1
|
Xia X, Li Y, Song Y, Dong Y, Chen R, Zhang J, Tan X. Modulation of intracortical circuits in primary motor cortex during automatic action tendencies. Brain Struct Funct 2024; 229:909-918. [PMID: 38483581 PMCID: PMC11003908 DOI: 10.1007/s00429-024-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Humans display automatic action tendencies toward emotional stimuli, showing faster automatic behavior (i.e., approaching a positive stimulus and avoiding a negative stimulus) than regulated behavior (i.e., avoiding a positive stimulus and approaching a negative stimulus). Previous studies have shown that the primary motor cortex is involved in the processing of automatic actions, with higher motor evoked potential amplitudes during automatic behavior elicited by single-pulse transcranial magnetic stimulation. However, it is unknown how intracortical circuits are involved with automatic action tendencies. Here, we measured short-interval intracortical inhibition and intracortical facilitation within the primary motor cortex by using paired-pulse transcranial magnetic stimulation protocols during a manikin task, which has been widely used to explore approaching and avoiding behavior. Results showed that intracortical facilitation was stronger during automatic behavior than during regulated behavior. Moreover, there was a significant negative correlation between reaction times and intracortical facilitation effect during automatic behavior: individuals with short reaction times had stronger faciliatory activity, as shown by higher intracortical facilitation. By contrast, no significant difference was found for short-interval intracortical inhibition between automatic behavior and regulated behavior. The results indicated that the intracortical facilitation circuit, mediated by excitatory glutamatergic neurons, in the primary motor cortex, plays an important role in mediating automatic action tendencies. This finding further supports the link between emotional perception and the action system.
Collapse
Affiliation(s)
- Xue Xia
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yuyu Song
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuanjun Dong
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xiaoying Tan
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Rua de Luis Gonzaga Gomes, Macao S.A.R., China.
| |
Collapse
|
2
|
Widegren E, Frick MA, Hoppe JM, Weis J, Möller S, Fällmar D, Mårtensson J, Brocki K, Gingnell M, Frick A. The influence of anterior cingulate GABA+ and glutamate on emotion regulation and reactivity in adolescents and adults. Dev Psychobiol 2024; 66:e22492. [PMID: 38643360 DOI: 10.1002/dev.22492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
During adolescence, emotion regulation and reactivity are still developing and are in many ways qualitatively different from adulthood. However, the neurobiological processes underpinning these differences remain poorly understood, including the role of maturing neurotransmitter systems. We combined magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (dACC) and self-reported emotion regulation and reactivity in a sample of typically developed adolescents (n = 37; 13-16 years) and adults (n = 39; 30-40 years), and found that adolescents had higher levels of glutamate to total creatine (tCr) ratio in the dACC than adults. A glutamate Í age group interaction indicated a differential relation between dACC glutamate levels and emotion regulation in adolescents and adults, and within-group follow-up analyses showed that higher levels of glutamate/tCr were related to worse emotion regulation skills in adolescents. We found no age-group differences in gamma-aminobutyric acid+macromolecules (GABA+) levels; however, emotion reactivity was positively related to GABA+/tCr in the adult group, but not in the adolescent group. The results demonstrate that there are developmental changes in the concentration of glutamate, but not GABA+, within the dACC from adolescence to adulthood, in accordance with previous findings indicating earlier maturation of the GABA-ergic than the glutamatergic system. Functionally, glutamate and GABA+ are positively related to emotion regulation and reactivity, respectively, in the mature brain. In the adolescent brain, however, glutamate is negatively related to emotion regulation, and GABA+ is not related to emotion reactivity. The findings are consistent with synaptic pruning of glutamatergic synapses from adolescence to adulthood and highlight the importance of brain maturational processes underlying age-related differences in emotion processing.
