1
|
Zhuo C, Li C, Ma X, Li R, Chen X, Li Y, Zhang Q, Yang L, Wang L. Common and unique white matter fractional anisotropy patterns in patients with schizophrenia with medication-resistant auditory verbal hallucinations: a retrospective tract-based spatial statistics study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:46. [PMID: 40113800 PMCID: PMC11926211 DOI: 10.1038/s41537-025-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Auditory verbal hallucinations (AVHs) are experienced by the majority of patients with schizophrenia and are often resistant to treatment with antipsychotic agents. White matter (WM) tract abnormalities are associated with AVH treatment efficacy. Using a retrospective design, 115 patients with schizophrenia with AVHs, 48 with medication-resistant AVHs and 67 with treatable AVHs, and 70 healthy controls (HCs) were selected from the database of our cohort study for 5-year follow-up assessment. WM tract integrity was measured using tract-based spatial statistics (TBSS) at baseline and after 5 years of antipsychotic agent treatment. The fractional anisotropy (FA) value was used to demonstrate WM tract alterations in patients with schizophrenia with medication-resistant AVHs, in patients with schizophrenia with treatable AVHs, and in HCs. Our data demonstrated that medication-resistant patients showed significantly greater FA values in the corpus callosum (CC) fasciculus at baseline and in the corticospinal tract post-treatment compared to HCs, but the baseline difference in the CC fasciculus was no longer significant after 5 years of antipsychotic agent treatment. The medication-resistant AVH group exhibited greater FA values in the superior longitudinal fasciculus after 5 years of antipsychotic agent treatment. Compared to the HC group, the treatable AVH group exhibited significantly greater FA values in the visual radiation and CC after 5 years of antipsychotic agent treatment. In the medication-resistant and treatable groups, common WM tract abnormalities were noted, as greater FA values were observed in the CC group at baseline compared to the HC group. At the same time, distinct abnormalities were noted, as greater FA values were observed in the superior longitudinal fasciculus, which may contribute to medication-resistant AVHs, whereas abnormalities in the CC fasciculus may contribute to both treatable and medication-resistant AVHs. In the HCs, a decrease in FA values in the posterior CC was observed after 5 years of observation compared to baseline. In summary, patients with treatment-resistant AVHs with schizophrenia and patients with treatable AVHs with schizophrenia have common and distinct abnormalities in the WM tract.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China.
| | - Chao Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Xiaoyan Ma
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Ranli Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Ximing Chen
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Yachen Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Qiuyu Zhang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Lei Yang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Lina Wang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| |
Collapse
|
2
|
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh‐Behbahani S, Legarreta J, Yeterian E, Makris N, Rathi Y, O'Donnell L. Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI. Hum Brain Mapp 2024; 45:e70041. [PMID: 39392220 PMCID: PMC11467805 DOI: 10.1002/hbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
Collapse
Affiliation(s)
- Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yuqian Chen
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lipeng Ning
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Liu
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mubai Du
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
| | | | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Yeterian
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Emsley R. Antipsychotics and structural brain changes: could treatment adherence explain the discrepant findings? Ther Adv Psychopharmacol 2023; 13:20451253231195258. [PMID: 37701891 PMCID: PMC10493054 DOI: 10.1177/20451253231195258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023] Open
Abstract
Progressive structural brain changes are well documented in schizophrenia and have been linked to both illness progression and the extent of antipsychotic treatment exposure. Literature reporting longitudinal changes in brain structure in individuals with schizophrenia is selectively reviewed to assess the roles of illness, antipsychotic treatment, adherence and other factors in the genesis of these changes. This narrative review considers literature investigating longitudinal changes in brain structure in individuals with schizophrenia. The review focusses on structural changes in the cortex, basal ganglia and white matter. It also examines effects of medication non-adherence and relapse on the clinical course of the illness and on structural brain changes. Studies investigating structural magnetic resonance imaging changes in patients treated with long-acting injectable antipsychotics are reviewed. Temporal changes in brain structure in schizophrenia can be divided into those that are associated with antipsychotic treatment and those that are not. Changes associated with treatment include increases in basal ganglia and white matter volumes. Relapse episodes may be a critical factor in illness progression and brain volume reductions. Medication adherence may be an important factor that could explain the findings that brain volume reductions are associated with poor treatment response, higher intensity of antipsychotic treatment exposure and more time spent in relapse. Improved adherence via long-acting injectable antipsychotics and adherence focussed psychosocial interventions could maximize protective effects of antipsychotics against illness progression.
Collapse
Affiliation(s)
- Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Tygerberg Campus, Cape Town 8000, South Africa
| |
Collapse
|
4
|
Adamu MJ, Qiang L, Nyatega CO, Younis A, Kawuwa HB, Jabire AH, Saminu S. Unraveling the pathophysiology of schizophrenia: insights from structural magnetic resonance imaging studies. Front Psychiatry 2023; 14:1188603. [PMID: 37275974 PMCID: PMC10236951 DOI: 10.3389/fpsyt.2023.1188603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Background Schizophrenia affects about 1% of the global population. In addition to the complex etiology, linking this illness to genetic, environmental, and neurobiological factors, the dynamic experiences associated with this disease, such as experiences of delusions, hallucinations, disorganized thinking, and abnormal behaviors, limit neurological consensuses regarding mechanisms underlying this disease. Methods In this study, we recruited 72 patients with schizophrenia and 74 healthy individuals matched by age and sex to investigate the structural brain changes that may serve as prognostic biomarkers, indicating evidence of neural dysfunction underlying schizophrenia and subsequent cognitive and behavioral deficits. We used voxel-based morphometry (VBM) to determine these changes in the three tissue structures: the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). For both image processing and statistical analysis, we used statistical parametric mapping (SPM). Results Our results show that patients with schizophrenia exhibited a significant volume reduction in both GM and WM. In particular, GM volume reductions were more evident in the frontal, temporal, limbic, and parietal lobe, similarly the WM volume reductions were predominantly in the frontal, temporal, and limbic lobe. In addition, patients with schizophrenia demonstrated a significant increase in the CSF volume in the left third and lateral ventricle regions. Conclusion This VBM study supports existing research showing that schizophrenia is associated with alterations in brain structure, including gray and white matter, and cerebrospinal fluid volume. These findings provide insights into the neurobiology of schizophrenia and may inform the development of more effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mohammed Jajere Adamu
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
- Department of Computer Science, Yobe State University, Damaturu, Nigeria
| | - Li Qiang
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Charles Okanda Nyatega
- Department of Information and Communication Engineering, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Ayesha Younis
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Halima Bello Kawuwa
- Department of Biomedical Engineering and Scientific Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo, Nigeria
| | - Sani Saminu
- Department of Biomedical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Emsley R, du Plessis S, Phahladira L, Luckhoff HK, Scheffler F, Kilian S, Smit R, Buckle C, Chiliza B, Asmal L. Antipsychotic treatment effects and structural MRI brain changes in schizophrenia. Psychol Med 2023; 53:2050-2059. [PMID: 35441587 PMCID: PMC10106303 DOI: 10.1017/s0033291721003809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Progressive brain structural MRI changes are described in schizophrenia and have been ascribed to both illness progression and antipsychotic treatment. We investigated treatment effects, in terms of total cumulative antipsychotic dose, efficacy and tolerability, on brain structural changes over the first 24 months of treatment in schizophrenia. METHODS A prospective, 24-month, single-site cohort study in 99 minimally treated patients with first-episode schizophrenia, schizophreniform and schizoaffective disorder, and 98 matched healthy controls. We treated the patients according to a fixed protocol with flupenthixol decanoate, a long-acting injectable antipsychotic. We assessed psychopathology, cognition, extrapyramidal symptoms and BMI, and acquired MRI scans at months 0, 12 and 24. We selected global cortical thickness, white matter volume and basal ganglia volume as the regions of interest. RESULTS The only significant group × time interaction was for basal ganglia volumes. However, patients, but not controls, displayed cortical thickness reductions and increases in white matter and basal ganglia volumes. Cortical thickness reductions were unrelated to treatment. White matter volume increases were associated with lower cumulative antipsychotic dose, greater improvements in psychopathology and cognition, and more extrapyramidal symptoms. Basal ganglia volume increases were associated with greater improvements in psychopathology, greater increases in BMI and more extrapyramidal symptoms. CONCLUSIONS We provide evidence for plasticity in white matter and basal ganglia associated with antipsychotic treatment in schizophrenia, most likely linked to the dopamine blocking actions of these agents. Cortical changes may be more closely related to the neurodevelopmental, non-dopaminergic aspects of the illness.
