1
|
Derome M, Amir S, Sprüngli-Toffel E, Salaminios G, FonsecaPedrero E, Debbané M. Longitudinal Associations Between Self-reported Schizotypy Dimensions and White Matter Integrity Development During Adolescence. Schizophr Bull 2025; 51:S126-S136. [PMID: 40037830 PMCID: PMC11879505 DOI: 10.1093/schbul/sbad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND Alterations of white matter microstructure have been reported in the psychosis spectrum. However, the development of these alterations during preclinical stages remains poorly understood. The framework proposed by schizotypy research as the personality base for liability to develop psychosis spectrum disorders offers 3 interconnected dimensions thought to impact neurodevelopment, affording an opportunity to investigate premorbid risk. DESIGN In this study, 102 typically developing individuals aged between 12 and 20 y.o. at baseline were scanned longitudinally between 1 and 4 times, and schizotypy was assessed at each visit. Ten white matter tracts were reconstructed using TRACULA, and mixed model regression was used to characterize age-related changes in main diffusion parameters (ie, fractional anisotropy [FA]). Estimated longitudinal trajectories of the 3 dimensions of schizotypy were tested for different trajectories of diffusion parameters as a function of age. RESULTS Positive schizotypy trajectory was the most strongly decreased when FA in the anterior thalamic radiation (atr-FA) increased in young adults compared with a moderate decrease in younger participants. Furthermore, in adolescents, disorganized schizotypy followed a steep increase when atr-FA increased, while in the older participants, it decreased as a function of atr-FA. Independent of age, intraindividual positive schizotypy was further longitudinally negatively associated with FA in the cingulate gyrus, and disorganized schizotypy was positively associated with FA in the superior longitudinal fasciculus. CONCLUSIONS Given that abnormalities in fronto-thalamo-cingulate subcircuit are present in schizophrenia and converters to psychosis, our results support the hypothesis of schizotypy as a personality base risk to develop psychosis.
Collapse
Affiliation(s)
- Mélodie Derome
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Suje Amir
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Elodie Sprüngli-Toffel
- Department of Psychiatry, University of Geneva, Switzerland
- Department of Psychiatry, Vaud University Hospital Center, Lausanne, Switzerland
| | - George Salaminios
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | | | - Martin Debbané
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
2
|
Martini F, Spangaro M, Sapienza J, Cavallaro R. Cerebral asymmetries in schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:89-99. [PMID: 40074419 DOI: 10.1016/b978-0-443-15646-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Historically, the first observations of a lower prevalence of right-handed patients among subjects with schizophrenia led to the hypothesis that brain asymmetry could play a significant role in the etiopathogenesis of the disease. Over the last decades, a growing number of findings obtained through many different techniques such as EEG, MEG, MRI, and fMRI, consistently reported reduction/loss of brain asymmetries as a core feature of schizophrenia, further suggesting such alterations to play a cardinal role in the pathogenesis of the disease. Moreover, several cognitive and psychopathologic dimensions have shown significant correlations with the reduced degree of asymmetry. In particular, the absence or even reversal of structural asymmetries has been documented in language-related brain such as the Sylvian fissure and planum temporale. These findings have been reprocessed within an evolutionary and psychopathologic framework pointing at the loss of asymmetry and the consequent language impairment as primum moves in the pathogenesis of schizophrenia. Overall, despite growing evidence demonstrating a heterogeneous and multifaced etiopathogenesis in schizophrenia, the "old concept" of brain asymmetry still offers intriguing hints and thought-provoking elements for clinicians and researchers who deal with schizophrenia.
Collapse
Affiliation(s)
- Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Dimitriadis SI, Perry G, Lancaster TM, Tansey KE, Singh KD, Holmans P, Pocklington A, Davey Smith G, Zammit S, Hall J, O’Donovan MC, Owen MJ, Jones DK, Linden DE. Genetic risk for schizophrenia is associated with increased proportion of indirect connections in brain networks revealed by a semi-metric analysis: evidence from population sample stratified for polygenic risk. Cereb Cortex 2023; 33:2997-3011. [PMID: 35830871 PMCID: PMC10016061 DOI: 10.1093/cercor/bhac256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.
