1
|
Vita A, Nibbio G, Barlati S. Conceptualization and characterization of "primary" and "secondary" cognitive impairment in schizophrenia. Psychiatry Res 2024; 340:116126. [PMID: 39128169 DOI: 10.1016/j.psychres.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Cognitive impairment represents one of the core features of schizophrenia, involves both neurocognition and social cognition domains, and has a significant negative impact on real-world functioning. The present review provides a framework for the conceptualization and characterization of "primary" and "secondary" cognitive impairment in schizophrenia. In this conceptualization, primary cognitive impairment can be defined as a consequence of the neurobiological alterations that underlie psychopathological manifestations of the disorder, while secondary cognitive impairment can be defined as the results of a source issue that has a negative impact on cognitive performance. Sources of secondary cognitive impairment are frequent in people with schizophrenia and include several different factors, such as positive and negative symptoms, depressive symptoms, autistic symptoms, pharmacotherapy, substance abuse, metabolic syndrome, social deprivation, and sleep disorders. It can be hypothesized that secondary cognitive impairment may be improved by effectively resolving the source issue, while primary cognitive impairment may benefit from dedicated treatment. Further research is required to confirm this hypothesis, to better characterize the distinction between primary and secondary cognitive impairment in a clinical and in a neurobiological perspective, and to evaluate the impact of systematically assessing and treating secondary cognitive impairment.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Gou M, Chen W, Li Y, Chen S, Feng W, Pan S, Luo X, Tan S, Tian B, Li W, Tong J, Zhou Y, Li H, Yu T, Wang Z, Zhang P, Huang J, Kochunov P, Tian L, Li CSR, Hong LE, Tan Y. Immune-Inflammatory Response And Compensatory Immune-Regulatory Reflex Systems And White Matter Integrity in Schizophrenia. Schizophr Bull 2024; 50:199-209. [PMID: 37540273 PMCID: PMC10754202 DOI: 10.1093/schbul/sbad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Low-grade neural and peripheral inflammation are among the proposed pathophysiological mechanisms of schizophrenia. White matter impairment is one of the more consistent findings in schizophrenia but the underlying mechanism remains obscure. Many cerebral white matter components are sensitive to neuroinflammatory conditions that can result in demyelination, altered oligodendrocyte differentiation, and other changes. We tested the hypothesis that altered immune-inflammatory response system (IRS) and compensatory immune-regulatory reflex system (IRS/CIRS) dynamics are associated with reduced white matter integrity in patients with schizophrenia. STUDY DESIGN Patients with schizophrenia (SCZ, 70M/50F, age = 40.76 ± 13.10) and healthy controls (HCs, 38M/27F, age = 37.48 ± 12.31) underwent neuroimaging and plasma collection. A panel of cytokines were assessed using enzyme-linked immunosorbent assay. White matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging using a 3-T Prisma MRI scanner. The cytokines were used to generate 3 composite scores: IRS, CIRS, and IRS/CIRS ratio. STUDY RESULTS The IRS/CIRS ratio in SCZ was significantly higher than that in HCs (P = .009). SCZ had a significantly lower whole-brain white matter average FA (P < .001), and genu of corpus callosum (GCC) was the most affected white matter tract and its FA was significantly associated with IRS/CIRS (r = 0.29, P = .002). FA of GCC was negatively associated with negative symptom scores in SCZ (r = -0.23, P = .016). There was no mediation effect taking FA of GCC as mediator, for that IRS/CIRS was not associated with negative symptom score significantly (P = .217) in SCZ. CONCLUSIONS Elevated IRS/CIRS might partly account for the severity of negative symptoms through targeting the integrity of GCC.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
3
|
Andrews JL, Zalesky A, Nair S, Sullivan RP, Green MJ, Pantelis C, Newell KA, Fernandez F. Genetic and Epigenetic Regulation in Lingo-1: Effects on Cognitive Function and White Matter Microstructure in a Case-Control Study for Schizophrenia. Int J Mol Sci 2023; 24:15624. [PMID: 37958608 PMCID: PMC10648795 DOI: 10.3390/ijms242115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) plays a vital role in a large number of neuronal processes underlying learning and memory, which are known to be disrupted in schizophrenia. However, Lingo-1 has never been examined in the context of schizophrenia. The genetic association of a single-nucleotide polymorphism (SNP, rs3144) and methylation (CpG sites) in the Lingo-1 3'-UTR region was examined, with the testing of cognitive dysfunction and white matter (WM) integrity in a schizophrenia case-control cohort (n = 268/group). A large subset of subjects (97 control and 161 schizophrenia subjects) underwent structural magnetic resonance imaging (MRI) brain scans to assess WM integrity. Frequency of the rs3144 minor allele was overrepresented in the schizophrenia population (p = 0.03), with an odds ratio of 1.39 (95% CI 1.016-1.901). CpG sites surrounding rs3144 were hypermethylated in the control population (p = 0.032) compared to the schizophrenia group. rs3144 genotype was predictive of membership to a subclass of schizophrenia subjects with generalized cognitive deficits (p < 0.05), in addition to having associations with WM integrity (p = 0.018). This is the first study reporting a potential implication of genetic and epigenetic risk factors in Lingo-1 in schizophrenia. Both of these genetic and epigenetic alterations may also have associations with cognitive dysfunction and WM integrity in the context of the schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Jessica L. Andrews
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia (K.A.N.)
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC 3053, Australia; (A.Z.); (C.P.)
| | - Shalima Nair
- Epigenetics Research Program, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | - Ryan P. Sullivan
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Melissa J. Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC 3053, Australia; (A.Z.); (C.P.)
| | - Kelly A. Newell
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia (K.A.N.)
| | - Francesca Fernandez
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia (K.A.N.)
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| |
Collapse
|
4
|
Chen CL, Hwang TJ, Tung YH, Yang LY, Hsu YC, Liu CM, Lin YT, Hsieh MH, Liu CC, Chien YL, Hwu HG, Tseng WYI. Detection of advanced brain aging in schizophrenia and its structural underpinning by using normative brain age metrics. Neuroimage Clin 2022; 34:103003. [PMID: 35413648 PMCID: PMC9018160 DOI: 10.1016/j.nicl.2022.103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Conceptualizing mental disorders as deviations from normative functioning provides a statistical perspective for understanding the individual heterogeneity underlying psychiatric disorders. To broaden the understanding of the idiosyncrasy of brain aging in schizophrenia, we introduced an imaging-derived brain age paradigm combined with normative modeling as novel brain age metrics. We constructed brain age models based on GM, WM, and their combination (multimodality) features of 482 normal participants. The normalized predicted age difference (nPAD) was estimated in 147 individuals with schizophrenia and their 130 demographically matched controls through normative models of brain age metrics and compared between the groups. Regression analyses were also performed to investigate the associations of nPAD with illness duration, onset age, symptom severity, and intelligence quotient. Finally, regional contributions to advanced brain aging in schizophrenia were investigated. The results showed that the individuals exhibited significantly higher nPAD (P < 0.001), indicating advanced normative brain age than the normal controls in GM, WM, and multimodality models. The nPAD measure based on WM was positively associated with the negative symptom score (P = 0.009), and negatively associated with the intelligence quotient (P = 0.039) and onset age (P = 0.006). The imaging features that contributed to nPAD mostly involved the prefrontal, temporal, and parietal lobes, especially the precuneus and uncinate fasciculus. This study demonstrates that normative brain age metrics could detect advanced brain aging and associated clinical and neuroanatomical features in schizophrenia. The proposed nPAD measures may be useful to investigate aberrant brain aging in mental disorders and their brain-phenotype relationships.
Collapse
Affiliation(s)
- Chang-Le Chen
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hung Tung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ying Yang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Tin Lin
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Hsieh
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan; AcroViz Inc., Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan; Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Mousaviyan R, Davoodian N, Alizadeh F, Ghasemi-Kasman M, Mousavi SA, Shaerzadeh F, Kazemi H. Zinc Supplementation During Pregnancy Alleviates Lipopolysaccharide-Induced Glial Activation and Inflammatory Markers Expression in a Rat Model of Maternal Immune Activation. Biol Trace Elem Res 2021; 199:4193-4204. [PMID: 33400154 DOI: 10.1007/s12011-020-02553-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Maternal immune activation (MIA) model has been profoundly described as a suitable approach to study the pathophysiological mechanisms of neuropsychiatric disorders, including schizophrenia. Our previous study revealed that prenatal exposure to lipopolysaccharide (LPS) induced working memory impairments in only male offspring. Based on the putative role of prefrontal cortex (PFC) in working memory process, the current study was conducted to examine the long-lasting effect of LPS-induced MIA on several neuroinflammatory mediators in the PFC of adult male pups. We also investigated whether maternal zinc supplementation can alleviate LPS-induced alterations in this region. Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on gestation days 15/16 and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy. At postnatal day 60, the density of both microglia and astrocyte cells and the expression levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP were evaluated in the PFC of male pups. Although maternal LPS treatment increased microglia and astrocyte density, number of neurons in the PFC of adult offspring remained unchanged. These findings were accompanied by the exacerbated mRNA levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP as well. Conversely, prenatal zinc supplementation alleviated the mentioned alterations induced by LPS. These findings support the idea that the deleterious effects of prenatal LPS exposure could be attenuated by zinc supplementation during pregnancy. It is of interest to suggest early therapeutic intervention as a valuable approach to prevent neurodevelopmental deficits, following maternal infection. Schematic diagram describing the experimental timeline. On gestation days (GD) 15 and 16, pregnant dams were administered with intraperitoneal injections of either LPS (0.5 mg/kg) or vehicle and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy by gavage. The resulting offspring were submitted to qPCR, immunostaining, and morphological analysis at PND 60. Maternal zinc supplementation alleviated increased expression levels of inflammatory mediators and microglia and astrocyte density induced by LPS in the PFC of treated offspring. PND postnatal day, PFC prefrontal cortex.