Collapse
Affiliation(s)
- Robin Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Lebogang Phahladira
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Hilmar K. Luckhoff
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Frederika Scheffler
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Sanja Kilian
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Retha Smit
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Chanelle Buckle
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Laila Asmal
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
6
|
Cattarinussi G, Delvecchio G, Sambataro F, Brambilla P. The effect of polygenic risk scores for major depressive disorder, bipolar disorder and schizophrenia on morphological brain measures: A systematic review of the evidence. J Affect Disord 2022; 310:213-222. [PMID: 35533776 DOI: 10.1016/j.jad.2022.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SCZ) share clinical features and genetic bases. Magnetic Resonance Imaging (MRI) studies assessing the effect of polygenic risk score (PRS) for psychiatric disorders on brain structure show heterogeneous results. Therefore, we provided an overview of the existing evidence on the association between PRS for MDD, BD and SCZ and MRI abnormalities in clinical and healthy populations. METHODS A search on PubMed, Web of Science and Scopus was performed to identify the studies exploring the effect of PRS for MDD, BD and SCZ on MRI measures. A total of 25 studies were included (N = 13 on healthy individuals and N = 12 on clinical populations). RESULTS Both in affected and unaffected individuals, PRS for BD and SCZ showed either positive or negative correlations with cortical thickness (CT), mostly involving fronto-temporal areas, whereas PRS for MDD was associated with cortical alterations in prefrontal regions in healthy subjects. LIMITATIONS The heterogeneity in the methods limits the conclusions of this review. CONCLUSIONS Overall the evidence on the effect of PRS for MDD, BD and SCZ on brain is considerably heterogeneous and far to be conclusive. However, from the results emerged that PRS for MDD, BD and SCZ were associated with widespread cortical abnormalities in all the populations explored, suggesting that genetic risk for MDD, BD and SCZ might affect neurodevelopmental processes, resulting in cortical alterations that transcend diagnostic boundaries and seem to be independent from the clinical status.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Sato Y, Sakuma A, Ohmuro N, Katsura M, Abe K, Tomimoto K, Iizuka K, Ito F, Tomita H, Matsumoto K. White matter volume not associated with hallucinations in clinical high risk and first-episode psychosis: A voxel-based morphometry study. Psychiatry Clin Neurosci 2021; 75:299-301. [PMID: 34191366 DOI: 10.1111/pcn.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Yutaro Sato
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Noriyuki Ohmuro
- Department of Psychiatry, Osaki Citizen Hospital, Osaki, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Koichi Abe
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Kazuho Tomimoto
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Fumiaki Ito
- National Hospital Organization Hanamaki Hospital, Hanamaki, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Kokoro no Clinic OASIS, Sendai, Japan
| |
Collapse
|
8
|
Extensive long-term verbal memory training is associated with brain plasticity. Sci Rep 2021; 11:9712. [PMID: 33958676 PMCID: PMC8102627 DOI: 10.1038/s41598-021-89248-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
The human brain has a remarkable capacity to store a lifetime of information through visual or auditory routes. It excels and exceeds any artificial memory system in mixing and integrating multiple pieces of information encoded. In this study, a group of verbal memory experts was evaluated by multiple structural brain analysis methods to record the changes in the brain structure. The participants were professional Hindu pandits (priests/scholars) trained in reciting Vedas and other forms of Hindu scriptures. These professional Vedic priests are experts in memorization and recitation of oral texts with precise diction. Vedas are a collection of hymns. It is estimated that there are more than 20,000 mantras and shlokas in the four Vedas. The analysis included the measurement of the grey and white matter density, gyrification, and cortical thickness in a group of Vedic pandits and comparing these measures with a matched control group. The results revealed an increased grey matter (GM) and white matter (WM) in the midbrain, pons, thalamus, parahippocampus, and orbitofrontal regions in pandits. The whole-brain corelation analysis using length of post-training teaching duration showed significant correlation with the left angular gyrus. We also found increased gyrification in the insula, supplementary motor area, medial frontal areas, and increased cortical thickness (CT) in the right temporal pole and caudate regions of the brain. These findings, collectively, provide unique information regarding the association between crucial memory regions in the brain and long-term practice of oral recitation of scriptures from memory with the proper diction that also involved controlled breathing.
Collapse
|
9
|
Grey and white matter alteration in euthymic children with bipolar disorder: a combined source-based morphometry (SBM) and voxel-based morphometry (VBM) study. Brain Imaging Behav 2021; 16:22-30. [PMID: 33846953 DOI: 10.1007/s11682-021-00473-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Bipolar disorder (BPD) is a psychiatric condition driving frequent mood swings between periodic extremes of happiness and depression in patients. In this study, a source-based morphometry (SBM) and voxel-based morphometry (VBM) analysis was utilized to measure the differences in the white matter (WM) and grey matter (GM) between euthymic children with BPD and typically developing (TD) children. We adapted both multivariate (SBM) and univariate (VBM) analysis in 20 children with BPD euthymia /remission and compared to the same number of TD age-matched children. The VBM did not reveal any increase in GM and WM voxel values in children with BPD. However, a decrease in the GM voxel values in the bilateral middle frontal and WM voxels in the left hippocampus, left caudate, left orbitofrontal and right inferior parietal cortices was identified. Conversely, SBM analysis in BPD displayed a high GM value in bilateral angular gyrus, bilateral inferior temporal, left supplementary motor area and left middle temporal region, while a low value was observed in left inferior and middle occipital, cerebellum, thalamus, left premotor area and left lingual gyrus. These findings suggested a crucial GM and WM alteration in multiple neural regions in BPD children even during sustained and substantial remission.