Collapse
Affiliation(s)
- Ebba Widegren
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Matilda A Frick
- Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Johanna Motilla Hoppe
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Jan Weis
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Stefan Möller
- Department of Psychology, Lund University, Lund, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Neuroradiology, Uppsala University Hospital, Uppsala, Sweden
| | - Johanna Mårtensson
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Karin Brocki
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Andreas Frick
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Kim H, Choi M, Han S, Park SY, Jeong M, Kim SR, Hwang EM, Lee SG. Expression patterns of AEG-1 in the normal brain. Brain Struct Funct 2023; 228:1629-1641. [PMID: 37421418 DOI: 10.1007/s00429-023-02676-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Astrocyte elevated gene-1 (AEG-1) is a well-known oncogene implicated in various types of human cancers, including brain tumors. Recently, AEG-1 has also been reported to play pivotal roles in glioma-associated neurodegeneration and neurodegenerative diseases like Parkinson's disease and amyotrophic lateral sclerosis. However, the normal physiological functions and expression patterns of AEG-1 in the brain are not well understood. In this study, we investigated the expression patterns of AEG-1 in the normal mouse brain and found that AEG-1 is widely expressed in neurons and neuronal precursor cells, but little in glial cells. We observed differential expression levels of AEG-1 in various brain regions, and its expression was mainly localized in the cell body of neurons rather than the nucleus. Additionally, AEG-1 was expressed in the cytoplasm of Purkinje cells in both the mouse and human cerebellum, suggesting its potential role in this brain region. These findings suggest that AEG-1 may have important functions in normal brain physiology and warrant further investigation. Our results may also shed light on the differential expression patterns of AEG-1 in normal and pathological brains, providing insights into its roles in various neurological disorders.
Collapse
Affiliation(s)
- Hail Kim
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang-Yoon Park
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myoungseok Jeong
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Liu X, Wang H, Wang X, Ning Y, Liu W, Gao J. Baixiangdan capsule and Shuyu capsule regulate anger-out and anger-in, respectively: GB1–mediated GABA can regulate 5-HT levels in multiple brain regions. Aging (Albany NY) 2023; 15:2046-2065. [PMID: 36988497 PMCID: PMC10085605 DOI: 10.18632/aging.204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
The identity of the mechanism by which the Baixiangdan capsule (BXD) and the Shuyu capsule (SY) control anger-out (AO) and anger-in (AI) in rodents is unclear. The current study clarified the intervention role of BXD and SY on AO and AI male rats. We further explored the differences between BXD and SY in the treatment of AO and AI rats. Social isolation combined with the resident-intruder paradigm was used to establish the anger-out and AI rats models. On this basis, GABA content in the dorsal raphe nucleus (DRN) and serotonin (5-HT) contents in these brain regions were detected using ELISA after various time courses (0, 1, 3, 5, and 7 days) treated with BXD and SY. Co-expression of 5-HT and GB1 in the DRN was detected. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN. Changes in 5-HT levels in these brain regions were then detected. After treatment, rats in the BXD group exhibited lower aggressive behavior scores, longer latencies of aggression, lower total distances in the open field test, and a higher sucrose preference coefficient. Meanwhile, rats in the SY group exhibited higher aggressive behavior scores, shorter latencies of aggression, higher total distances in the open field test, and higher sucrose preference coefficients. With increasing medication duration, 5-HT levels in these brain regions were increased gradually, whereas GABA levels in the DRN were decreased gradually, and all recovered to normal levels by the 7th day. A large number of 5-HT-positive cells could be found in the immunofluorescence section in the DRN containing GABABR1 (GB1)-positive cells, indicating that 5-HT neurons in the DRN co-expressed with GB1. Furthermore, after the drug intervention, the 5-HT level in the DRN was elevated to a normal level, and the GB1 level in the DRN was decreased to a normal level. After the microinjection of baclofen into the DRN, the 5-HT contents in these brain regions were decreased. By contrast, the 5-HT contents were increased after injection with CGP35348. BXD and SY could effectively improve the abnormal behavior changes of AO and AI rats, and the optimal duration of action was 7 days. The improvement way is as follows: Decreased abnormal increase of GABA and GB1 in the DRN further mediated synaptic inhibition and increased 5-HT level in the DRN, leading to increased 5-HT levels in the PFC, hypothalamus, and hippocampus. Therefore, GB1-mediated GABA in the DRN could regulate 5-HT levels in these brain regions, which may be one of the ways by which BXD and SY treat AO and AI, respectively.