Collapse
Affiliation(s)
- Ronak Mousaviyan
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Faezeh Alizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Reesearch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Abdollah Mousavi
- Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Haniyeh Kazemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
7
|
Abdolalizadeh A, Ostadrahimi H, Ohadi MAD, Saneei SA, Bayani Ershadi AS. White matter microstructural associates of apathy-avolition in schizophrenia. J Psychiatr Res 2021; 142:110-116. [PMID: 34332375 DOI: 10.1016/j.jpsychires.2021.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Apathy is present at the onset in nearly half the patients with schizophrenia. Current therapies lack the efficiency to improve apathy in patients. The presence of apathy is also associated with poorer outcomes. Despite its clinical importance, the underlying mechanism of apathy in schizophrenia is unclear, but it seems frontostriatal connections play a role. In this study, we investigated whole-brain white matter microstructural properties associated with the severity of apathy-avolition in schizophrenia. We included 80 schizophrenia patients (60 Male, 20 Female) from the Mind Clinical Imaging Consortium database and associated Apathy-Avolition score of "Scale for Assessment of Negative Symptoms" with fiber integrity measures derived from diffusion-weighted imaging using Tract-Based Spatial Statistics (TBSS). We also did tractography on eight tracts, including bilateral superior longitudinal fasciculus, uncinate fasciculus, cingulum, genu and splenium of the corpus callosum. Age, gender, years of education, chlorpromazine equivalent cumulative dose, and acquisition site were inserted as covariates. We showed a widespread association between lower fiber integrity (by measures of increased mean diffusivity and decreased fractional anisotropy) and increased apathy-avolition in TBSS, which we also validated in tractography. Moreover, mean diffusivity, and not fractional anisotropy, was associated with apathy independent of disease severity. In conclusion, we propose diffuse white-matter pathology, within the corpus callosum, limbic system, and the frontostriatal circuit is involved in apathy-avolition in schizophrenia. Also, we suggest that diffuse neuroinflammatory processes may play a part in apathy-avolition, independent of disease severity.
Collapse
Affiliation(s)
- AmirHussein Abdolalizadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Ostadrahimi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed AmirHussein Saneei
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Bayani Ershadi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Podwalski P, Tyburski E, Szczygieł K, Waszczuk K, Rek-Owodziń K, Mak M, Plichta P, Bielecki M, Rudkowski K, Kucharska-Mazur J, Andrusewicz W, Misiak B, Szulc A, Michalczyk A, Michałowska S, Sagan L, Samochowiec J. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J Clin Med 2021; 10:jcm10112225. [PMID: 34063845 PMCID: PMC8196621 DOI: 10.3390/jcm10112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deficit syndrome (DS) is a subtype of schizophrenia characterized by primary persistent negative symptoms. The corpus callosum (CC) appears to be related to psychopathology in schizophrenia. This study assessed white matter integrity in the CC using diffusion tensor imaging (DTI) in deficit and non-deficit schizophrenia (NDS) patients. We also investigated the psychopathological dimensions of schizophrenia and their relationship to CC integrity. Fifteen DS patients, 40 NDS patients, and 30 healthy controls (HC) underwent psychiatric evaluation and neuroimaging. We divided the CC into five regions and assessed their fractional anisotropy (FA) and mean diffusivity (MD). Psychopathology was assessed with the Positive and Negative Syndrome Scale. DS patients had lower FA than NDS patients and HC, and higher MD in Region 5 of the CC than did HC. NDS patients had higher MD in Region 4 of the CC. The patient groups differed in terms of negative symptoms. After differentiating clinical groups and HC, no significant correlations were observed between DTI measures and psychopathological symptoms. Our results suggest that DS and NDS are characterized by minor impairments of the posterior CC. We confirmed that DS patients have greater negative psychopathology than NDS patients. Our results are preliminary, and further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, 61-719 Poznan, Poland;
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University in Warsaw, 05-802 Warsaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Sylwia Michałowska
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, 71-004 Szczecin, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
9
|
Adamczyk P, Płonka O, Kruk D, Jáni M, Błądziński P, Kalisz A, Castelein S, Cechnicki A, Wyczesany M. On the relation of white matter brain abnormalities and the asociality symptoms in schizophrenia outpatients - a DTI study. Acta Neurobiol Exp (Wars) 2021; 81:80-95. [PMID: 33949167 DOI: 10.21307/ane-2021-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/29/2021] [Indexed: 11/11/2022]
Abstract
Recent MRI studies have shown that abnormal functional connections in schizophrenia coexist with subtle changes in the structure of axons in the brain. However, there is a discrepancy in the literature concerning the relationship between white matter abnormalities and the occurrence of negative psychopathological symptoms. In the present study, we investigate the relationship between the altered white matter structure and specific psychopathology symptoms, i.e., subscales of Positive and Negative Syndrome Scale (PANSS) and Brief Negative Symptoms Scale (BNSS) in a sample of schizophrenia outpatients. For investigation on white matter abnormalities in schizophrenia, the diffusion tensor imaging analysis of between-group differences in main diffusion parameters by tract-based spatial statistics was conducted on schizophrenia outpatients and healthy controls. Hence, the correlation of PANSS and BNSS psychopathology subscales in the clinical group with fractional anisotropy was analyzed in the 17 selected cortical regions of interest. Presented between-group results revealed widespread loss of white matter integrity located across the brain in schizophrenia outpatients. Results on the white matter relationship with psychopathology revealed the negative correlation between fractional anisotropy in the left orbital prefrontal cortex, right Heschl's gyrus, bilateral precuneus and posterior cingulate cortex and the severity of asociality, as assessed with the BNSS. In conclusion, the presented study confirms the previous evidence on the widespread white matter abnormalities in schizophrenia outpatients and indicates the existence of the subtle but specific association between fractional anisotropy in the fronto-temporo-parietal regions with the asociality. Recent MRI studies have shown that abnormal functional connections in schizophrenia coexist with subtle changes in the structure of axons in the brain. However, there is a discrepancy in the literature concerning the relationship between white matter abnormalities and the occurrence of negative psychopathological symptoms. In the present study, we investigate the relationship between the altered white matter structure and specific psychopathology symptoms, i.e., subscales of Positive and Negative Syndrome Scale (PANSS) and Brief Negative Symptoms Scale (BNSS) in a sample of schizophrenia outpatients. For investigation on white matter abnormalities in schizophrenia, the diffusion tensor imaging analysis of between-group differences in main diffusion parameters by tract-based spatial statistics was conducted on schizophrenia outpatients and healthy controls. Hence, the correlation of PANSS and BNSS psychopathology subscales in the clinical group with fractional anisotropy was analyzed in the 17 selected cortical regions of interest. Presented between-group results revealed widespread loss of white matter integrity located across the brain in schizophrenia outpatients. Results on the white matter relationship with psychopathology revealed the negative correlation between fractional anisotropy in the left orbital prefrontal cortex, right Heschl’s gyrus, bilateral precuneus and posterior cingulate cortex and the severity of asociality, as assessed with the BNSS. In conclusion, the presented study confirms the previous evidence on the widespread white matter abnormalities in schizophrenia outpatients and indicates the existence of the subtle but specific association between fractional anisotropy in the fronto-temporo-parietal regions with the asociality.
Collapse
Affiliation(s)
| | - Olga Płonka
- Institute of Psychology , Jagiellonian University , Krakow , Poland
| | - Dawid Kruk
- Psychosis Research and Psychotherapy Unit , Association for the Development of Community Psychiatry and Care , Krakow , Poland ; Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | - Martin Jáni
- Institute of Psychology , Jagiellonian University , Krakow , Poland ; Department of Psychiatry , Faculty of Medicine , Masaryk University and University Hospital Brno , Brno , Czech Republic
| | - Piotr Błądziński
- Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | - Aneta Kalisz
- Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | - Stynke Castelein
- Lentis Research , Lentis Psychiatric Institute , Groningen , The Netherlands ; Faculty of Behavioural and Social Sciences , University of Groningen , Groningen , The Netherlands
| | - Andrzej Cechnicki
- Psychosis Research and Psychotherapy Unit , Association for the Development of Community Psychiatry and Care , Krakow , Poland ; Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | | |
Collapse
|
10
|
Basile GA, Bramanti A, Bertino S, Cutroneo G, Bruno A, Tisano A, Paladina G, Milardi D, Anastasi G. Structural Connectivity-Based Parcellation of the Dopaminergic Midbrain in Healthy Subjects and Schizophrenic Patients. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E686. [PMID: 33322072 PMCID: PMC7764101 DOI: 10.3390/medicina56120686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Background and objectives: Functional deregulation of dopaminergic midbrain regions is a core feature of schizophrenia pathophysiology. Anatomical research on primates suggests that these regions may be subdivided into distinct, topographically organized functional territories according to their connectivity to the striatum. The aim of the present work was the reconstruction of dopaminergic midbrain subregions in healthy subjects and schizophrenic patients and the evaluation of their structural connectivity profiles. Materials and Methods: A hypothesis-driven connectivity-based parcellation derived from diffusion tractography was applied on 24 healthy subjects and 30 schizophrenic patients to identify distinct territories within the human dopaminergic midbrain in vivo and non-invasively. Results: We identified a tripartite subdivision of dopaminergic midbrain, including limbic, prefrontal and sensorimotor territories. No significant differences in structural features or connectivity were found between subjects and patients. Conclusions: The parcellation scheme proposed herein may help to achieve detailed characterization of structural and functional anomalies of the dopaminergic midbrain in schizophrenic patients.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (G.P.)
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| | - Giuseppina Cutroneo
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| | - Antonio Bruno
- Psychiatry Unit, Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98124 Messina, Italy;
| | - Adriana Tisano
- Physical, Rehabilitation Medicine and Sport Medicine Unit, University Hospital G. Martino, 98124 Messina, Italy;
| | - Giuseppe Paladina
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (G.P.)
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (G.P.)