Collapse
|
10
|
Evermann U, Gaser C, Besteher B, Langbein K, Nenadić I. Cortical Gyrification, Psychotic-Like Experiences, and Cognitive Performance in Nonclinical Subjects. Schizophr Bull 2020; 46:1524-1534. [PMID: 32691058 PMCID: PMC7707080 DOI: 10.1093/schbul/sbaa068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Psychotic-like experiences (PLE) are present in nonclinical populations, yet their association with brain structural variation, especially markers of early neurodevelopment, is poorly understood. We tested the hypothesis that cortical surface gyrification, a putative marker of early brain development, is associated with PLE in healthy subjects. METHODS We analyzed gyrification from 3 Tesla MRI scans (using CAT12 software) and PLE (positive, negative, and depressive symptom dimensions derived from the Community Assessment of Psychic Experiences, CAPE) in 103 healthy participants (49 females, mean age 29.13 ± 9.37 years). A subsample of 63 individuals completed tasks from the Wechsler Adult Intelligence Scale and Controlled Oral Word Association Test. Estimated IQ and a composite neuropsychological score were used to explore mediation pathways via cognition. RESULTS Positive PLE distress was negatively associated with gyrification of the left precuneus. PLE depression dimension showed a negative association with gyrification in the right supramarginal and temporal region. There was no significant mediating effect of cognition on these associations. CONCLUSION Our results support a neurobiological psychosis spectrum, for the first time linking an early developmental imaging marker (rather than volume) to dimensional subclinical psychotic symptoms. While schizophrenia risk, neurodevelopment, and cognitive function might share genetic risk factors, additional mediation analyses did not confirm a mediating effect of cognition on the gyrification-psychopathology correlation.
Collapse
Affiliation(s)
- Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Marburg University Hospital – UKGM, Marburg, Germany
| |
Collapse
|
11
|
Siddi S, Nuñez C, Senior C, Preti A, Cuevas-Esteban J, Ochoa S, Brébion G, Stephan-Otto C. Depression, auditory-verbal hallucinations, and delusions in patients with schizophrenia: Different patterns of association with prefrontal gray and white matter volume. Psychiatry Res Neuroimaging 2019; 283:55-63. [PMID: 30544051 DOI: 10.1016/j.pscychresns.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Structural brain abnormalities, including decreased gray matter (GM) and white matter (WM) volume, have been observed in patients with schizophrenia. These decrements were found to be associated with positive and negative symptoms, but affective symptoms (depression and anxiety) were poorly explored. We hypothesized that abnormalities in GM and WM volume might also be related to affective symptoms. GM and WM volumes were calculated from high-resolution T1 structural images acquired from 24 patients with schizophrenia and 26 healthy controls, and the associations of positive, negative, and affective symptoms with the brain volumes that showed significant reduction in patients were investigated. Patients demonstrated GM volume reductions in the bilateral prefrontal cortex, and WM volume reductions in the right frontal and left corpus callosum. Prefrontal cortex volume was significantly and inversely associated with both auditory-verbal hallucinations and depression severity. WM volume alterations, in contrast, were related to alogia, anhedonia, and delusions. The combined impact of auditory-verbal hallucinations and depression on similar sub-regions of the prefrontal cortex suggests that depression is involved in hearing voices. Further, this adverse impact of depression on prefrontal GM volume may underlie the impairment demonstrated by these patients in cognitive tasks that rely on executive processes.
Collapse
Affiliation(s)
- Sara Siddi
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Italy.
| | - Christian Nuñez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carl Senior
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Antonio Preti
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Italy; Center of Liaison Psychiatry and Psychosomatics, University Hospital, University of Cagliari, Cagliari, Italy
| | - Jorge Cuevas-Esteban
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Servei de Psiquiatria, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Susana Ochoa
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gildas Brébion
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
12
|
Zhang L, Xu S, Huang Q, Xu H. N-acetylcysteine attenuates the cuprizone-induced behavioral changes and oligodendrocyte loss in male C57BL/7 mice via its anti-inflammation actions. J Neurosci Res 2018; 96:803-816. [PMID: 29114910 DOI: 10.1002/jnr.24189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Previous animal studies have linked white matter damage to certain schizophrenia-like behaviors in cuprizone (CPZ)-exposed mouse. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and oligodendrocyte loss coexist in the brain of such mice. The aim of this study was to examine effects of the antioxidant N-acetylcysteine (NAC) on CPZ-induced behavioral changes and concurrent oligodendrocyte loss, oxidative stress, and neuroinflammation in these animals. Male C57BL/6 mice were given intraperitoneal saline or NAC at doses of 100, 200, and 400 mg/kg/day for 2 weeks; animals were fed a CPZ-containing diet (0.2%, w/w) during days 5-14. During days 15-17, the mice were examined in open-field, social recognition, and Y-maze tests (1 test per day). Six mice in each group were then used for biochemical and enzyme-linked immunosorbent assay analyses, while the remaining animals were used for immunohistochemical and immunofluorescence staining. The mice exposed to CPZ for 10 days showed significantly lower spontaneous alternation in the Y-maze, lower activity of total superoxide dismutase, and glutathione peroxidase, but higher levels of malondialdehyde in the cerebral cortex and hippocampus, elevated concentrations of interleukin-1β and tumor necrosis factor-α in the brain regions mentioned above and caudate putamen, and a decreased number of mature oligodendrocytes, but increased number of microglia in all the brain regions examined. These changes, however, were not seen or effectively alleviated in NAC-treated mice at all three doses. These results demonstrate that NAC protected mature oligodendrocytes against the toxic effects of CPZ, likely via its antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Lin Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Shuqin Xu
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China
- Department of Anatomy, Shantou University Medical College, Shantou, China
| |
Collapse
|
13
|
Sumner PJ, Bell IH, Rossell SL. A systematic review of the structural neuroimaging correlates of thought disorder. Neurosci Biobehav Rev 2018; 84:299-315. [DOI: 10.1016/j.neubiorev.2017.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
|
14
|
Liu H, Zhai J, Wang B, Fang M. Olig2 Silence Ameliorates Cuprizone-Induced Schizophrenia-Like Symptoms in Mice. Med Sci Monit 2017; 23:4834-4840. [PMID: 28989170 PMCID: PMC5644458 DOI: 10.12659/msm.903842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The pathogenesis of schizophrenia is complex and oligodendrocyte abnormality is an important component of the pathogenesis found in schizophrenia. This study was designed to evaluate the function of olig2 in cuprizone-induced schizophrenia-like symptoms in a mouse model, and to assess the related mechanisms. Material/Methods The schizophrenia-like symptoms were modeled by administration of cuprizone in mice. Open-field and elevated-plus maze tests were applied to detect behavioral changes. Adenovirus encoding olig2 siRNA was designed to silence olig2 expression. Real-time PCR and western blotting were applied to detect myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP) and olig2 expressions. Results Open field test showed that the distance and time spent in the center area were significantly decreased in cuprizone mice (model mice) when compared with control mice (p<0.05). By contrast, olig2 silence could significantly increase the time and distance spent in the center area compared with the model mice (p<0.05). As revealed by elevated-plus maze test, the mice in the model group preferred the open arm and spent more time and distance in the open arm compared with control mice (p<0.05), while olig2 silence significantly reversed the abnormalities (p<0.05). Mechanically, MBP and CNPase expression were reduced in the model group compared with the control (p<0.05). However, olig2 silence reversed the reduction caused by cuprizone modeling (p<0.05). In addition, GFAP was elevated after cuprizone modeling compared with control (p<0.05), and was significantly inhibited by olig2 silence compared with model (p<0.05). Conclusions Cuprizone-induced schizophrenia-like symptoms involved olig2 upregulation. The silence of olig2 could prevent changes, likely through regulating MBP, CNPase, and GFAP expressions.