Collapse
Affiliation(s)
- S I Dimitriadis
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - T M Lancaster
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Department of Psychology, Bath University, Claverton Down BA2 7AY, Bath, Wales, UK
| | - K E Tansey
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
| | - K D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - P Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - A Pocklington
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - S Zammit
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - J Hall
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M C O’Donovan
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M J Owen
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D E Linden
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40 UNS40 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
4
|
Fonville L, Drakesmith M, Zammit S, Lewis G, Jones DK, David AS. MRI Indices of Cortical Development in Young People With Psychotic Experiences: Influence of Genetic Risk and Persistence of Symptoms. Schizophr Bull 2019; 45:169-179. [PMID: 29385604 PMCID: PMC6293214 DOI: 10.1093/schbul/sbx195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Psychotic experiences (PEs) are considered part of an extended psychosis phenotype and are associated with an elevated risk of developing a psychotic disorder. Risk of transition increases with persistence of PEs, and this is thought to be modulated by genetic and environmental factors. However, it is unclear if persistence is associated with progressive schizophrenia-like changes in neuroanatomy. Methods We examined cortical morphometry using MRI in 247 young adults, from a population-based cohort, assessed for the presence of PEs at ages 18 and 20. We then incorporated a polygenic risk score for schizophrenia (PRS) to elucidate the effects of high genetic risk. Finally, we used atlas-based tractography data to examine the underlying white matter. Results Individuals with persisting PEs showed reductions in gyrification (local gyrification index: lGI) in the left temporal gyrus as well as atypical associations with brain volume (TBV) in the left occipital and right prefrontal gyri. No main effect was found for the PRS, but interaction effects with PEs were identified in the orbitofrontal, parietal, and temporal regions. Examination of underlying white matter did not provide strong evidence of further disturbances. Conclusions Disturbances in lGI were similar to schizophrenia but findings were mostly limited to those with persistent PEs. These could reflect subtle changes that worsen with impending psychosis or reflect an early vulnerability associated with the persistence of PEs. The lack of clear differences in underlying white matter suggests our findings reflect early disturbances in cortical expansion rather than progressive changes in brain structure.
Collapse
Affiliation(s)
- Leon Fonville
- Section of Cognitive Neuropsychiatry (Box 68), Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King ’s College London, UK
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Stanley Zammit
- Institute of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Centre for Academic Mental Health, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Glyn Lewis
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony S David
- Section of Cognitive Neuropsychiatry (Box 68), Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King ’s College London, UK
| |
Collapse
|
5
|
Walter EE, Fernandez F, Snelling M, Barkus E. Genetic Consideration of Schizotypal Traits: A Review. Front Psychol 2016; 7:1769. [PMID: 27895608 PMCID: PMC5108787 DOI: 10.3389/fpsyg.2016.01769] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Schizotypal traits are of interest and importance in their own right and also have theoretical and clinical associations with schizophrenia. These traits comprise attenuated psychotic symptoms, social withdrawal, reduced cognitive capacity, and affective dysregulation. The link between schizotypal traits and psychotic disorders has long since been debated. The status of knowledge at this point is such schizotypal traits are a risk for psychotic disorders, but in and of themselves only confer liability, with other risk factors needing to be present before a transition to psychosis occurs. Investigation of schizotypal traits also has the possibility to inform clinical and research pursuits concerning those who do not make a transition to psychotic disorders. A growing body of literature has investigated the genetic underpinnings of schizotypal traits. Here, we review association, family studies and describe genetic disorders where the expression of schizotypal traits has been investigated. We conducted a thorough review of the existing literature, with multiple search engines, references, and linked articles being searched for relevance to the current review. All articles and book chapters in English were sourced and reviewed for inclusion. Family studies demonstrate that schizotypal traits are elevated with increasing genetic proximity to schizophrenia and some chromosomal regions have been associated with schizotypy. Genes associated with schizophrenia have provided the initial start point for the investigation of candidate genes for schizotypal traits; neurobiological pathways of significance have guided selection of genes of interest. Given the chromosomal regions associated with schizophrenia, some genetic disorders have also considered the expression of schizotypal traits. Genetic disorders considered all comprise a profile of cognitive deficits and over representation of psychotic disorders compared to the general population. We conclude that genetic variations associated with schizotypal traits require further investigation, perhaps with targeted phenotypes narrowed to assist in refining the clinical end point of significance.