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| |
Collapse
|
11
|
Rajasekaran A, Shivakumar V, Kalmady SV, Parlikar R, Chhabra H, Prabhu A, Subbanna M, Venugopal D, Amaresha AC, Agarwal SM, Bose A, Narayanaswamy JC, Debnath M, Venkatasubramanian G. Impact of NRG1 HapICE gene variants on digit ratio and dermatoglyphic measures in schizophrenia. Asian J Psychiatr 2020; 54:102363. [PMID: 33271685 DOI: 10.1016/j.ajp.2020.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Multiple lines of evidence have suggested a potential role of Neuregulin-1 (NRG1) in the neurodevelopmental pathogenesis of schizophrenia. Interaction between genetic risk variants present within NRG1 locus and non-specific gestational putative insults can significantly impair crucial processes of brain development. Such genetic effects can be analyzed through the assessment of digit ratio and dermatoglyphic patterns. We examined the role of two well-replicated polymorphisms of NRG1 (SNP8NRG221533 and SNP8NRG243177) on schizophrenia risk and its probable impact on the digit ratio and dermatoglyphic measures in patients (N = 221) and healthy controls (N = 200). In schizophrenia patients, but not in healthy controls, a significant association between NRG1 SNP8NRG221533 C/C genotype with lower left 2D:4D ratio, as well as with higher FA_TbcRC and DA_TbcRC. The substantial effect of SNP8NRG221533 on both digit ratio and dermatoglyphic measures suggest a potential role for NRG1 gene variants on neurodevelopmental pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Ashwini Rajasekaran
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Rujuta Parlikar
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harleen Chhabra
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ananya Prabhu
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Manjula Subbanna
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sri Mahavir Agarwal
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
12
|
Abdolalizadeh A, Ostadrahimi H, Mohajer B, Darvishi A, Sattarian M, Bayani Ershadi AS, Abbasi N. White Matter Microstructural Properties Associated with Impaired Attention in Chronic Schizophrenia: A Multi-Center Study. Psychiatry Res Neuroimaging 2020; 302:111105. [PMID: 32498000 DOI: 10.1016/j.pscychresns.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Attention as a key cognitive function is impaired in schizophrenia, interfering with the normal daily life of the patients. Previous studies on the microstructural correlates of attention in schizophrenia were limited to single fibers, did not include a control group, or did not adjust for drug dosage. In the current study, we investigated the association between microstructural properties of the white matter fibers and attention tests in 81 patients and 79 healthy controls from the Mind Clinical Imaging Consortium database. Integrity measures of superior longitudinal fasciculus, cingulum, genu, and splenium were extracted after tractography. Using an interaction model between diagnosis and microstructural properties, and adjusting for age, gender, acquisition site, education, and cumulative drug usage dose, and after correcting for family-wise error, we showed decreased integrity in the patients and a significant negative association between fractional anisotropy of the tracts and trail making test part A with a greater expected decrease in the attention per unit of decrease of integrity in the patients compared to the healthy controls. Our findings suggest that decreased integrity of the bilateral cingulum, and splenium, are independent of the cumulative drug dosage, age, gender, and site, and may underlie the impaired attention in the schizophrenia.
Collapse
Affiliation(s)
| | - Hamidreza Ostadrahimi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohajer
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Darvishi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Sattarian
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Guessoum SB, Le Strat Y, Dubertret C, Mallet J. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109862. [PMID: 31927053 DOI: 10.1016/j.pnpbp.2020.109862] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Negative Symptoms (blunted affect, alogia, anhedonia, avolition and asociality) are observed in schizophrenia but also in depressive disorders. OBJECTIVE To gather cognitive, neuroanatomical, neurofunctional and neurobiological knowledge of negative symptoms in studies on schizophrenia, depressive disorder, and transnosographic studies. RESULTS Blunted affect in schizophrenia is characterized by amygdala hyperactivation and frontal hypoactivation, also found in depressive disorder. Mirror neurons, may be related to blunted affect in schizophrenia. Alogia may be related to cognitive dysfunction and basal ganglia area impairments in schizophrenia. Data surrounding alogia in depressive disorder is scarce; wider speech deficits are often studied instead. Consummatory Anhedonia may be less affected than Anticipatory Anhedonia in schizophrenia. Anhedonia is associated with reward impairments and altered striatal functions in both diagnostics. Amotivation is associated with Corticostriatal Hypoactivation in both disorders. Anhedonia and amotivation are transnosographically associated with dopamine dysregulation. Asociality may be related to oxytocin. CONCLUSION Pathophysiological hypotheses are specific to each dimension of negative symptoms and overlap across diagnostic boundaries, possibly underpinning the observed clinical continuum.
Collapse
Affiliation(s)
- Sélim Benjamin Guessoum
- AP-HP; Psychiatry Department, University Hospital Louis Mourier; University of Paris, 178 rue des Renouillers, 92700 Colombes, France; INSERM UMR1266, Institute of Psychiatry and Neurosciences of Paris (IPNP), 102-108 rue de la Santé, 75014 Paris, France
| | - Yann Le Strat
- AP-HP; Psychiatry Department, University Hospital Louis Mourier; University of Paris, 178 rue des Renouillers, 92700 Colombes, France; INSERM UMR1266, Institute of Psychiatry and Neurosciences of Paris (IPNP), 102-108 rue de la Santé, 75014 Paris, France.
| | - Caroline Dubertret
- AP-HP; Psychiatry Department, University Hospital Louis Mourier; University of Paris, 178 rue des Renouillers, 92700 Colombes, France; INSERM UMR1266, Institute of Psychiatry and Neurosciences of Paris (IPNP), 102-108 rue de la Santé, 75014 Paris, France.
| | - Jasmina Mallet
- AP-HP; Psychiatry Department, University Hospital Louis Mourier; University of Paris, 178 rue des Renouillers, 92700 Colombes, France; INSERM UMR1266, Institute of Psychiatry and Neurosciences of Paris (IPNP), 102-108 rue de la Santé, 75014 Paris, France.
| |
Collapse
|
14
|
Hammans C, Neugebauer K, Kumar V, Mevissen L, Sternkopf MA, Novakovic A, Wensing T, Habel U, Abel T, Nickl-Jockschat T. BDNF Serum Levels are Associated With White Matter Microstructure in Schizophrenia - A Pilot Study. Front Psychiatry 2020; 11:31. [PMID: 32153434 PMCID: PMC7046752 DOI: 10.3389/fpsyt.2020.00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia. As BDNF regulates axonal and dendritic growth, altered BDNF levels in schizophrenia patients might underlie changes in structural connectivity that have been identified by magnetic resonance imaging (MRI). We investigated a possible correlation between BDNF serum levels, fiber tract architecture, and regional grey matter volumes in 19 schizophrenia patients and a gender- and age-matched control group. Two patients had to be excluded due to abnormalities in their MRI scans. Serum samples were obtained to determine BDNF levels, and T1- as well as diffusion-weighted sequences were acquired. We, then, investigated correlations between BDNF serum levels with neuroimaging parameters, using Voxel-based Morphometry (VBM) and Tract-based Spatial Statistics (TBSS). We found a significant negative correlation between BDNF serum levels and FA values in the right inferior fronto-occipital fasciculus and the right superior longitudinal fasciculus. These regions also showed a decrease in AD values in schizophrenia patients. Grey matter volumes were reduced in patients but there was no correlation between regional grey matter volumes and BDNF. The right superior longitudinal fasciculus has been repeatedly identified to exhibit microstructural changes in schizophrenia patients. Our findings of a negative correlation between BDNF and FA values in patients might indicate that BDNF is upregulated to compensate decreased structural connectivity as it induces neural plasticity and shows increased levels in damaged tissue. These findings of our pilot study are encouraging leads for future research in larger samples.
Collapse
Affiliation(s)
- Christine Hammans
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Kristina Neugebauer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Vinod Kumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany.,Department of High-field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Lea Mevissen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Melanie A Sternkopf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Ted Abel
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany.,Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Haigh SM, Eack SM, Keller T, Minshew NJ, Behrmann M. White matter structure in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. Neuropsychologia 2019; 135:107233. [PMID: 31655160 PMCID: PMC6884694 DOI: 10.1016/j.neuropsychologia.2019.107233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Schizophrenia and autism share many behavioral and neurological similarities, including altered white matter tract structure. However, because schizophrenia and autism are rarely compared directly, it is difficult to establish whether white matter abnormalities are disorder-specific or are common across these disorders that share some symptomatology. METHODS In the current study, we compared white matter water diffusion using tensor imaging in 25 adults with autism, 15 adults with schizophrenia, all with IQ scores above 88, and 19 neurotypical adults. RESULTS Although the three groups evinced no statistically significant differences in measures of fractional anisotropy (FA), the schizophrenia group showed significantly greater mean diffusivity (MD; Cohen's d > 0.77), due to greater radial diffusivity (RD; Cohen's d > 0.92), compared to both the autism and control groups. This effect was evident across the brain rather than specific to a particular tract. CONCLUSIONS The greater MD and RD in schizophrenia appears to be diagnosis-specific. The altered diffusion may reflect subtle abnormalities in myelination, which could be a potential mechanism underlying the widespread behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology, Carnegie Mellon University, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, USA; Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, USA.
| | - Shaun M Eack
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; School of Social Work, University of Pittsburgh, USA
| | - Timothy Keller
- Department of Psychology, Carnegie Mellon University, USA
| | - Nancy J Minshew
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Neurology, University of Pittsburgh, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, USA
| |
Collapse
|
16
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
17
|
Chan CC, Bulbena-Cabre A, Rutter S, Benavides C, McClure MM, Calabrese W, Rosell DR, Koenigsberg HW, Goodman M, New AS, Hazlett EA, Perez-Rodriguez MM. Comparison of self-report and clinician-rated schizotypal traits in schizotypal personality disorder and community controls. Schizophr Res 2019; 209:263-268. [PMID: 30635257 PMCID: PMC6614007 DOI: 10.1016/j.schres.2018.12.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
Abstract
Given the common use of self-report questionnaires to assess schizotypy in personality pathology and schizophrenia research, it is important to determine the concordance between self-report and clinician ratings. 250 individuals with schizotypal personality disorder (SPD) and 116 community controls (CTR) were assessed on schizotypal traits using a clinical interview, the Structured Interview for DSM-IV Personality disorders (SIDP), and a self-report questionnaire, the Schizotypal Personality Questionnaire (SPQ). Ordinal logistic regressions examined concordance between self-reported and clinician-rated scores in CTR and SPD separately. Analyses of variance examined how the SPQ performed on differentiating between CTR with low schizotypy, CTR with high schizotypy, and SPD. For both CTR and SPD, higher SPQ subscale scores were significantly associated with higher clinician ratings on the respective SIDP items for the Ideas of Reference, Magical Thinking, Unusual Perceptual Experience, Suspiciousness, and Social Anxiety items, but not the Odd Speech or Limited Affect items. Higher SPQ subscale scores for Odd Behavior and Lack of Close Friends were significantly associated with the clinician-rated SIDP item scores in CTR but not SPD. CTR with low schizotypy scored lower on all SPQ subscales than CTR with high schizotypy, who did not differ from SPD. Self-report ratings are concordant with clinician ratings for positive schizotypal traits, whereas certain disorganization and interpersonal traits are not, particularly for individuals with SPD. The SPQ can differentiate between high and low schizotypy controls, but not between high schizotypy controls and individuals with SPD. Assessment of schizotypal traits should include both self-report questionnaires and clinician ratings.