Collapse
Affiliation(s)
- Hongxia Liu
- Jining Neuro-Psychiatric Hospital, Jining, Shandong, China (mainland)
| | - Jinguo Zhai
- Jining Medical University, Jining, Shandong, China (mainland)
| | - Bin Wang
- Jining Neuro-Psychiatric Hospital, Jining, Shandong, China (mainland)
| | - Maosheng Fang
- Wuhan Mental Health Center, Wuhan, Hubei, China (mainland)
| |
Collapse
|
15
|
Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M. Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging Behav 2017; 11:1258-1277. [PMID: 27714552 PMCID: PMC5382125 DOI: 10.1007/s11682-016-9589-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Originally, the middle longitudinal fascicle (MdLF) was defined as a long association fiber tract connecting the superior temporal gyrus and temporal pole with the angular gyrus. More recently its description has been expanded to include all long postrolandic cortico-cortical association connections of the superior temporal gyrus and dorsal temporal pole with the parietal and occipital lobes. Despite its location and size, which makes MdLF one of the most prominent cerebral association fiber tracts, its discovery in humans is recent. Given the absence of a gold standard in humans for this fiber tract, its precise and complete connectivity remains to be determined with certainty. In this study using high angular resolution diffusion MRI (HARDI), we delineated for the first time, six major fiber connections of the human MdLF, four of which are temporo-parietal and two temporo-occipital, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy brains. Considering the cortical affiliations of the different connections of MdLF we suggested that this fiber tract may be related to language, attention and integrative higher level visual and auditory processing associated functions. Furthermore, given the extensive connectivity provided to superior temporal gyrus and temporal pole with the parietal and occipital lobes, MdLF may be involved in several neurological and psychiatric conditions such as primary progressive aphasia and other aphasic syndromes, some forms of behavioral variant of frontotemporal dementia, atypical forms of Alzheimer's disease, corticobasal degeneration, schizophrenia as well as attention-deficit/hyperactivity Disorder and neglect disorders.
Collapse
Affiliation(s)
- Nikos Makris
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA.
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02215, USA.
- McLean Hospital, Harvard Medical School (Affiliated School/Hospital), Belmont, MA, 02478, USA.
| | - A Zhu
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - G M Papadimitriou
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - P Mouradian
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - I Ng
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - E Scaccianoce
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - G Baselli
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - F Baglio
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Y Rathi
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - B Dickerson
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - E Yeterian
- Department of Psychology, Colby College, Waterville, ME, 04901, USA
| | - M Kubicki
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Kaiser S, Lyne J, Agartz I, Clarke M, Mørch-Johnsen L, Faerden A. Individual negative symptoms and domains - Relevance for assessment, pathomechanisms and treatment. Schizophr Res 2017; 186:39-45. [PMID: 27453425 DOI: 10.1016/j.schres.2016.07.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
The negative symptoms of schizophrenia can be divided into two domains. Avolition/apathy includes the individual symptoms of avolition, asociality and anhedonia. Diminished expression includes blunted affect and alogia. Until now, causes and treatment of negative symptoms have remained a major challenge, which is partially related to the focus on negative symptoms as a broad entity. Here, we propose that negative symptoms may become more tractable when the different domains and individual symptoms are taken into account. There is now increasing evidence that the relationship with clinical variables - in particular outcome - differs between the domains of avolition/apathy and diminished expression. Regarding models of negative symptom formation, those relevant to avolition/apathy are now converging on processes underlying goal-directed behavior and dysfunctions of the reward system. In contrast, models of the diminished expression domains are only beginning to emerge. The aim of this article is to review the specific clinical, behavioral and neural correlates of individual symptoms and domains as a better understanding of these areas may facilitate specific treatment approaches.
Collapse
Affiliation(s)
- Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - John Lyne
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; North Dublin Mental Health Services, Ashlin Centre, Beaumont Road, Dublin 9, Ireland; Dublin and East Treatment and Early Care Team (DETECT) Services, Dublin, Ireland
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Mary Clarke
- Dublin and East Treatment and Early Care Team (DETECT) Services, Dublin, Ireland; College of Life Sciences, University College Dublin, Dublin, Ireland
| | - Lynn Mørch-Johnsen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Ann Faerden
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Neural substrates underlying delusions in schizophrenia. Sci Rep 2016; 6:33857. [PMID: 27651212 PMCID: PMC5030611 DOI: 10.1038/srep33857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/05/2016] [Indexed: 11/30/2022] Open
Abstract
Delusions are cardinal positive symptoms in schizophrenia; however, the neural substrates of delusions remain unknown. In the present study, we investigated the neural correlates of delusions in schizophrenia using multi-modal magnetic resonance imaging (MRI) techniques. Diffusion, structural and perfusion MRIs were performed in 19 schizophrenia patients with severe delusions, 30 patients without delusions and 30 healthy controls. Fractional anisotropy (FA), gray matter volume (GMV) and cerebral blood flow (CBF) were voxel-wisely compared among the three groups. Although patients without delusions exhibited decreased FA in white matter regions and decreased GMV in gray matter regions relative to controls, patients with severe delusions demonstrated comparable FA in all of these white matter regions and similar GMV in most of these gray matter regions. Both patient subgroups had less GMV in the amygdala and anterior cingulate cortex than controls. Although two patient subgroups showed consistent CBF changes relative to controls, only CBF in the anterior cingulate cortex was lower in patients with severe delusions than in patients without delusions. These findings suggest that schizophrenia patients with severe delusions have relatively normal structural integrity. Importantly, the excessively reduced perfusion in the anterior cingulate cortex may be associated with the development of delusions in schizophrenia.
Collapse
|
18
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
19
|
Mallas EJ, Carletti F, Chaddock CA, Woolley J, Picchioni MM, Shergill SS, Kane F, Allin MP, Barker GJ, Prata DP. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder. PeerJ 2016; 4:e1570. [PMID: 26966642 PMCID: PMC4782689 DOI: 10.7717/peerj.1570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be conferred through it inducing abnormalities in white matter microstructure.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesco Carletti
- Department of Neuroradiology, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Christopher A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - James Woolley
- Psychological Medicine, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Marco M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- St Andrew’s Academic Department, St Andrew’s Healthcare, Northampton, United Kingdom
| | - Sukhwinder S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Fergus Kane
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Matthew P.G. Allin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Diana P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Situ W, Liao H, Zhou B, Xia X, Tan C. Application of diffusion tensor imaging for detecting structural changes in the brain of schizophrenic patients. Int J Psychiatry Clin Pract 2015; 19:114-8. [PMID: 25410157 DOI: 10.3109/13651501.2014.988270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Schizophrenia is a severe psychiatric illness. Although magnetic resonance imaging has been widely used for detecting brain structural and functional abnormalities in patients with schizophrenia, the findings are highly inconsistent between reports. This study investigates structural changes in the brains of schizophrenic patients. METHODS The brains of fifty male adults with schizophrenia and fifty age- and gender-matched healthy controls were scanned by diffusion tensor imaging. The differences in fractional anisotropy (FA) values between schizophrenic patients and healthy controls were analyzed. RESULTS Schizophrenic patients exhibited significantly decreased FA values in the right middle frontal gyrus, right inferior frontal gyrus, right superior temporal gyrus, left sub-temporal gyrus, left middle temporal gyrus, left cingulate gyrus, and left precentral gyrus compared with the control group. We did not find any brain regions with higher FA values in the patient group than in the control group. CONCLUSION This study suggested that structural abnormalities in the frontal region of gray matter and white matter are present at the same time in patients with schizophrenia.