Collapse
|
5
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Electroacupuncture Alleviates 46-Trinitrobenzene Sulfonic Acid-Induced Visceral Pain via the Glutamatergic Pathway in the Prefrontal Cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4463063. [PMID: 36713031 PMCID: PMC9879690 DOI: 10.1155/2023/4463063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.
Collapse
|
7
|
Kiyar M, Kubre MA, Collet S, Bhaduri S, T’Sjoen G, Guillamon A, Mueller SC. Minority Stress and the Effects on Emotion Processing in Transgender Men and Cisgender People: A Study Combining fMRI and 1H-MRS. Int J Neuropsychopharmacol 2022; 25:350-360. [PMID: 34878531 PMCID: PMC9154245 DOI: 10.1093/ijnp/pyab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Minority stress via discrimination, stigmatization, and exposure to violence can lead to development of mood and anxiety disorders and underlying neurobiochemical changes. To date, the neural and neurochemical correlates of emotion processing in transgender people (and their interaction) are unknown. METHODS This study combined functional magnetic resonance imaging and magnetic resonance spectroscopy to uncover the effects of anxiety and perceived stress on the neural and neurochemical substrates, specifically choline, on emotion processing in transgender men. Thirty transgender men (TM), 30 cisgender men, and 35 cisgender women passively viewed angry, neutral, happy, and surprised faces in the functional magnetic resonance imaging scanner, underwent a magnetic resonance spectroscopy scan, and filled out mood- and anxiety-related questionnaires. RESULTS As predicted, choline levels modulated the relationship between anxiety and stress symptoms and the neural response to angry and surprised (but not happy faces) in the amygdala. This was the case only for TM but not cisgender comparisons. More generally, neural responses in the left amygdala, left middle frontal gyrus, and medial frontal gyrus to emotional faces in TM resembled that of cisgender women. CONCLUSIONS These results provide first evidence, to our knowledge, of a critical interaction between levels of analysis and that choline may influence neural processing of emotion in individuals prone to minority stress.
Collapse
Affiliation(s)
- Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Mary-Ann Kubre
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Sarah Collet
- Department of Endocrinology, Ghent University Hospital, Belgium
| | - Sourav Bhaduri
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Guy T’Sjoen
- Department of Endocrinology, Ghent University Hospital, Belgium
| | - Antonio Guillamon
- Department of Psychobiology, National Distance Education University, Madrid, Spain
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
8
|
Kwon CY, Suh HW, Kim JW, Chung SY. Anti-anger Effects of Herbal Medicine: A Mini-Review of Rat Studies. Chin J Integr Med 2022; 28:263-271. [PMID: 35084699 DOI: 10.1007/s11655-022-3506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To analyze the available data on the anti-anger effects of herbal medicines (HMs) as well as their underlying mechanisms in rat models. METHODS From 6 electronic databases [PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Wanfang, Oriental Medicine Advanced Searching Integrated System (OASIS), and Research Information Sharing Service (RISS)], relevant animal experiments were searched by using "anger," "rats," and "animal" as search keywords. The last search was conducted on November 22, 2019, and all experiments involving rat models of anger and treatment using HMs published until the date of the search were considered. RESULTS A total of 24 studies with 16 kinds of HMs were included. Most studies have used the "tail irritating method" and "social isolation and resident intruder" method to establish anger models. According to the included studies, the therapeutic mechanisms of HMs for anger regulation and important herbs by their frequency and/or preclinical evidence mainly incladed regulation of hemorheology (Bupleuri Radix, Paeoniae Radix Alba, and Glycyrrhizae Radix), regulation of sex hormones (Bupleuri Radix, Cyperi Rhizoma, and Paeoniae Radix Alba), regulation of neurotransmitters (Cyperi Rhizoma), regulation of anger-related genes (Bupleuri Radix, Glycyrrhizae Radix, and Paeoniae Radix Alba), and other effects. Overall, Liver (Gan) qi-smoothing herbs including Bupleuri Radix and Cyperi Rhizoma were the most frequently used. CONCLUSIONS This review found the frequent methods to establish an anger model, and major mechanisms of anti-anger effects of HMs. Interestingly, some Liver qi-smoothing herbs have been frequently used to investigate the anti-anger effects of HM. These findings provide insight into the role and relevance of HMs in the field of anger management.