Collapse
Affiliation(s)
- Chi C. Chan
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,VISN 2 Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Co-corresponding authors: Chi C. Chan, PhD, Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-5000 x3862; fax: 718-364-3576; .; M. Mercedes Perez-Rodriguez, MD, PhD. Psychiatry Department, Icahn School of Medicine, Mount Sinai, 1 Gustave L Levy Pl., PO BOX 1230, New York, NY 10029.
| | - Andrea Bulbena-Cabre
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,VISN 2 Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Sarah Rutter
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Caridad Benavides
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Margaret M. McClure
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,Fairfield University, Fairfield, CT, USA
| | - William Calabrese
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Daniel R. Rosell
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Harold W. Koenigsberg
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,VISN 2 Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Marianne Goodman
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,VISN 2 Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Antonia S. New
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Erin A. Hazlett
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,VISN 2 Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - M. Mercedes Perez-Rodriguez
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA,Co-corresponding authors: Chi C. Chan, PhD, Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-5000 x3862; fax: 718-364-3576; .; M. Mercedes Perez-Rodriguez, MD, PhD. Psychiatry Department, Icahn School of Medicine, Mount Sinai, 1 Gustave L Levy Pl., PO BOX 1230, New York, NY 10029.
| |
Collapse
|
18
|
Xia Y, Lv D, Liang Y, Zhang H, Pei K, Shao R, Li Y, Zhang Y, Li Y, Guo J, Lv L, Guo S. Abnormal Brain Structure and Function in First-Episode Childhood- and Adolescence-Onset Schizophrenia: Association with Clinical Symptoms. Neurosci Bull 2019; 35:522-526. [PMID: 30852802 DOI: 10.1007/s12264-019-00359-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yanhong Xia
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Dan Lv
- Institute of Mental health, School of Psychiatry, Qiqihaer Medical University, Qiqihar, 161006, China
| | - Yinghui Liang
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Haisan Zhang
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Keyang Pei
- Department of Neurology, The Third Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Rongrong Shao
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Yali Li
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Yan Zhang
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Yuling Li
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Jinghua Guo
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Luxian Lv
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China
| | - Suqin Guo
- Department of Child and Adolescent Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxaing Medical University, Xinxiang, 453002, China.
| |
Collapse
|
19
|
Siddi S, Nuñez C, Senior C, Preti A, Cuevas-Esteban J, Ochoa S, Brébion G, Stephan-Otto C. Depression, auditory-verbal hallucinations, and delusions in patients with schizophrenia: Different patterns of association with prefrontal gray and white matter volume. Psychiatry Res Neuroimaging 2019; 283:55-63. [PMID: 30544051 DOI: 10.1016/j.pscychresns.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Structural brain abnormalities, including decreased gray matter (GM) and white matter (WM) volume, have been observed in patients with schizophrenia. These decrements were found to be associated with positive and negative symptoms, but affective symptoms (depression and anxiety) were poorly explored. We hypothesized that abnormalities in GM and WM volume might also be related to affective symptoms. GM and WM volumes were calculated from high-resolution T1 structural images acquired from 24 patients with schizophrenia and 26 healthy controls, and the associations of positive, negative, and affective symptoms with the brain volumes that showed significant reduction in patients were investigated. Patients demonstrated GM volume reductions in the bilateral prefrontal cortex, and WM volume reductions in the right frontal and left corpus callosum. Prefrontal cortex volume was significantly and inversely associated with both auditory-verbal hallucinations and depression severity. WM volume alterations, in contrast, were related to alogia, anhedonia, and delusions. The combined impact of auditory-verbal hallucinations and depression on similar sub-regions of the prefrontal cortex suggests that depression is involved in hearing voices. Further, this adverse impact of depression on prefrontal GM volume may underlie the impairment demonstrated by these patients in cognitive tasks that rely on executive processes.
Collapse
Affiliation(s)
- Sara Siddi
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Italy.
| | - Christian Nuñez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carl Senior
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Antonio Preti
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Italy; Center of Liaison Psychiatry and Psychosomatics, University Hospital, University of Cagliari, Cagliari, Italy
| | - Jorge Cuevas-Esteban
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Servei de Psiquiatria, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Susana Ochoa
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gildas Brébion
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
20
|
Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from SchizConnect. PLoS One 2018; 13:e0205369. [PMID: 30300425 PMCID: PMC6177186 DOI: 10.1371/journal.pone.0205369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023] Open
Abstract
Several studies have produced extensive evidence on white matter abnormalities in schizophrenia (SZ). However, optimum consistency and reproducibility have not been achieved, and reported low white matter tract integrity in patients with SZ varies between studies. A whole-brain imaging study with a large sample size is needed. This study aimed to investigate white matter integrity in the corpus callosum and connections between regions of interests (ROIs) in the same hemisphere in 122 patients with SZ and 129 healthy controls with public neuroimaging data from SchizConnect. For each diffusion-weighted image (DWI), two-tensor full-brain tractography was performed; DWIs were parcellated by processing and registering T1 images with FreeSurfer and Advanced Normalization Tools. White matter query language was used to extract white matter fiber tracts. We evaluated group differences in means of diffusion measures between the patients and controls, and correlations of diffusion measures with the severity of clinical symptoms and cognitive impairment in the patients using the Positive and Negative Syndrome Scale (PANSS), a letter-number sequencing (LNS) test, vocabulary test, letter fluency test, category fluency test, and trail-making test, part A. To correct for multiple comparisons, a false discovery rate of q < 0.05 was applied. In patients with SZ, we observed significant radial diffusivity (RD) and trace (TR) increases in left thalamo-occipital tracts and the right uncinate fascicle, and a significant RD increase in the right middle longitudinal fascicle (MDLF) and the right superior longitudinal fascicle ii. Correlations were present between TR of left thalamo-occipital tracts, and the letter fluency test and the LNS test, and RD in the right MDLF and PANSS positive subscale score. However, these correlations were not significant after correction for multiple comparisons. These results indicated widespread white matter fiber tract abnormalities in patients with SZ, contributing to SZ pathophysiology.
Collapse
|
21
|
Shah P, Iwata Y, Plitman E, Brown EE, Caravaggio F, Kim J, Nakajima S, Hahn M, Remington G, Gerretsen P, Graff-Guerrero A. The impact of delay in clozapine initiation on treatment outcomes in patients with treatment-resistant schizophrenia: A systematic review. Psychiatry Res 2018; 268:114-122. [PMID: 30015109 DOI: 10.1016/j.psychres.2018.06.070] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/26/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022]
Abstract
Approximately one-third of patients with schizophrenia have treatment-resistant schizophrenia (TR-SCZ), which is a condition characterized by suboptimal response to antipsychotics other than clozapine. Importantly, treatment with clozapine-the only antipsychotic with an indication for TR-SCZ-is often delayed, which could contribute to negative outcomes. Given that the specific impact of delay in clozapine initiation is not well understood, we aimed to conduct a systematic search of the Ovid Medline® database to identify English language publications exploring the impact of delay in clozapine initiation on treatment outcomes in patients with TR-SCZ. Additionally, clinico-demographic factors associated with clozapine delay were examined. Our search identified four retrospective studies that showed an association between longer delay in clozapine initiation and poorer treatment outcomes, even after including covariates, such as age, sex, and duration of illness. In addition, we found six studies that showed an association between age and clozapine delay, but results with regard to other clinico-demographic variables were inconsistent. Overall, the available literature reveals a possible link between delay in clozapine use and poorer treatment outcomes in patients with TR-SCZ. However, given the relatively small number of studies on this clinically important topic, future research is warranted to draw more definitive conclusions.
Collapse
Affiliation(s)
- Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eric E Brown
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Apathy in schizophrenia: A review of neuropsychological and neuroanatomical studies. Neuropsychologia 2018; 118:22-33. [DOI: 10.1016/j.neuropsychologia.2017.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/28/2017] [Accepted: 09/26/2017] [Indexed: 01/28/2023]
|
23
|
Vikhreva OV, Rakhmanova VI, Orlovskaya DD, Uranova NA. [Ultrastructural pathology of oligodendrocytes in white matter in continuous attack-like schizophrenia and a role for microglia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:69-74. [PMID: 29927407 DOI: 10.17116/jnevro20181185169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM Previously the authors have reported the ultrastructural pathology and deficits of oligodendrocytes in gray and white matter of the prefrontal cortex in continuous paranoid schizophrenia. The aim of the present work was to study the effects of microglia on the ultrastructure of oligodendrocytes in white matter underlying the prefrontal cortex (BA10) in attack-like schizophrenia. MATERIAL AND METHODS Postmortem morphometric electron microscopic study of oligodendrocytes in close apposition to microglia was performed in white matter underlying the prefrontal cortex (BA10). Nine cases of chronic attack-like schizophrenia and 20 normal controls were studied. Areas of oligodendrocytes, volume density (Vv) and the number of mitochondria, vacuoles of endoplasmic reticulum and lipofuscin granules were estimated. Group comparison was performed using ANCOVA. RESULTS The schizophrenia group differed from the control group by paucity of ribosomes in cytoplasm of oligodendrocytes, cytoplasm swelling, a significant increase in Vv and number of vacuoles and lipofuscin granules. Significant correlations between the parameters of vacuoles and lipofuscin granules and mitochondria were found only in the schizophrenia group. CONCLUSION Dystrophic alterations of oligodendrocytes apposed microglial cells were found in the white matter of the prefrontal cortex in chronic schizophrenia as compared to controls. Microglia might contribute to abnormalities of lipid and protein metabolism of oligodendrocytes.