Collapse
Affiliation(s)
- Weijun Situ
- Department of Radiology, Second Xiangya Hospital, Central South University , Changsha , P. R. China
| | | | | | | | | |
Collapse
|
21
|
Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, Dickerson BC, Shenton ME, Kubicki M. Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 2014; 7:335-52. [PMID: 23686576 DOI: 10.1007/s11682-013-9235-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer's disease as well as attention-deficit/hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- N Makris
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA, 02129, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Foussias G, Agid O, Fervaha G, Remington G. Negative symptoms of schizophrenia: clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur Neuropsychopharmacol 2014; 24:693-709. [PMID: 24275699 DOI: 10.1016/j.euroneuro.2013.10.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/30/2013] [Accepted: 10/31/2013] [Indexed: 01/29/2023]
Abstract
Negative symptoms have long been recognized as a central feature of the phenomenology of schizophrenia, dating back to the early descriptions by Kraepelin and Bleuler. Over the ensuing century, there have been important clarifications and reconceptualizations regarding the phenomenology of negative symptoms in schizophrenia. This review explores these developments, including the delineation of two underlying subdomains of negative symptoms - amotivation (i.e., avolition/apathy and asociality) and diminished expression (i.e., poverty of speech and affective flattening). Further, advances in our understanding of specific motivational and hedonic deficits seen in schizophrenia are explored. The findings that negative symptoms stand apart from depressive and cognitive symptoms in schizophrenia are also discussed. In terms of the predictors of functional outcomes in schizophrenia, we explore both the direct role of negative symptoms in this regard, as well as their indirect role through cognition. We then broaden our examination of negative symptoms to related disorders across the schizophrenia spectrum, as well as to other neuropsychiatric illnesses, where negative symptoms have been increasingly recognized. We explore the differential characteristics of negative symptoms across these illnesses, and their relevance to functional outcomes. This transdiagnostic presence and relevance of negative symptoms highlights the need for continued exploration of their phenomenology and neurobiology as we move to develop effective interventions to address these debilitating symptoms and improve functional outcomes.
Collapse
Affiliation(s)
- George Foussias
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Ofer Agid
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Gagan Fervaha
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Gary Remington
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
23
|
Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol 2014; 24:645-92. [PMID: 24820238 DOI: 10.1016/j.euroneuro.2014.03.008] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a complex and multifactorial disorder generally diagnosed in young adults at the time of the first psychotic episode of delusions and hallucinations. These positive symptoms can be controlled in most patients by currently-available antipsychotics. Conversely, they are poorly effective against concomitant neurocognitive dysfunction, deficits in social cognition and negative symptoms (NS), which strongly contribute to poor functional outcome. The precise notion of NS has evolved over the past century, with recent studies - underpinned by novel rating methods - suggesting two major sub-domains: "decreased emotional expression", incorporating blunted affect and poverty of speech, and "avolition", which embraces amotivation, asociality and "anhedonia" (inability to anticipate pleasure). Recent studies implicate a dysfunction of frontocortico-temporal networks in the aetiology of NS, together with a disruption of cortico-striatal circuits, though other structures are also involved, like the insular and parietal cortices, amygdala and thalamus. At the cellular level, a disruption of GABAergic-glutamatergic balance, dopaminergic signalling and, possibly, oxytocinergic and cannibinoidergic transmission may be involved. Several agents are currently under clinical investigation for the potentially improved control of NS, including oxytocin itself, N-Methyl-d-Aspartate receptor modulators and minocycline. Further, magnetic-electrical "stimulation" strategies to recruit cortical circuits and "cognitive-behavioural-psychosocial" therapies likewise hold promise. To acquire novel insights into the causes and treatment of NS, experimental study is crucial, and opportunities are emerging for improved genetic, pharmacological and developmental modelling, together with more refined readouts related to deficits in reward, sociality and "expression". The present article comprises an integrative overview of the above issues as a platform for this Special Issue of European Neuropsychopharmacology in which five clinical and five preclinical articles treat individual themes in greater detail. This Volume provides, then, a framework for progress in the understanding - and ultimately control - of the debilitating NS of schizophrenia.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| | - Kevin Fone
- School of Biomedical Sciences, Medical School, Queen׳s Medical Centre, Nottingham University, Nottingham NG72UH, UK
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - William P Horan
- VA Greater Los Angeles Healthcare System, University of California, Los Angeles, MIRECC 210A, Bldg. 210, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| |
Collapse
|
24
|
Steinmann S, Leicht G, Mulert C. Interhemispheric auditory connectivity: structure and function related to auditory verbal hallucinations. Front Hum Neurosci 2014; 8:55. [PMID: 24574995 PMCID: PMC3920068 DOI: 10.3389/fnhum.2014.00055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
Auditory verbal hallucinations (AVH) are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that “hearing voices” is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI) measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA) in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL) task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
25
|
Smallman RP, Barkus E, Azadbakht H, Embleton KV, Haroon HA, Lewis SW, Morris DM, Parker GJ, Rushe TM. MRI diffusion tractography study in individuals with schizotypal features: a pilot study. Psychiatry Res 2014; 221:49-57. [PMID: 24239094 DOI: 10.1016/j.pscychresns.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Diffusion tensor imaging (DTI) studies have identified changes in white matter tracts in schizophrenia patients and those at high risk of transition. Schizotypal samples represent a group on the schizophrenia continuum that share some aetiological risk factors but without the confounds of illness. The aim of the current study was to compare tract microstructural coherence as measured by fractional anisotropy (FA) between 12 psychometrically defined schizotypes and controls. We investigated bilaterally the uncinate and arcuate fasciculi (UF and AF) via a probabilistic tractography algorithm (PICo), with FA values compared between groups. Partial correlations were also examined between measures of subclinical hallucinatory/delusional experiences and FA values. Participants with schizotypal features were found to have increased FA values in the left hemisphere UF only. In the whole sample there was a positive correlation between FA values and measures of hallucinatory experience in the right AF. These findings suggest subtle changes in microstructural coherence are found in individuals with schizotypal features, but are not similar to changes predominantly observed in clinical samples. Correlations between mild hallucinatory experience and FA values could indicate increasing tract coherence could be associated with symptom formation.