Collapse
Affiliation(s)
- Emma E. Walter
- School of Psychology, University of WollongongWollongong, NSW, Australia
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, University of WollongongWollongong, NSW, Australia
| | - Mollie Snelling
- Illawarra Health and Medical Research Institute, University of WollongongWollongong, NSW, Australia
| | - Emma Barkus
- School of Psychology, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
6
|
Liu K, Zhang T, Zhang Q, Sun Y, Wu J, Lei Y, Chu WCW, Mok VCT, Wang D, Shi L. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study. Front Psychol 2016; 7:809. [PMID: 27303358 PMCID: PMC4884735 DOI: 10.3389/fpsyg.2016.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.
Collapse
Affiliation(s)
- Kai Liu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong Hong Kong, China
| | - Teng Zhang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong Hong Kong, China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University Dalian, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University Dalian, China
| | - Yi Lei
- Department of Radiology, The Second People's Hospital of Shenzhen Shenzhen, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong KongHong Kong, China; Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong KongHong Kong, China; Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China; Research Center for Medical Image Computing, The Chinese University of Hong KongHong Kong, China
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China; Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
7
|
Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, Pasternak O, Fredman E, Duskin J, Goldstein JM, Petryshen TL, Mesholam-Gately RI, Wojcik J, McCarley RW, Seidman LJ, Shenton ME, Koerte IK, Kubicki M. Tractography Analysis of 5 White Matter Bundles and Their Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophr Bull 2016; 42:762-71. [PMID: 27009248 PMCID: PMC4838095 DOI: 10.1093/schbul/sbv171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Tractography is the most anatomically accurate method for delineating white matter tracts in the brain, yet few studies have examined multiple tracts using tractography in patients with schizophrenia (SCZ). We analyze 5 white matter connections important in the pathophysiology of SCZ: uncinate fasciculus, cingulum bundle (CB), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus, and arcuate fasciculus (AF). Additionally, we investigate the relationship between diffusion tensor imaging (DTI) markers and neuropsychological measures. METHODS High-resolution DTI data were acquired on a 3 Tesla scanner in 30 patients with early-course SCZ and 30 healthy controls (HC) from the Boston Center for Intervention Development and Applied Research study. After manually guided tracts delineation, fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD) were calculated and averaged along each tract. The association of DTI measures with the Scales for the Assessment of Negative and Positive Symptoms and neuropsychological measures was evaluated. RESULTS Compared to HC, patients exhibited reduced FA and increased trace and RD in the right AF, CB, and ILF. A discriminant analysis showed the possible use of FA of these tracts for better future group membership classifications. FA and RD of the right ILF and AF were associated with positive symptoms while FA and RD of the right CB were associated with memory performance and processing speed. CONCLUSION We observed white matter alterations in the right CB, ILF, and AF, possibly caused by myelin disruptions. The structural abnormalities interact with cognitive performance, and are linked to clinical symptoms.
Collapse
Affiliation(s)
- Johanna Seitz
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jessica X. Zuo
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Amanda E. Lyall
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Eli Fredman
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jonathan Duskin
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Medicine, Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tracey L. Petryshen
- Department of Psychiatry and Center for Human Genetic Research, Psychiatric and Neurodevelopmental Genetic Unit, Massachusetts General Hospital, Boston, MA;,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raquelle I. Mesholam-Gately
- Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Joanne Wojcik
- Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W. McCarley
- Department of Psychiatry, Laboratory of Neuroscience, Clinical Neuroscience Division, VA Boston Healthcare System, Brockton, MA
| | - Larry J. Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Martha E. Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
| |
Collapse
|
8
|
Intact speed of processing in a community-based sample of adults with high schizotypy: A marker of reduced psychosis risk? Psychiatry Res 2015; 228:531-7. [PMID: 26117248 DOI: 10.1016/j.psychres.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
Speed of processing is impaired in schizophrenia but intact in schizotypal college students. In view of this disparity, we investigated whether deficient processing speed was associated with schizotypy in adults from the general community. Data were drawn from the Western Australian Family Study of Schizophrenia, including 216 (non-clinical) adults from the general community, and a reference group with schizophrenia spectrum disorder (N=224). Schizotypal traits were assessed with the Schizotypal Personality Questionnaire, whilst processing speed was assessed with a digit-symbol coding task. Community controls had significantly higher digit symbol coding scores than patients with psychosis. However, both correlational and hierarchical regression analysis indicated a lack of association between Cognitive-perceptual, Interpersonal or Disorganized schizotypy traits and digit symbol coding performance. Relative to Australian norms there was also no evidence of a non-linear decline in coding in high schizotypes in young, mature or senior age groups. The results show that speed of information processing is unimpaired in high schizotypes from the general community. The possibility that intact processing speed in at-risk groups confers protection to psychosis onset is discussed. Assessing the trajectory of processing speed throughout development may provide a useful clinical screening tool to distinguish those at heightened risk of developing psychosis.