Collapse
Affiliation(s)
| | | | | | - N A Uranova
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
24
|
Katagiri N, Pantelis C, Nemoto T, Tsujino N, Saito J, Hori M, Yamaguchi T, Funatogawa T, Mizuno M. Symptom recovery and relationship to structure of corpus callosum in individuals with an 'at risk mental state'. Psychiatry Res Neuroimaging 2018; 272:1-6. [PMID: 29232635 DOI: 10.1016/j.pscychresns.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023]
Abstract
Previous studies have revealed that changes in sub-threshold psychotic symptoms observed in individuals with an 'at risk mental state' (ARMS) are associated with biological changes in the corpus callosum (CC). To elucidate the biological background for resilience against transition to psychosis, we investigated the relationship between CC structural changes and recovery of sub-threshold psychotic symptom in subjects with ARMS who did not develop psychosis (ARMS-N). Sixteen healthy controls and 42 ARMS (37 ARMS-N) subjects participated this study. The volumes of five sub-regions of the CC were analyzed using MRI. The sub-threshold psychotic symptoms of the ARMS were measured using the Scale of Prodromal Symptoms (SOPS). Imaging and symptoms were re-administered in the ARMS group 52 weeks later. Significant baseline volume differences in the mid-posterior CC, central CC and mid-anterior CC were found between the controls and the ARMS-N subjects. These findings suggest that biological abnormalities are present in a so-called "false-positive" group of individuals. For the ARMS-N subjects, improvement in negative symptoms significantly correlated with an increase in the volume of the central CC at follow-up. This finding may suggest that a neurobiological 'resilience' is associated with symptom recovery.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan.
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, South Carlton, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoria, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
25
|
Joo SW, Chon MW, Rathi Y, Shenton ME, Kubicki M, Lee J. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia. Schizophr Res 2018; 192:159-166. [PMID: 28506703 DOI: 10.1016/j.schres.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. METHOD Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). RESULTS Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. CONCLUSION Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myong-Wuk Chon
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Amodio A, Quarantelli M, Mucci A, Prinster A, Soricelli A, Vignapiano A, Giordano GM, Merlotti E, Nicita A, Galderisi S. Avolition-Apathy and White Matter Connectivity in Schizophrenia: Reduced Fractional Anisotropy Between Amygdala and Insular Cortex. Clin EEG Neurosci 2018; 49:55-65. [PMID: 29243529 DOI: 10.1177/1550059417745934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The avolition/apathy domain of negative symptoms includes motivation- and pleasure-related impairments. In people with schizophrenia, structural and functional abnormalities were reported in key regions within the motivational reward system, including ventral-tegmental area (VTA), striatum (especially at the level of the nucleus accumbens, NAcc), orbitofrontal cortex (OFC), as well as amygdala (Amy) and insular cortex (IC). However, the association of the reported abnormalities with avoliton-apathy is still controversial. In the present study, we investigated white matter connectivity patterns within these regions, using a probabilistic analysis of diffusion tensor imaging (DTI) data, in male subjects with schizophrenia. Thirty-five male subjects with schizophrenia (SCZ) and 17 male healthy controls (HC) matched for age, underwent DTI. SCZ were evaluated using the Schedule for Deficit Syndrome (SDS), the Positive and Negative Syndrome Scale (PANSS), and the MATRICS Consensus Cognitive Battery (MCCB). Probabilistic tractography was applied to investigate pathways connecting the Amy and the NAcc with the OFC and IC. Reduced fractional anisotropy (FA) was observed in left Amy-ventral anterior IC connections, in SCZ compared with controls. This abnormality was negatively correlated with avolition/apathy but not with expressive deficit scores. SCZ showed also a reduced connectivity index between right NAcc and medial OFC, as compared with controls. Finally, the left NAcc-dorsal anterior IC connectivity index was negatively correlated with working memory scores. Our results indicate that only the avolition/apathy domain of negative symptoms is related to abnormal connectivity in the motivation-related circuits. The findings also demonstrate that distinct alterations underlie cognitive impairment and avolition/apathy.
Collapse
Affiliation(s)
- Antonella Amodio
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Quarantelli
- 2 Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Armida Mucci
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Prinster
- 2 Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Andrea Soricelli
- 3 Department of Integrated Imaging, IRCCS SDN, Naples, Italy.,4 Department of Motor Sciences & Healthiness, University of Naples Parthenope, Naples, Italy
| | - Annarita Vignapiano
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giulia Maria Giordano
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eleonora Merlotti
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Nicita
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvana Galderisi
- 1 Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
27
|
Sumner PJ, Bell IH, Rossell SL. A systematic review of the structural neuroimaging correlates of thought disorder. Neurosci Biobehav Rev 2018; 84:299-315. [DOI: 10.1016/j.neubiorev.2017.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
|
28
|
Vitolo E, Tatu MK, Pignolo C, Cauda F, Costa T, Ando' A, Zennaro A. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2017; 270:8-21. [PMID: 28988022 DOI: 10.1016/j.pscychresns.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.
Collapse
Affiliation(s)
- Enrico Vitolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Mona Karina Tatu
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Claudia Pignolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Franco Cauda
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy; GCS-fMRI, Koelliker Hospital, Corso Galileo Ferraris 247/255, 10134 Turin, TO, Italy.
| | - Tommaso Costa
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Agata Ando'
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Alessandro Zennaro
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| |
Collapse
|
29
|
Elucidation of shared and specific white matter findings underlying psychopathology clusters in schizophrenia. Asian J Psychiatr 2017; 30:144-151. [PMID: 28938151 DOI: 10.1016/j.ajp.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Schizophrenia is associated with diverse white matter (WM) brain abnormalities. In this study, we sought to examine the WM microstructural findings which underlie clinical psychopathology clusters in schizophrenia and hypothesized that these symptom clusters are associated with common and unique WM tracts. METHODS Overall, 76 healthy controls (HC), and 148 patients with schizophrenia (SZ) were recruited and severity of symptomatology in schizophrenia was assessed using the Positive and Negative Syndrome Scale. WM fractional anisotropy (FA) values were extracted from their diffusion tensor images. Psychopathology clusters were first determined using factor analysis and the relationship between these symptom factors and FA values were then assessed with structural equation modelling, which included covariates such as age, sex, duration of illness and medications prescribed. RESULTS Patients with schizophrenia had reduced FA in the genu of corpus callosum (gCC) compared to HC. A three-factor model, namely Positive, Negative, Disorganised factors, was determined as the best fit for the data. All three psychopathology factors were associated with decreased FA in the gCC and bilateral cingulate gyrus. Higher Negative factor scores were uniquely associated with decreased FA in the right sagittal striatum and right superior longitudinal fasciculus. CONCLUSIONS This study found shared and specific WM changes and their associations with specific symptom clusters, which potentially allows for monitoring of such white matter findings associated with clinical presentations in schizophrenia over treatment and illness course.
Collapse
|
30
|
Oestreich LKL, Lyall AE, Pasternak O, Kikinis Z, Newell DT, Savadjiev P, Bouix S, Shenton ME, Kubicki M, Whitford TJ, McCarthy-Jones S. Characterizing white matter changes in chronic schizophrenia: A free-water imaging multi-site study. Schizophr Res 2017; 189:153-161. [PMID: 28190639 PMCID: PMC5552442 DOI: 10.1016/j.schres.2017.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
Diffusion tensor imaging (DTI) studies in chronic schizophrenia have found widespread but often inconsistent patterns of white matter abnormalities. These studies have typically used the conventional measure of fractional anisotropy, which can be contaminated by extracellular free-water. A recent free-water imaging study reported reduced free-water corrected fractional anisotropy (FAT) in chronic schizophrenia across several brain regions, but limited changes in the extracellular volume. The present study set out to validate these findings in a substantially larger sample. Tract-based spatial statistics (TBSS) was performed in 188 healthy controls and 281 chronic schizophrenia patients. Forty-two regions of interest (ROIs), as well as average whole-brain FAT and FW were extracted from free-water corrected diffusion tensor maps. Compared to healthy controls, reduced FAT was found in the chronic schizophrenia group in the anterior limb of the internal capsule bilaterally, the posterior thalamic radiation bilaterally, as well as the genu and body of the corpus callosum. While a significant main effect of group was observed for FW, none of the follow-up contrasts survived correction for multiple comparisons. The observed FAT reductions in the absence of extracellular FW changes, in a large, multi-site sample of chronic schizophrenia patients, validate the pattern of findings reported by a previous, smaller free-water imaging study of a similar sample. The limited number of regions in which FAT was reduced in the schizophrenia group suggests that actual white matter tissue degeneration in chronic schizophrenia, independent of extracellular FW, might be more localized than suggested previously.
Collapse
Affiliation(s)
- Lena K L Oestreich
- Queensland Brain Institute, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
| | - Amanda E Lyall
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dominick T Newell
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Savadjiev
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Simon McCarthy-Jones
- Department of Cognitive Science, Macquarie University, NSW, Australia; Department of Psychiatry, Trinity College Dublin, Ireland
| |
Collapse
|
31
|
Michielse S, Gronenschild E, Domen P, van Os J, Marcelis M. The details of structural disconnectivity in psychotic disorder: A family-based study of non-FA diffusion weighted imaging measures. Brain Res 2017; 1671:121-130. [PMID: 28709907 DOI: 10.1016/j.brainres.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies in psychotic disorder have shown reduced FA, often interpreted as disturbed white matter integrity. The observed 'dysintegrity' may be of multifactorial origin, as changes in FA are thought to reflect a combination of changes in myelination, fiber organization and number of axons. Examining the structural substrate of the diffusion tensor in individuals with (risk for) psychotic disorder may provide better understanding of the underlying structural changes. METHODS DTI scans were acquired from 85 patients with psychotic disorder, 93 siblings of patients with psychotic disorder and 80 controls. Cross-sectional group comparisons were performed using Tract-Based Spatial Statistics (TBSS) on six DTI measures: axial diffusivity (AXD), radial diffusivity (RD), mean diffusivity (MD), and the case linear (CL), case planar (CP) and case spherical (CS) tensor shape measures. RESULTS AXD did not differ between the groups. RD and CS values were significantly increased in patients compared to controls and siblings, with no significant differences between the latter two groups. MD was higher in patients compared to controls (but not siblings), with no difference between siblings and controls. CL was smaller in patients than in siblings and controls, and CP was smaller in both patients and siblings as compared to controls. CONCLUSION The differences between individuals with psychotic disorder and healthy controls, derived from detailed diffusion data analyses, suggest less fiber orientation and increased free water movement in the patients. There was some evidence for association with familial risk expressed by decreased fiber orientation.