Collapse
Affiliation(s)
- Richard P Smallman
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester M13 9PT, UK; School of Psychological Sciences, University of Manchester, Manchester, UK.
| | - Emma Barkus
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | | | - Karl V Embleton
- School of Psychological Sciences, University of Manchester, Manchester, UK; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Hamied A Haroon
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Shôn W Lewis
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - David M Morris
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Geoffrey J Parker
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Teresa M Rushe
- School of Psychology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
26
|
Mitterauer BJ. Pathophysiology of Schizophrenia Based on Impaired Glial-Neuronal Interactions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojmp.2014.32016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
van Tol MJ, van der Meer L, Bruggeman R, Modinos G, Knegtering H, Aleman A. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: The superior temporal gyrus does not stand alone. Neuroimage Clin 2013; 4:249-57. [PMID: 25061563 PMCID: PMC4107370 DOI: 10.1016/j.nicl.2013.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been proposed to result from abnormal local, interregional and interhemispheric integration of brain signals in regions involved in language production and perception. This abnormal functional integration may find its base in morphological abnormalities. Structurally, AVHs have been frequently linked to abnormal morphology of the superior temporal gyrus (STG), but only a few studies investigated the relation of hallucination presence with both whole-brain gray matter (GM) and white matter (WM) morphometry. METHODS Using a unified voxel-based morphometry-DARTEL approach, we investigated correlates of AVH presence in 51 schizophrenia patients (20 non-hallucinating [SZ -], 31 hallucinating [SZ +]), and included 51 age and sex matched healthy participants. Effects are reported at p < .05 FWE corrected. RESULTS Patients showed lower GM volume of the left STG than controls, irrespective of AVH presence. In addition, SZ + showed lower GM volume of the left inferior frontal and right parahippocampal gyrus, and higher WM volume of the left postcentral and superior parietal lobule than controls. Finally, volume of the putamen was lower in SZ + compared to SZ -. No effects on corpus callosum morphometry were observed. Delusion severity, general positive and negative symptomatology illness duration, and medication status could not explain the results. DISCUSSION Results suggest that STG GM abnormalities underlie the general susceptibility to experience psychotic symptoms and that additional abnormalities in a network of medial temporal, ventrolateral, putaminal, and parietal regions related to verbal memory and speech production may specifically increase the likelihood of experiencing AVH. Future studies should clarify the meaning of morphometry abnormalities for functional interregional communication.
Collapse
Affiliation(s)
- Marie-José van Tol
- University of Groningen, University Medical Center Groningen, Neuroimaging Center, Antonius Deusinglaan 2, 9713 AW Groningen, The Netherlands
| | - Lisette van der Meer
- University of Groningen, University Medical Center Groningen, Neuroimaging Center, Antonius Deusinglaan 2, 9713 AW Groningen, The Netherlands
- Lentis Institution for Mental Health Care, Department of Rehabilitation, PO Box 128, 9470 AC Zuidlaren, The Netherlands
| | - Richard Bruggeman
- University Medical Center Groningen, Department of Psychiatry, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Gemma Modinos
- Institute of Psychiatry, King's College London, Department of Psychosis Studies, 16 De Crespigny Park, London SE5 8AF, UK
| | - Henderikus Knegtering
- Lentis Institution for Mental Health Care, Groningen and Lentis Institution for Mental Health Care, Department of Rehabilitation, Postbus 128, 9470 AC Zuidlaren, The Netherlands
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Neuroimaging Center, Antonius Deusinglaan 2, 9713 AW Groningen, The Netherlands
| |
Collapse
|
28
|
van der Leeuw C, Marcelis M, Peeters SCT, Verbeek MM, Menheere PPCA, de Haan L, van Os J, van Beveren NJM. Replicated evidence of absence of association between serum S100B and (risk of) psychotic disorder. PLoS One 2013; 8:e82535. [PMID: 24358202 PMCID: PMC3866164 DOI: 10.1371/journal.pone.0082535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND S100B is a potential marker of neurological and psychiatric illness. In schizophrenia, increased S100B levels, as well as associations with acute positive and persisting negative symptoms, have been reported. It remains unclear whether S100B elevation, which possibly reflects glial dysfunction, is the consequence of disease or compensatory processes, or whether it is an indicator of familial risk. METHODS Serum samples were acquired from two large independent family samples (n = 348 and n = 254) in the Netherlands comprising patients with psychotic disorder (n = 140 and n = 82), non-psychotic siblings of patients with psychotic disorder (n = 125 and n = 94) and controls (n = 83 and n = 78). S100B was analyzed with a Liaison automated chemiluminescence system. Associations between familial risk of psychotic disorder and S100B were examined. RESULTS Results showed that S100B levels in patients (P) and siblings (S) were not significantly different from controls (C) (dataset 1: P vs. C: B = 0.004, 95% CI -0.005 to 0.013, p = 0.351; S vs. C: B = 0.000, 95% CI -0.009 to 0.008, p = 0.926; and dataset 2: P vs. C: B = 0.008, 95% CI -0.011 to 0.028, p = 0.410; S vs. C: B = 0.002, 95% CI -0.016 to 0.021, p = 0.797). In patients, negative symptoms were positively associated with S100B (B = 0.001, 95% CI 0.000 to 0.002, p = 0.005) in one of the datasets, however with failure of replication in the other. There was no significant association between S100B and positive symptoms or present use or type of antipsychotic medication. CONCLUSIONS S100B is neither an intermediate phenotype, nor a trait marker for psychotic illness.
Collapse
Affiliation(s)
- Christine van der Leeuw
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| | - Sanne C. T. Peeters
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marcel M. Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Paul P. C. A. Menheere
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lieuwe de Haan
- Deparment of Psychiatry, Academic Medical Centre, Amsterdam, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
| | - Nico J. M. van Beveren
- Departments of Psychiatry and Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department “Nieuwe Kennis”, Delta Centre for Mental Health Care, Rotterdam, The Netherlands
| | | |
Collapse
|
29
|
Makris N, Preti MG, Asami T, Pelavin P, Campbell B, Papadimitriou GM, Kaiser J, Baselli G, Westin CF, Shenton ME, Kubicki M. Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 2013; 218:951-68. [PMID: 22782432 PMCID: PMC3500586 DOI: 10.1007/s00429-012-0441-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions.
Collapse
Affiliation(s)
- N Makris
- Department of Psychiatry, Neurology and Radiology Services, Center for Morphometric Analysis, A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Microstructural white matter alterations in psychotic disorder: a family-based diffusion tensor imaging study. Schizophr Res 2013; 146:291-300. [PMID: 23523694 DOI: 10.1016/j.schres.2013.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is evidence for microstructural white matter alterations in patients with psychotic disorder, suggesting altered interregional connectivity. Less is known about the presence and role of white matter alterations in well individuals at higher than average genetic risk for psychotic disorder. METHODS 85 patients with psychotic disorder, 93 non-psychotic siblings of patients with psychotic disorder and 80 healthy controls underwent a diffusion tensor imaging (DTI) scanning protocol. In a whole brain voxel-based analysis using Tract Based Spatial Statistics (TBSS), fractional anisotropy (FA) values were compared between the three groups. Effects of antipsychotic medication and drug use were examined. RESULTS The patients displayed significantly lower mean FA than the controls in the following regions: corpus callosum (genu, body, splenium), forceps major and minor, external capsule bilaterally, corona radiata (anterior, posterior) bilaterally, left superior corona radiata and posterior thalamic radiation bilaterally. Similar FA differences existed between the patients and siblings; the siblings did not differ from the controls. CONCLUSION Profound microstructural white matter alterations were found in the corpus callosum and other tracti and fasciculi in the patients with psychotic disorder, but not in siblings and the controls. These alterations may reflect brain pathology associated with the illness, illness-related environmental risk factors, or its treatment, rather than genetic risk.
