM for comparing schizophrenia or bipolar disorder with controls and reported whole-brain analyses in standard stereotactic space. RESULTS GM reductions were more extensive in male-dominated schizophrenia compared to gender-balanced bipolar disorder and schizophrenia. In gender-balanced samples, GM reductions were less severe. Compared to controls, GM reductions were restricted to dorsal anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex in schizophrenia and ACC and bilateral fronto-insular cortex in bipolar disorder. CONCLUSIONS When gender is controlled, GM abnormalities in bipolar disorder and schizophrenia are mostly restricted to regions that have a role in emotional and cognitive aspects of salience respectively. Dorsomedial and dorsolateral prefrontal cortex were the only regions that showed greater GM reductions in schizophrenia compared to bipolar disorder.
Collapse
Affiliation(s)
- E Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - A Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - M Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| |
Collapse
|
47
|
Foland-Ross LC, Thompson PM, Sugar CA, Madsen SK, Shen JK, Penfold C, Ahlf K, Rasser PE, Fischer J, Yang Y, Townsend J, Bookheimer SY, Altshuler LL. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar I disorder using cortical pattern matching. Am J Psychiatry 2011; 168:530-9. [PMID: 21285139 PMCID: PMC3640313 DOI: 10.1176/appi.ajp.2010.10060896] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder, findings have been largely inconsistent across studies. Differences in patients' medication status or mood state or the application of traditional volumetric methods that are insensitive to subtle neuroanatomical differences may have contributed to variations in findings. The authors used MRI in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar patients who were not receiving lithium treatment. METHOD Thirty-four lithium-free euthymic patients with bipolar I disorder and 31 healthy comparison subjects underwent MRI scanning. Data were processed to measure cortical gray matter thickness. Thickness maps were spatially normalized using cortical pattern matching and were analyzed to assess illness effects and associations with clinical variables. RESULTS Relative to healthy comparison subjects, euthymic bipolar patients had significantly thinner gray matter in the left and right prefrontal cortex (Brodmann's areas 11, 10, 8, and 44) and the left anterior cingulate cortex (Brodmann's areas 24/32). Thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar patients relative to healthy comparison subjects. CONCLUSIONS Using a technique that is highly sensitive to subtle neuroanatomical differences, significant regional cortical thinning was found in lithium-free euthymic patients with bipolar disorder.
Collapse
Affiliation(s)
- Lara C. Foland-Ross
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Paul M. Thompson
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Catherine A. Sugar
- Department of Biostatistics, UCLA, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA
| | - Sarah K. Madsen
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Jim K. Shen
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA
| | | | - Kyle Ahlf
- Department of Biostatistics, UCLA, Los Angeles, CA
| | - Paul E. Rasser
- Schizophrenia Research Institute; and Priority Centre for Brain & Mental Health Research, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | - Yilan Yang
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | | | | | - Lori L. Altshuler
- Department of Biostatistics, UCLA, Los Angeles, CA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, Los Angeles, CA
| |
Collapse
|
48
|
Hallahan B, Newell J, Soares JC, Brambilla P, Strakowski SM, Fleck DE, Kieseppä T, Altshuler LL, Fornito A, Malhi GS, McIntosh AM, Yurgelun-Todd DA, Labar KS, Sharma V, MacQueen GM, Murray RM, McDonald C. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69:326-35. [PMID: 21030008 DOI: 10.1016/j.biopsych.2010.08.029] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND There is substantial inconsistency in results of brain structural magnetic resonance imaging studies in adult bipolar disorder. This is likely consequent upon limited statistical power of studies together with their clinical and methodological heterogeneity. The current study was undertaken to perform an international collaborative mega-analysis of regional volumetric measurements of individual patient and healthy subject data, to optimize statistical power, detect case-control differences, assess the association of psychotropic medication usage with brain structural variation, and detect other possible sources of heterogeneity. METHODS Eleven international research groups contributed published and unpublished data on 321 individuals with bipolar disorder I and 442 healthy subjects. We used linear mixed effects regression models to evaluate differences in brain structure between patient groups. RESULTS Individuals with bipolar disorder had increased right lateral ventricular, left temporal lobe, and right putamen volumes. Bipolar patients taking lithium displayed significantly increased hippocampal and amygdala volume compared with patients not treated with lithium and healthy comparison subjects. Cerebral volume reduction was significantly associated with illness duration in bipolar individuals. CONCLUSIONS The application of mega-analysis to bipolar disorder imaging identified lithium use and illness duration as substantial and consistent sources of heterogeneity, with lithium use associated with regionally specific increased brain volume.