Collapse
Affiliation(s)
- Stijn Michielse
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Ed Gronenschild
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Patrick Domen
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands; Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| | | |
Collapse
|
32
|
Alloza C, Bastin ME, Cox SR, Gibson J, Duff B, Semple SI, Whalley HC, Lawrie SM. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum Brain Mapp 2017; 38:5919-5930. [PMID: 28881417 DOI: 10.1002/hbm.23798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a complex disorder that may be the result of aberrant connections between specific brain regions rather than focal brain abnormalities. Here, we investigate the relationships between brain structural connectivity as described by network analysis, intelligence, symptoms, and polygenic risk scores (PGRS) for schizophrenia in a group of patients with schizophrenia and a group of healthy controls. Recently, researchers have shown an interest in the role of high centrality networks in the disorder. However, the importance of non-central networks still remains unclear. Thus, we specifically examined network-averaged fractional anisotropy (mean edge weight) in central and non-central subnetworks. Connections with the highest betweenness centrality within the average network (>75% of centrality values) were selected to represent the central subnetwork. The remaining connections were assigned to the non-central subnetwork. Additionally, we calculated graph theory measures from the average network (connections that occur in at least 2/3 of participants). Density, strength, global efficiency, and clustering coefficient were significantly lower in patients compared with healthy controls for the average network (pFDR < 0.05). All metrics across networks were significantly associated with intelligence (pFDR < 0.05). There was a tendency towards significance for a correlation between intelligence and PGRS for schizophrenia (r = -0.508, p = 0.052) that was significantly mediated by central and non-central mean edge weight and every graph metric from the average network. These results are consistent with the hypothesis that intelligence deficits are associated with a genetic risk for schizophrenia, which is mediated via the disruption of distributed brain networks. Hum Brain Mapp 38:5919-5930, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Alloza
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, United Kingdom
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.,Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, United Kingdom
| | - Jude Gibson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Duff
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Meadowcroft MD, Wang J, Purnell CJ, Eslinger PJ, Neely EB, Yang QX, Connor JR. Reduced Cerebral White Matter Integrity Assessed by DTI in Cognitively Normal H63D-HFE Polymorphism Carriers. J Neuroimaging 2017; 28:126-133. [PMID: 28771940 DOI: 10.1111/jon.12461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE The H63D-HFE single nucleotide polymorphism (SNP) has been associated with brain iron dysregulation; however, the emergent role of this missense variant in brain structure and function has yet to be determined. Previous work has demonstrated that HFE SNP carriers have reduced white matter magnetic resonance imaging (MRI) proton relaxation rates. The mechanism by which white matter alterations perturb MRI relaxation is unknown as is how these metrics are related to myelin integrity. METHODS Fifteen subjects heterozygous for the HFE-H63D SNP and 25 controls with wild-type HFE had diffusion-weighted, anatomical MRIs taken, and underwent cognitive assessment. Fractional anisotropy (FA), mean diffusion (MD), and mode of anisotropy (MO) were calculated from the diffusion dataset to investigate the relationship between the H63D-HFE SNP and myelin integrity. RESULTS A decrease in FA, an increase in MD, and an increase in MO are demonstrated in multiple H63D-HFE polymorphism carrier white matter tracts. Regions with altered diffusion metrics are notably located in heavily myelinated white matter association fibers, such as the anterior corona radiata and longitudinal fasciculi. CONCLUSIONS The MRI data presented here demonstrate that H63D-HFE polymorphism carriers have diffusivity changes in white matter compared to wild-type subjects. The reduced integrity white matter tracts in H63D-HFE carriers are hypothesized to be related to increased susceptibility of these late-myelinating regions to cellular stress induced by oligodendrocyte iron dyshomeostasis.
Collapse
Affiliation(s)
- Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA.,Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| | - Jianli Wang
- Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| | - Carson J Purnell
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| | - Paul J Eslinger
- Department of Neurology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| | - Elizabeth B Neely
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| | - Qing X Yang
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA.,Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
34
|
Saito J, Hori M, Nemoto T, Katagiri N, Shimoji K, Ito S, Tsujino N, Yamaguchi T, Shiraga N, Aoki S, Mizuno M. Longitudinal study examining abnormal white matter integrity using a tract-specific analysis in individuals with a high risk for psychosis. Psychiatry Clin Neurosci 2017; 71:530-541. [PMID: 28220654 DOI: 10.1111/pcn.12515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
AIM Although volume reductions in the grey matter have been previously observed in individuals with an at-risk mental state (ARMS) for psychosis, the features of white matter integrity and their correlation with psychiatric symptoms remain unclear. METHODS Forty-six ARMS subjects were examined using magnetic resonance imaging (MRI) to acquire diffusion tensor imaging (DTI); the subjects were also evaluated using the Scale of Prodromal Symptoms at baseline and at 52 weeks. Sixteen healthy controls also underwent MRI scanning. The DTI results were longitudinally analyzed using a tract-specific analysis to measure the fractional anisotropy (FA) values of the entire corpus callosum (CC), as well as its genu, trunk, and splenium. RESULTS During the 52-week study period, seven patients developed psychosis (ARMS-P) and 39 did not (ARMS-NP). In the entire CC and the genu, trunk, and splenium of the CC, the FA values of the ARMS subjects were each significantly smaller than the respective values of the healthy controls at baseline. In the genu and trunk, the baseline FA values in the ARMS-NP group were, paradoxically, smaller than those of the ARMS-P group at baseline. Regarding the association between the FA values and psychiatric symptoms, a reduction in the FA value in the genu was significantly correlated with a deterioration of negative symptoms among the ARMS subjects. CONCLUSION Abnormal white matter integrity in the CC may predict the long-term outcome of patients with prodromal psychosis, since negative symptoms are associated with poor functioning.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Shinya Ito
- Department of Social Medicine, Toho University School of Medicine, Tokyo, Japan.,Department of Public Health, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Dong D, Wang Y, Chang X, Jiang Y, Klugah-Brown B, Luo C, Yao D. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: A comparative voxel-based meta-analysis. Schizophr Res 2017; 185:41-50. [PMID: 28082140 DOI: 10.1016/j.schres.2017.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
Patients with schizophrenia and bipolar disorder (BD) shared a significant overlap in genetic susceptibility, pharmacological treatment responses, neuropsychological deficits, and epidemiological features. However, it remains unknown whether these clinical overlaps are mediated by shared or disorder-specific abnormalities of white matter integrity. In this voxel-based meta-analytic comparison of whole-brain white matter integrity, we aimed to identify the shared or disorder-specific structural abnormalities between schizophrenia and BD. A comprehensive literature search was conducted up to February 2016 to identify studies that compared between patients and healthy controls (HC) by using whole-brain diffusion approach (schizophrenia: 24 datasets with 754 patients vs. 775 HC; BD: 23 datasets with 705 patients vs. 679 HC). Voxel-wise meta-analyses were conducted and restricted to unified template using seed-based d-Mapping. Abnormal white matter integrity was calculated within each condition and a direct comparison of effect size was performed of alterations between two conditions. Two regions with significant reductions of fractional anisotropy (FA) characterized abnormal water diffusion in both disorders: the genu of the corpus callosum (CC) and posterior cingulum fibers. There was no significant difference found between the two disorders. Our results highlighted shared impairments of FA at genu of the CC and left posterior cingulum fibers, which suggests that, phenotypic overlap between schizophrenia and BD could be related to common brain circuit dysfunction.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium; Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan 2, Ghent B-9000, Belgium.
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
36
|
Squarcina L, Bellani M, Rossetti MG, Perlini C, Delvecchio G, Dusi N, Barillari M, Ruggeri M, Altamura CA, Bertoldo A, Brambilla P. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS One 2017; 12:e0178089. [PMID: 28658249 PMCID: PMC5489157 DOI: 10.1371/journal.pone.0178089] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Several strands of evidence reported a significant overlapping, in terms of clinical symptoms, epidemiology and treatment response, between the two major psychotic disorders—Schizophrenia (SCZ) and Bipolar Disorder (BD). Nevertheless, the shared neurobiological correlates of these two disorders are far from conclusive. This study aims toward a better understanding of possible common microstructural brain alterations in SCZ and BD. Magnetic Resonance Diffusion data of 33 patients with BD, 19 with SCZ and 35 healthy controls were acquired. Diffusion indexes were calculated, then analyzed using Tract-Based Spatial Statistics (TBSS). We tested correlations with clinical and psychological variables. In both patient groups mean diffusion (MD), volume ratio (VR) and radial diffusivity (RD) showed a significant increase, while fractional anisotropy (FA) and mode (MO) decreased compared to the healthy group. Changes in diffusion were located, for both diseases, in the fronto-temporal and callosal networks. Finally, no significant differences were identified between patient groups, and a significant correlations between length of disease and FA and VR within the corpus callosum, corona radiata and thalamic radiation were observed in bipolar disorder. To our knowledge, this is the first study applying TBSS on all the DTI indexes at the same time in both patient groups showing that they share similar impairments in microstructural connectivity, with particular regards to fronto-temporal and callosal communication, which are likely to worsen over time. Such features may represent neural common underpinnings characterizing major psychoses and confirm the central role of white matter pathology in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
| | | | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, Verona, Italy
| | | | - Nicola Dusi
- Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Marco Barillari
- Department of Radiology, University of Verona, Verona, Italy
| | | | - Carlo A. Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering (DEI), University of Padova, Padova, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, UTHouston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Bopp MHA, Zöllner R, Jansen A, Dietsche B, Krug A, Kircher TTJ. White matter integrity and symptom dimensions of schizophrenia: A diffusion tensor imaging study. Schizophr Res 2017; 184:59-68. [PMID: 28012640 DOI: 10.1016/j.schres.2016.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023]
Abstract
Impaired fiber bundle connectivity between brain regions is a key neuropathological finding in schizophrenia. Symptom dimensions in schizophrenia can be clustered into factor models. Single syndromes have been related to grey and white matter brain structure alterations. We associated all core syndromes of schizophrenia in a single patient group with changes in white matter integrity. Diffusion weighted images (3T MRI) and SAPS/SANS scores were measured in 26 male patients and 26 healthy controls. First, group differences in fractional anisotropy (FA) were calculated with TBSS. Second, core symptom dimensions of schizophrenia were correlated with FA within these altered tracts. We found differences between groups in nine white matter tracts. Hallucinations were positively correlated with FA in the left uncinate fasciculus and left corticospinal tract. Ego-disturbances (passivity phenomena) showed a positive correlation with FA in the right anterior thalamic radiation. Positive formal thought disorders (FTD) corresponded negatively with FA in the right cingulum bundle. Negative symptoms were positively associated with the right anterior thalamic radiation and negatively with the right ventral cingulum bundle. For the first time, we analyzed the whole range of psychopathological factors in one schizophrenia patient group. We could validate our novel results for positive FTD and passivity phenomena by replicating findings for hallucinations and negative symptoms. Only those brain circuits which are most vulnerable at a given time during neurodevelopment are affected by a particular pathological impact (genetic, environmental). This scenario could explain the predominance of particular psychopathological syndromes related to specific white matter anomalies.