Collapse
|
9
|
Abstract
The notion that psychosis may exist on a continuum with normal experience has been proposed in multiple forms throughout the history of psychiatry. However, in recent years there has been an exponential increase in efforts aimed at elucidating what has been termed the 'psychosis continuum'. The present review seeks to summarize some of the more basic characteristics of this continuum and to present some of the recent findings that provide support for its validity. While there is still considerable work to be done, the emerging data holds considerable promise for advancing our understanding of both risk and resilience to psychiatric disorders characterized by psychosis.
Collapse
Affiliation(s)
- Pamela DeRosse
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore–Long Island Jewish Health System, Glen Oaks, NY, USA
| | - Katherine H. Karlsgodt
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore–Long Island Jewish Health System, Glen Oaks, NY, USA
- Department of Psychiatry, Hofstra NorthShore LIJ School of Medicine, Hempstead NY
| |
Collapse
|
10
|
DeRosse P, Nitzburg GC, Ikuta T, Peters BD, Malhotra AK, Szeszko PR. Evidence from structural and diffusion tensor imaging for frontotemporal deficits in psychometric schizotypy. Schizophr Bull 2015; 41:104-14. [PMID: 25392520 PMCID: PMC4266309 DOI: 10.1093/schbul/sbu150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies of nonclinical samples exhibiting schizotypal traits have provided support for the existence of a continuous distribution of psychotic symptoms in the general population. Few studies, however, have examined the neural correlates of psychometric schizotypy using structural and diffusion tensor imaging (DTI). METHODS Healthy volunteers between the ages of 18 and 68 were recruited from the community and assessed using the Schizotypal Personality Questionnaire and received structural and DTI exams. Participants with high (N = 67) and low (N = 71) psychometric schizotypy were compared on gray and white matter volume, and cortical thickness in frontal and temporal lobe regions and on fractional anisotropy (FA) within 5 association tracts traversing the frontal and temporal lobes. RESULTS Higher levels of schizotypy were associated with lower overall volumes of gray matter in both the frontal and temporal lobes and lower gray matter thickness in the temporal lobe. Regionally specific effects were evident in both white matter and gray matter volume of the rostral middle frontal cortex and gray matter volume in the pars orbitalis. Moreover, relative to individuals who scored low, those who scored high in schizotypy had lower FA in the inferior fronto-occipital fasciculus as well as greater asymmetry (right > left) in the uncinate fasciculus. CONCLUSIONS These findings are broadly consistent with recent data on the neurobiological correlates of psychometric schizotypy as well as findings in schizotypal personality disorder and schizophrenia and suggest that frontotemporal lobe dysfunction may represent a core component of the psychosis phenotype.
Collapse
Affiliation(s)
- Pamela DeRosse
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY; Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY;
| | - George C. Nitzburg
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, University, MS
| | - Bart D. Peters
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore–Long Island Jewish Health System, Glen Oaks, NY
| | - Anil K. Malhotra
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore–Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY
| | - Philip R. Szeszko
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore–Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY
| |
Collapse
|
11
|
Ribolsi M, Daskalakis ZJ, Siracusano A, Koch G. Abnormal asymmetry of brain connectivity in schizophrenia. Front Hum Neurosci 2014; 8:1010. [PMID: 25566030 PMCID: PMC4273663 DOI: 10.3389/fnhum.2014.01010] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023] Open
Abstract
Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia.
Collapse
Affiliation(s)
- Michele Ribolsi
- Dipartimento di Medicina dei Sistemi, Clinica Psichiatrica, Università di Roma Tor Vergata , Rome , Italy ; Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS , Rome , Italy
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto , Toronto, ON , Canada
| | - Alberto Siracusano
- Dipartimento di Medicina dei Sistemi, Clinica Psichiatrica, Università di Roma Tor Vergata , Rome , Italy
| | - Giacomo Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS , Rome , Italy
| |
Collapse
|