Collapse
|
31
|
Colibazzi T, Wexler BE, Bansal R, Hao X, Liu J, Sanchez-Peña J, Corcoran C, Lieberman JA, Peterson BS. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia. PLoS One 2013; 8:e55783. [PMID: 23418459 PMCID: PMC3572102 DOI: 10.1371/journal.pone.0055783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/30/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM) and white matter (WM) disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia. METHODS We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness. RESULTS We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities. CONCLUSIONS Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.
Collapse
Affiliation(s)
- Tiziano Colibazzi
- Division of Child and Adolescent Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tepest R, Schwarzbach CJ, Krug B, Klosterkötter J, Ruhrmann S, Vogeley K. Morphometry of structural disconnectivity indicators in subjects at risk and in age-matched patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 263:15-24. [PMID: 22821623 DOI: 10.1007/s00406-012-0343-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/30/2012] [Indexed: 01/13/2023]
Abstract
Structural disconnectivity has been hypothesized as being accountable for the pathophysiology of schizophrenia. Morphometric variables suitable for the empirical study of disconnectivity were studied aiming at the research question whether empirical indicators for disconnectivity are already informative in subjects at risk (SAR) and in young matched patients diagnosed with schizophrenia (SZ). In MRI data of subjects of the two diagnostic groups SZ and SAR, the size of the corpus callosum (CC) as indicator for interhemispherical long distance connections and the gyrification index (GI) as indicator for cortico-cortical connections were analyzed compared to a healthy controls (HC). Each subgroup consists of 21 subjects matched for sex and age. Measurements of the CC and GI were estimated in manually performed tracing procedures. GI data revealed significant differences between the diagnostic groups of both SAR and SZ as compared to HC in the frontal and parietal cortices. Measurements of total CC yielded no significant differences between diagnostic groups. The results are suggestive for impaired cortico-cortical connections as indicated by gyrification changes in SZ and also in SAR, whereas interhemispherical connectivity at the same time appears to be unaffected.
Collapse
Affiliation(s)
- Ralf Tepest
- Klinik für Psychiatrie und Psychotherapie, Uniklinik Köln, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Pankow A, Knobel A, Voss M, Heinz A. Neurobiological correlates of delusion: beyond the salience attribution hypothesis. Neuropsychobiology 2012; 66:33-43. [PMID: 22797275 DOI: 10.1159/000337132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
Dopamine dysfunction is a mainstay of theories aimed to explain the neurobiological correlates of schizophrenia symptoms, particularly positive symptoms such as delusions and passivity phenomena. Based on studies revealing dopamine dysfunction in addiction research, it has been suggested that phasic or chaotic firing of dopaminergic neurons projecting to the (ventral) striatum attribute salience to otherwise irrelevant stimuli and thus contribute to delusional mood and delusion formation. Indeed, several neuroimaging studies revealed that neuronal encoding of usually irrelevant versus relevant stimuli is blunted in unmedicated schizophrenia patients, suggesting that some stimuli that are irrelevant for healthy controls acquire increased salience for psychotic patients. However, salience attribution per se may not suffice to explain anxieties and feelings of threat that often accompany paranoid ideation. Here, we suggest that beyond ventral striatal dysfunction, dopaminergic dysregulation in limbic areas such as the amygdala in interaction with prefrontal and temporal cortex may contribute to the formation of delusions and negative symptoms. Neuroleptic medication, on the other hand, appears to interfere with anticipation of reward in the ventral striatum and can thus contribute to secondary negative symptoms such as apathy and avolition.
Collapse
Affiliation(s)
- Anne Pankow
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte,Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
34
|
Gogtay N, Hua X, Stidd R, Boyle CP, Lee S, Weisinger B, Chavez A, Giedd JN, Clasen L, Toga AW, Rapoport JL, Thompson PM. Delayed white matter growth trajectory in young nonpsychotic siblings of patients with childhood-onset schizophrenia. ACTA ACUST UNITED AC 2012; 69:875-84. [PMID: 22945617 DOI: 10.1001/archgenpsychiatry.2011.2084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Nonpsychotic siblings of patients with childhood-onset schizophrenia (COS) share cortical gray matter abnormalities with their probands at an early age; these normalize by the time the siblings are aged 18 years, suggesting that the gray matter abnormalities in schizophrenia could be an age-specific endophenotype. Patients with COS also show significant white matter (WM) growth deficits, which have not yet been explored in nonpsychotic siblings. OBJECTIVE To study WM growth differences in nonpsychotic siblings of patients with COS. DESIGN Longitudinal (5-year) anatomic magnetic resonance imaging study mapping WM growth using a novel tensor-based morphometry analysis. SETTING National Institutes of Health Clinical Center, Bethesda, Maryland. PARTICIPANTS Forty-nine healthy siblings of patients with COS (mean [SD] age, 16.1 [5.3] years; 19 male, 30 female) and 57 healthy persons serving as controls (age, 16.9 [5.3] years; 29 male, 28 female). INTERVENTION Magnetic resonance imaging. MAIN OUTCOME MEASURE White matter growth rates. RESULTS We compared the WM growth rates in 3 age ranges. In the youngest age group (7 to <14 years), we found a significant difference in growth rates, with siblings of patients with COS showing slower WM growth rates in the parietal lobes of the brain than age-matched healthy controls (false discovery rate, q = 0.05; critical P = .001 in the bilateral parietal WM; a post hoc analysis identified growth rate differences only on the left side, critical P = .004). A growth rate difference was not detectable at older ages. In 3-dimensional maps, growth rates in the siblings even appeared to surpass those of healthy individuals at later ages, at least locally in the brain, but this effect did not survive a multiple comparisons correction. CONCLUSIONS In this first longitudinal study of nonpsychotic siblings of patients with COS, the siblings showed early WM growth deficits, which normalized with age. As reported before for gray matter, WM growth may also be an age-specific endophenotype that shows compensatory normalization with age.
Collapse
Affiliation(s)
- Nitin Gogtay
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wylie KP, Rojas DC, Tanabe J, Martin LF, Tregellas JR. Nicotine increases brain functional network efficiency. Neuroimage 2012; 63:73-80. [PMID: 22796985 DOI: 10.1016/j.neuroimage.2012.06.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/25/2022] Open
Abstract
Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function.