Collapse
Affiliation(s)
- Miriam H A Bopp
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic.
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| |
Collapse
|
38
|
Klauser P, Baker ST, Cropley VL, Bousman C, Fornito A, Cocchi L, Fullerton JM, Rasser P, Schall U, Henskens F, Michie PT, Loughland C, Catts SV, Mowry B, Weickert TW, Shannon Weickert C, Carr V, Lenroot R, Pantelis C, Zalesky A. White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs. Schizophr Bull 2017; 43:425-435. [PMID: 27535082 PMCID: PMC5605265 DOI: 10.1093/schbul/sbw100] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
White matter abnormalities associated with schizophrenia have been widely reported, although the consistency of findings across studies is moderate. In this study, neuroimaging was used to investigate white matter pathology and its impact on whole-brain white matter connectivity in one of the largest samples of patients with schizophrenia. Fractional anisotropy (FA) and mean diffusivity (MD) were compared between patients with schizophrenia or schizoaffective disorder (n = 326) and age-matched healthy controls (n = 197). Between-group differences in FA and MD were assessed using voxel-based analysis and permutation testing. Automated whole-brain white matter fiber tracking and the network-based statistic were used to characterize the impact of white matter pathology on the connectome and its rich club. Significant reductions in FA associated with schizophrenia were widespread, encompassing more than 40% (234ml) of cerebral white matter by volume and involving all cerebral lobes. Significant increases in MD were also widespread and distributed similarly. The corpus callosum, cingulum, and thalamic radiations exhibited the most extensive pathology according to effect size. More than 50% of cortico-cortical and cortico-subcortical white matter fiber bundles comprising the connectome were disrupted in schizophrenia. Connections between hub regions comprising the rich club were disproportionately affected. Pathology did not differ between patients with schizophrenia and schizoaffective disorder and was not mediated by medication. In conclusion, although connectivity between cerebral hubs is most extensively disturbed in schizophrenia, white matter pathology is widespread, affecting all cerebral lobes and the cerebellum, leading to disruptions in the majority of the brain's fiber bundles.
Collapse
Affiliation(s)
- Paul Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia;,Lausanne University Hospital, Department of Psychiatry, Prilly, Switzerland
| | - Simon T. Baker
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Vanessa L. Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, New South Wales, Australia;,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Rasser
- Centre for Brain and Mental Health Research, University of Newcastle, Waratah, New South Wales, Australia;,Hunter Medical Research Institute, Newcastle, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Waratah, New South Wales, Australia;,Hunter Medical Research Institute, Newcastle, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia
| | - Frans Henskens
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Patricia T. Michie
- Centre for Brain and Mental Health Research, University of Newcastle, Waratah, New South Wales, Australia;,Hunter Medical Research Institute, Newcastle, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Carmel Loughland
- Neuroscience Research Australia, Randwick, New South Wales, Australia;,Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Stanley V. Catts
- School of Medicine, The University of Queensland, Brisbane, Qeensland, Australia
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia;,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas W. Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Neuroscience Research Australia, Randwick, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Neuroscience Research Australia, Randwick, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vaughan Carr
- Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia;,Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Randwick, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| |
Collapse
|
39
|
Goto M, Abe O, Hata J, Fukunaga I, Shimoji K, Kunimatsu A, Gomi T. Adverse effects of metallic artifacts on voxel-wise analysis and tract-based spatial statistics in diffusion tensor imaging. Acta Radiol 2017; 58:211-217. [PMID: 27069095 DOI: 10.1177/0284185116641348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.
Collapse
Affiliation(s)
- Masami Goto
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Osamu Abe
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Akira Kunimatsu
- Department of Radiology, University of Tokyo Hospital, Tokyo, Japan
| | - Tsutomu Gomi
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| |
Collapse
|
40
|
Takahashi M, Matsui M, Nakashima M, Takahashi T, Suzuki M. Callosal size in first-episode schizophrenia patients with illness duration of less than one year: A cross-sectional MRI study. Asian J Psychiatr 2017; 25:197-202. [PMID: 28262149 DOI: 10.1016/j.ajp.2016.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023]
Abstract
Previous studies have reported a reduction in the size of the corpus callosum (CC) on the mid-sagittal plane in patients with schizophrenia. However, findings for the size of the callosal area in patients with first-episode schizophrenia (FESz) are inconsistent. A possibility for these conflicting results is that the duration of illness in patients with FESz affects the CC size. The present study investigated the CC size abnormalities in patients with FESz. Forty-six patients with FESz whose duration of illness was less than 1year and 46 age-, sex-, and handedness-matched healthy controls were recruited to examine the CC size using magnetic resonance imaging. We measured the area of the CC using the Witelson's scheme, which divided the whole area into seven subdivisions. Analysis of covariance indicated there was no difference in the whole or regional areas of the CC between patients with FESz and healthy controls. The rostrum of the CC was significantly correlated with the total score for negative symptoms and some of the subtotal scores. Our findings indicate that there was no reduction in the whole or regional area of the CC among patients with FESz. When comparing the callosal morphology and symptoms, negative symptoms increased in severity as the rostrum area of the CC decreased in size. Further studies are needed to investigate whether the size of the anterior CC is associated with the pathology observed in the early stages of FESz.
Collapse
Affiliation(s)
- Michio Takahashi
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | - Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan; Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Mitsuhiro Nakashima
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| |
Collapse
|
41
|
Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders. Neurosci Biobehav Rev 2016; 69:381-401. [DOI: 10.1016/j.neubiorev.2016.08.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/11/2016] [Accepted: 08/06/2016] [Indexed: 11/21/2022]
|
42
|
Bakker G, Caan MWA, Schluter RS, Bloemen OJN, da Silva-Alves F, de Koning MB, Boot E, Vingerhoets WAM, Nieman DH, de Haan L, Booij J, van Amelsvoort TAMJ. Distinct white-matter aberrations in 22q11.2 deletion syndrome and patients at ultra-high risk for psychosis. Psychol Med 2016; 46:2299-2311. [PMID: 27193339 DOI: 10.1017/s0033291716000970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Patients with a deletion at chromosome 22q11.2 (22q11DS) have 30% lifetime risk of developing a psychosis. People fulfilling clinical criteria for ultra-high risk (UHR) for psychosis have 30% risk of developing a psychosis within 2 years. Both high-risk groups show white-matter (WM) abnormalities in microstructure and volume compared to healthy controls (HC), which have been related to psychotic symptoms. Comparisons of WM pathology between these two groups may specify WM markers related to genetic and clinical risk factors. METHOD Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) were assessed using diffusion tensor magnetic resonance imaging (MRI), and WM volume with structural MRI, in 23 UHR patients, 21 22q11DS patients, and 33 HC. RESULTS Compared to UHR patients 22q11DS patients had (1) lower AD and RD in corpus callosum (CC), cortical fasciculi, and anterior thalamic radiation (ATR), (2) higher FA in CC and ATR, and (3) lower occipital and superior temporal gyrus WM volume. Compared to HC, 22q11DS patients had (1) lower AD and RD throughout cortical fasciculi and (2) higher FA in ATR, CC and inferior fronto-occipital fasciculus. Compared to HC, UHR patients had (1) higher mean MD, RD, and AD in CC, ATR and cortical fasciculi, (2) no differences in FA. CONCLUSIONS UHR and 22q11DS patients share a susceptibility for developing psychosis yet were characterized by distinct patterns of WM alterations relative to HC. While UHR patients were typified by signs suggestive of aberrant myelination, 22q11DS subjects showed signs suggestive of lower axonal integrity.