Collapse
Affiliation(s)
- Brian Hallahan
- Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Azevedo-Marques Périco C, Duran FLS, Zanetti MV, Santos LC, Murray RM, Scazufca M, Menezes PR, Busatto GF, Schaufelberger MS. A population-based morphometric MRI study in patients with first-episode psychotic bipolar disorder: comparison with geographically matched healthy controls and major depressive disorder subjects. Bipolar Disord 2011; 13:28-40. [PMID: 21320250 DOI: 10.1111/j.1399-5618.2011.00896.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Many morphometric magnetic resonance imaging (MRI) studies that have investigated the presence of gray matter (GM) volume abnormalities associated with the diagnosis of bipolar disorder (BD) have reported conflicting findings. None of these studies has compared patients with recent-onset psychotic BD with asymptomatic controls selected from exactly the same environment using epidemiological methods, or has directly contrasted BD patients against subjects with first-onset psychotic major depressive disorder (MDD). We examined structural brain differences between (i) BD (type I) subjects and MDD subjects with psychotic features in their first contact with the healthcare system in Brazil, and (ii) these two mood disorder groups relative to a sample of geographically matched asymptomatic controls. METHODS A total of 26 BD subjects, 20 subjects with MDD, and 94 healthy controls were examined using either of two identical MRI scanners and acquisition protocols. Diagnoses were based on DSM-IV criteria and confirmed one year after brain scanning. Image processing was conducted using voxel-based morphometry. RESULTS The BD group showed increased volume of the right dorsal anterior cingulate cortex relative to controls, while the MDD subjects exhibited bilateral foci GM deficits in the dorsolateral prefrontal cortex (p < 0.05, corrected for multiple comparisons). Direct comparison between BD and MDD patients showed a focus of GM reduction in the right-sided dorsolateral prefrontal cortex (p < 0.05, corrected for multiple comparisons) and a trend (p < 0.10, corrected) toward left-sided GM deficits in the dorsolateral prefrontal cortex of MDD patients. When analyses were repeated with scanner site as a confounding covariate the finding of increased right anterior cingulate volumes in BD patients relative to controls remained statistically significant (p=0.01, corrected for multiple comparisons). CONCLUSIONS These findings reinforce the view that there are important pathophysiological distinctions between BD and MDD, and indicate that subtle dorsal anterior cingulate abnormalities may be relevant to the pathophysiology of BD.
Collapse
Affiliation(s)
- Cintia de Azevedo-Marques Périco
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Palaniyappan L, Cousins DA. Brain networks: foundations and futures in bipolar disorder. J Ment Health 2010; 19:157-67. [PMID: 20433323 DOI: 10.3109/09638230903469129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bipolar affective disorder is a common psychiatric illness with an often episodic nature, the neurobiological basis of which remains elusive. Symptom clusters in bipolar disorder can be conceptualized in terms of disordered brain networks, and doing so may aid our understanding of the varied presentations, differing illness courses and treatment responses. AIMS To review the rationale behind proposed disordered brain network function in bipolar disorder and the evidence of network dysfunction from imaging studies together with an overview of more novel techniques pertinent to this field. METHODS Medline databases were searched using the terms bipolar disorder, imaging, connectivity and brain networks. Relevant articles were reviewed and bibliographic cross-referencing was used to focus on key areas of interest, supplemented by additional Medline searches as required. RESULTS Structural and functional imaging studies support the concept of brain network dysfunction in bipolar disorder. Novel techniques such as diffusion tensor imaging and resting state network analysis can assess such dysfunction more directly, but there are few studies specific to bipolar disorder. CONCLUSIONS Brain network dysfunction is a useful framework for considering the varied presentations of bipolar disorder. Advanced imaging techniques are increasingly available, with the potential to provide insights into this important area.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|