Collapse
Affiliation(s)
- Korey P Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Bldg. 500, Mail Stop F546, 13001 East 17th Place, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
36
|
Allen P, Modinos G, Hubl D, Shields G, Cachia A, Jardri R, Thomas P, Woodward T, Shotbolt P, Plaze M, Hoffman R. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr Bull 2012; 38:695-703. [PMID: 22535906 PMCID: PMC3406523 DOI: 10.1093/schbul/sbs066] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Despite more than 2 decades of neuroimaging investigations, there is currently insufficient evidence to fully understand the neurobiological substrate of auditory hallucinations (AH). However, some progress has been made with imaging studies in patients with AH consistently reporting altered structure and function in speech and language, sensory, and nonsensory regions. This report provides an update of neuroimaging studies of AH with a particular emphasis on more recent anatomical, physiological, and neurochemical imaging studies. Specifically, we provide (1) a review of findings in schizophrenia and nonschizophrenia voice hearers, (2) a discussion regarding key issues that have interfered with progress, and (3) practical recommendations for future studies.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's College, DeCrespigny Park, London SE5 8AF, UK.
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, King's College, DeCrespigny Park, London SE5 8AF, UK
| | - Daniela Hubl
- University Hospital of Psychiatry, Bern, Switzerland
| | - Gregory Shields
- Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| | - Arnaud Cachia
- UMR INSERM 894, Centre de Psychiatrie & Neurosciences, Centre Hospitalier Sainte-Anne & UMR CNRS 6232, Groupe d'imagerie neurofonctionnelle du développement, Sorbonne Université Paris Descartes, France
| | - Renaud Jardri
- Psychiatry Department, University Medical Centre of Lille, Lille North of France University, Lille, France
| | - Pierre Thomas
- Psychiatry Department, University Medical Centre of Lille, Lille North of France University, Lille, France
| | - Todd Woodward
- Department of Psychiatry, University of British Columbia BC Mental Health and Addiction Research Institute, Vancouver, Canada
| | - Paul Shotbolt
- Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| | - Marion Plaze
- Service Hospitalo-Universitaire & UMR INSERM 894, Centre de Psychiatrie & Neurosciences, Centre Hospitalier Sainte-Anne; Université Paris Descartes, France
| | - Ralph Hoffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
37
|
Nakamura K, Kawasaki Y, Takahashi T, Furuichi A, Noguchi K, Seto H, Suzuki M. Reduced white matter fractional anisotropy and clinical symptoms in schizophrenia: a voxel-based diffusion tensor imaging study. Psychiatry Res 2012; 202:233-8. [PMID: 22819228 DOI: 10.1016/j.pscychresns.2011.09.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 07/23/2011] [Accepted: 09/07/2011] [Indexed: 10/28/2022]
Abstract
Although not consistently replicated, diffusion tensor imaging (DTI) studies in schizophrenia have revealed lower fractional anisotropy (FA) in various white matter regions, a finding consistent with the disruption of white matter integrity. In this study, we used voxel-based DTI to investigate possible whole-brain differences in the white matter FA values between 58 schizophrenia patients and 58 healthy controls. We also explored the association between FA values and clinical symptoms in schizophrenia. Compared with the controls, the schizophrenia patients showed significant FA reductions in bilateral superior longitudinal fasciculus, bilateral inferior fronto-occipital fasciculus, and genu of right internal capsule. Furthermore, in the patient group, the FA value of the anterior part of the corpus callosum was negatively correlated with the avolition score on the Scale for the Assessment of Negative Symptoms. These findings suggest widespread disruption of white matter integrity in schizophrenia, which could partly explain the severity of negative symptomatology.
Collapse
Affiliation(s)
- Kazue Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
He ZL, Deng W, Li ML, Chen ZF, Collier DA, Ma X, Li T. Detection of metabolites in the white matter of frontal lobes and hippocampus with proton in first-episode treatment-naïve schizophrenia patients. Early Interv Psychiatry 2012; 6:166-75. [PMID: 21951785 DOI: 10.1111/j.1751-7893.2011.00291.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to investigate the changes of the metabolites in the white matter of frontal lobes and hippocampus in schizophrenia by using proton magnetic resonance spectroscopy ((1) H-MRS). METHODS Sixty-three first-episode treatment-naïve schizophrenia (FES) patients and 63 age-, gender- and education level-matched healthy controls were recruited. The relative levels of metabolites including N-acetylaspartate (NAA), choline-containing compounds (Cho), (Cr) and myo-inositol (MI) were detected with (1) H-MRS, and the laterality index (Li) was calculated. The severity of symptoms was assessed using the Positive and Negative Syndrome Scale. RESULTS Compared with controls, FES patients did not show significant differences in all metabolites. The severity of positive symptoms was negatively correlated with the NAA/Cho in the white matter of the left frontal lobe and positively correlated with the Cho/Cr in the right white matter of frontal lobes. A negative correlation was observed between the severity of negative symptoms and the NAA/Cr in the white matter of bilateral frontal lobes. No difference was shown in the Li of metabolites between FES patients and controls. CONCLUSIONS The metabolites such as NAA, Cho and MI in white matter of frontal lobes and hippocampus were not significantly altered in FES patients. The lower axonal integrity/number (NAA concentration) may be associated with more severe negative symptoms, and dysmetabolism in process of myelination in the white matter of frontal lobes associated with more severe positive symptoms.
Collapse
Affiliation(s)
- Zong-Ling He
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Xu H, Li XM. White matter abnormalities and animal models examining a putative role of altered white matter in schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:826976. [PMID: 22937274 PMCID: PMC3420616 DOI: 10.1155/2011/826976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
40
|
Abbs B, Liang L, Makris N, Tsuang M, Seidman LJ, Goldstein JM. Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: Sex differences are critical. Neuroimage 2011; 56:1865-74. [PMID: 21497198 DOI: 10.1016/j.neuroimage.2011.03.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/23/2011] [Accepted: 03/29/2011] [Indexed: 12/28/2022] Open
Abstract
Women have consistently demonstrated better verbal memory on tests that evaluate immediate and delayed free recall. In patients with schizophrenia, these verbal memory processes are relatively more preserved in women than men. However an understanding of the brain anatomy of the female advantage for verbal memory is still unclear. 29 females and 59 males with schizophrenia made comparable to 21 female and 27 male healthy volunteers were scanned using structural magnetic resonance imaging (sMRI) in order to assess volumes of regions across the entire brain. Sex differences within and between groups in the covariance structure of memory circuitry regions were evaluated using a novel approach to covariance analysis (the Box M Test). Brain areas of interest included the prefrontal cortex (PFC), inferior parietal lobule (iPAR), anterior cingulate gyrus (ACG), parahippocampus, and hippocampus (HIPP). Results showed significant differences in the covariance matrices of females and males with schizophrenia compared with their healthy counterparts, in particular the relationships between iPAR-PFC, iPAR-ACG, and HIPP-PFC. Sex differences in the iPAR-PFC relationship were significantly associated with sex differences in verbal memory performance. In control women, but not in men ACG volume correlated strongly with memory performance. In schizophrenia, ACG volume was reduced in females, but not in men, relative to controls. Findings suggest that the relationship between iPAR and PFC is particularly important for understanding the relative preservation of verbal memory processing in females with schizophrenia and may compensate for ACG volume reductions. These results illustrate the utility of a unique covariance structure modeling approach that yields important new knowledge for understanding the nature of schizophrenia.
Collapse
Affiliation(s)
- Brandon Abbs
- Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA
| | | | | | | | | | | |
Collapse
|