Collapse
Affiliation(s)
- G Bakker
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - M W A Caan
- Department of Radiology,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - R S Schluter
- Department of Radiology,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - O J N Bloemen
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - F da Silva-Alves
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - M B de Koning
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - E Boot
- Department of Nuclear Medicine,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - W A M Vingerhoets
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - D H Nieman
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - L de Haan
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - J Booij
- Department of Nuclear Medicine,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | | |
Collapse
|
43
|
Viher PV, Stegmayer K, Giezendanner S, Federspiel A, Bohlhalter S, Vanbellingen T, Wiest R, Strik W, Walther S. Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. NEUROIMAGE-CLINICAL 2016; 12:93-99. [PMID: 27408794 PMCID: PMC4925890 DOI: 10.1016/j.nicl.2016.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging (DTI) studies have provided evidence of widespread white matter (WM) abnormalities in schizophrenia. Although these abnormalities appear clinically significant, the relationship to specific clinical symptoms is limited and heterogeneous. This study examined the association between WM microstructure and the severity of the five main DSM-5 schizophrenia symptom dimensions. DTI was measured in forty patients with schizophrenia spectrum disorders. Using Tract-Based Spatial Statistics controlling for age, gender and antipsychotic dosage, our analyses revealed significant negative relationships between WM microstructure and two DSM-5 symptom dimensions: Whereas abnormal psychomotor behavior was particularly related to WM of motor tracts, negative symptoms were associated with WM microstructure of the prefrontal and right temporal lobes. However, we found no associations between WM microstructure and delusions, hallucinations or disorganized speech. These data highlight the relevance of characteristic WM disconnectivity patterns as markers for negative symptoms and abnormal psychomotor behavior in schizophrenia and provide evidence for relevant associations between brain structure and aberrant behavior. DTI study of brain-behavior associations of the new DSM-5 schizophrenia dimensions. The severity of the DSM-5 abnormal psychomotor behavior dimension is related to white matter microstructure in motor tracts. Associations of the DSM-5 negative symptom dimension with white matter microstructure are found in prefrontal and temporal clusters. Characteristic patterns of white matter microstructure argue for relevant associations between brain structure and aberrant behavior in schizophrenia.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | | | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tim Vanbellingen
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
44
|
Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, Pasternak O, Fredman E, Duskin J, Goldstein JM, Petryshen TL, Mesholam-Gately RI, Wojcik J, McCarley RW, Seidman LJ, Shenton ME, Koerte IK, Kubicki M. Tractography Analysis of 5 White Matter Bundles and Their Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophr Bull 2016; 42:762-71. [PMID: 27009248 PMCID: PMC4838095 DOI: 10.1093/schbul/sbv171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Tractography is the most anatomically accurate method for delineating white matter tracts in the brain, yet few studies have examined multiple tracts using tractography in patients with schizophrenia (SCZ). We analyze 5 white matter connections important in the pathophysiology of SCZ: uncinate fasciculus, cingulum bundle (CB), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus, and arcuate fasciculus (AF). Additionally, we investigate the relationship between diffusion tensor imaging (DTI) markers and neuropsychological measures. METHODS High-resolution DTI data were acquired on a 3 Tesla scanner in 30 patients with early-course SCZ and 30 healthy controls (HC) from the Boston Center for Intervention Development and Applied Research study. After manually guided tracts delineation, fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD) were calculated and averaged along each tract. The association of DTI measures with the Scales for the Assessment of Negative and Positive Symptoms and neuropsychological measures was evaluated. RESULTS Compared to HC, patients exhibited reduced FA and increased trace and RD in the right AF, CB, and ILF. A discriminant analysis showed the possible use of FA of these tracts for better future group membership classifications. FA and RD of the right ILF and AF were associated with positive symptoms while FA and RD of the right CB were associated with memory performance and processing speed. CONCLUSION We observed white matter alterations in the right CB, ILF, and AF, possibly caused by myelin disruptions. The structural abnormalities interact with cognitive performance, and are linked to clinical symptoms.
Collapse
Affiliation(s)
- Johanna Seitz
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jessica X. Zuo
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Amanda E. Lyall
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Eli Fredman
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jonathan Duskin
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Medicine, Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tracey L. Petryshen
- Department of Psychiatry and Center for Human Genetic Research, Psychiatric and Neurodevelopmental Genetic Unit, Massachusetts General Hospital, Boston, MA;,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raquelle I. Mesholam-Gately
- Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Joanne Wojcik
- Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W. McCarley
- Department of Psychiatry, Laboratory of Neuroscience, Clinical Neuroscience Division, VA Boston Healthcare System, Brockton, MA
| | - Larry J. Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Martha E. Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
| |
Collapse
|
45
|
Zeng B, Ardekani BA, Tang Y, Zhang T, Zhao S, Cui H, Fan X, Zhuo K, Li C, Xu Y, Goff DC, Wang J. Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res 2016; 172:1-8. [PMID: 26852402 DOI: 10.1016/j.schres.2016.01.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/21/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Abnormal white matter integrity has been reported among first episode schizophrenia patients. However, findings on whether it can be reversed by short-term antipsychotic medications are inconsistent. METHOD Diffusion tensor imaging (DTI) was obtained from 55 drug-naive first episode schizophrenia patients and 61 healthy controls, and was repeated among 25 patients and 31 controls after 8 weeks during which patients were medicated with antipsychotics. White matter integrity is measured using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). These measures showing a group difference by Tract-based spatial statistics (TBSS) at baseline were extracted for longitudinal comparisons. RESULTS At baseline, patients exhibited lower FA, higher MD and higher RD versus controls in forceps, left superior longitudinal fasciculus, inferior fronto-occipital fasciculus, left corticospinal tract, left uncinate fasciculus, left anterior thalamic radiation, and bilateral inferior longitudinal fasciculi. FA values of schizophrenia patients correlated with their negative symptoms (r=-0.412, P=0.002), working memory (r=0.377, P=0.005) and visual learning (r=0.281, P=0.038). The longitudinal changes in DTI indices in these tracts did not differ between patients and controls. However, among the patients the longitudinal changes in FA values in left superior longitudinal fasciculus correlated with the change of positive symptoms (r=-0.560, p=0.004), and the change of processing speed (r=0.469, p=0.018). CONCLUSIONS White matter deficits were validated in the present study by a relatively large sample of medication naïve and first episode schizophrenia patients. They could be associated with negative symptoms and cognitive impairment, whereas improvement in white matter integrity of left superior longitudinal fasciculus correlated with improvement in psychosis and processing speed. Further examination of treatment-related changes in white matter integrity may provide clues to the mechanism of antipsychotic response and provide a biomarker for clinical studies.
Collapse
Affiliation(s)
- Botao Zeng
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China; Department of Psychiatry, Qingdao Mental Health Center, Qingdao 266034, PR China
| | - Babak A Ardekani
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China
| | - Shanshan Zhao
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMass Memorial Medical Center/UMass Medical School, Suite 100, 365 Plantation Street, Worcester, MA 01605, USA
| | - Kaiming Zhuo
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, PR China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, PR China
| | - Donald C Goff
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, PR China.
| |
Collapse
|
46
|
Mohammad SA, Sakr HM, Bondok SMY, Mahmoud DAM, Azzam HM, Effat S. Fronto-temporal connectivity in never-medicated patients with first-episode schizophrenia: A DTI study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2015.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Behdinan T, Foussias G, Wheeler AL, Stefanik L, Felsky D, Remington G, Rajji TK, Mallar Chakravarty M, Voineskos AN. Neuroimaging predictors of functional outcomes in schizophrenia at baseline and 6-month follow-up. Schizophr Res 2015; 169:69-75. [PMID: 26603060 PMCID: PMC4681643 DOI: 10.1016/j.schres.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Studies show that deficit syndrome schizophrenia patients, characterized by primary negative symptoms and poor functional outcome, have impairment in specific neural circuits. We assessed whether these same neural circuits are directly linked to functional outcomes across schizophrenia patients. METHODS T1- and diffusion-weighted MR images were obtained for schizophrenia (n=30) and matched healthy control participants (n=30). Negative symptoms and functional outcome were assessed at baseline and 6-month follow-up. Cortical thickness and tract-wise fractional anisotropy (FA) were compared between groups. To assess relationships of neuroimaging measures with functional outcome, principal component analysis (PCA) was performed on tract-wise FA values and components were entered into a multiple regression model for schizophrenia participants. RESULTS Consistent with the literature, schizophrenia participants showed frontotemporal reductions in cortical thickness and tract-wise FA compared to controls. The top two components from PCA explained 71% of the variance in tract-wise FA values. The second component (associated with inferior longitudinal and arcuate fasciculus FA) was significantly correlated with functional outcome (baseline: β=0.54, p=0.03; follow-up: β=0.74, p=0.047); further analysis revealed this effect was mediated by negative symptoms. Post-hoc network analysis revealed increased cortical coupling between right inferior frontal and supramarginal gyri (connected by the arcuate fasciculus) in schizophrenia participants with poorer functional outcome. CONCLUSIONS Our findings indicate that impairment in the same neural circuitry susceptible in deficit syndrome schizophrenia predicts functional outcome in a continuous manner in schizophrenia participants. This relationship was mediated by negative symptom burden. Our findings provide novel evidence for brain-based biomarkers of longitudinal functional outcome in people with schizophrenia.
Collapse
Affiliation(s)
- Tina Behdinan
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada
| | - George Foussias
- Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada
| | - Anne L Wheeler
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Laura Stefanik
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Daniel Felsky
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada
| | - Tarek K Rajji
- Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada.
| |
Collapse
|
48
|
Langen CD, White T, Ikram MA, Vernooij MW, Niessen WJ. Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia. PLoS One 2015; 10:e0137484. [PMID: 26331844 PMCID: PMC4557994 DOI: 10.1371/journal.pone.0137484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022] Open
Abstract
Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, “bi-modal comparison plots” show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using “worm plots”. Group differences in connections are examined with an existing visualization, the “connectogram”. These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the “Statistical Analysis of Minimum cost path based Structural Connectivity” method and the average fractional anisotropy along the fiber. The functional measures were Pearson’s correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.
Collapse
Affiliation(s)
- Carolyn D. Langen
- Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Wiro J. Niessen
- Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
49
|
Bakhshi K, Chance S. The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 2015; 303:82-102. [DOI: 10.1016/j.neuroscience.2015.06.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
|
50
|
Salamone JD, Koychev I, Correa M, McGuire P. Neurobiological basis of motivational deficits in psychopathology. Eur Neuropsychopharmacol 2015; 25:1225-38. [PMID: 25435083 DOI: 10.1016/j.euroneuro.2014.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
In recent years, there has been increasing emphasis on the importance of motivational symptoms in depression, schizophrenia and other disorders. The present review discusses the conceptual background related to the construct of motivation, and provides a framework that for research on both physiological and pathological aspects of motivation. Particular emphasis is placed on what is known about the neurobiological basis of activational aspects of motivation, including studies from animal models. The role of limbic/prefrontal/striatal circuitry in behavioral activation and effort-related functions is examined, and the utility of behavioral tasks of effort-based decision making as models of motivational symptoms is discussed. We also review the neurobiology of motivational symptoms in relation to psychopathology, and issues related to the language used to characterize motivational dysfunctions are considered. The literature suggests that research on the neurobiology of motivational dysfunction in psychopathology, at both clinical and preclinical levels, could inform the development of novel and more effective treatments for a range of CNS disorders.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| | - Ivan Koychev
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, DeCrespigny Park, London SE5 8AF, UK.
| | - Mercè Correa
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA; Department of Psychobiology, University Jaume I, Castelló, Spain.
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, DeCrespigny Park, London SE5 8AF, UK.
| |
Collapse
|