Collapse
Affiliation(s)
- Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Hyo-Weon Suh
- Department of Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, 892 Dongnam-ro, Gangdonggu, Seoul, 05278, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, 892 Dongnam-ro, Gangdonggu, Seoul, 05278, Republic of Korea
| | - Sun-Yong Chung
- Department of Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, 892 Dongnam-ro, Gangdonggu, Seoul, 05278, Republic of Korea.
| |
Collapse
|
9
|
Kiemes A, Davies C, Kempton MJ, Lukow PB, Bennallick C, Stone JM, Modinos G. GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal 1H-MRS-fMRI Studies. Front Psychiatry 2021; 12:644315. [PMID: 33762983 PMCID: PMC7982484 DOI: 10.3389/fpsyt.2021.644315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Multimodal neuroimaging studies combining proton magnetic resonance spectroscopy (1H-MRS) to quantify GABA and/or glutamate concentrations and functional magnetic resonance imaging (fMRI) to measure brain activity non-invasively have advanced understanding of how neurochemistry and neurophysiology may be related at a macroscopic level. The present study aimed to perform a systematic review and meta-analysis of available studies examining the relationship between 1H-MRS glutamate and/or GABA levels and task-related fMRI signal in the healthy brain. Ovid (Medline, Embase, and PsycINFO) and Pubmed databases were systematically searched to identify articles published until December 2019. The primary outcome of interest was the association between resting levels of glutamate or GABA and task-related fMRI. Fifty-five papers were identified for inclusion in the systematic review. A further 22 studies were entered into four separate meta-analyses. These meta-analyses found evidence of significant negative associations between local GABA levels and (a) fMRI activation to visual tasks in the occipital lobe, and (b) activation to emotion processing in the medial prefrontal cortex (mPFC)/anterior cingulate cortex (ACC). However, there was no significant association between mPFC/ACC glutamate levels and fMRI activation to cognitive control tasks or to emotional processing, with the relationship to emotion processing related neural activity narrowly missing significance. Moreover, our systematic review also found converging evidence of negative associations between GABA levels and local brain activity, and positive associations between glutamate levels and distal brain activity, outside of the 1H-MRS sampling region. Albeit less consistently, additional relationships between GABA levels and distal brain activity and between glutamate levels and local brain activity were found. It remains unclear if the absence of effects for other brain regions and other cognitive-emotional domains reflects study heterogeneity or potential confounding effects of age, sex, or other unknown factors. Advances in 1H-MRS methodology as well as in the integration of 1H-MRS readouts with other imaging modalities for indexing neural activity hold great potential to reveal key aspects of the pathophysiology of mental health disorders involving aberrant interactions between neurochemistry and neurophysiology such as schizophrenia.
Collapse
Affiliation(s)
- Amanda Kiemes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cathy Davies
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Kempton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina B Lukow
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carly Bennallick
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex & University of Brighton, Brighton, United Kingdom
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Centre Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Liu B, Wang Z, Lin L, Yang H, Gao F, Gong T, Edden RAE, Wang G. Brain GABA+ changes in primary hypothyroidism patients before and after levothyroxine treatment: A longitudinal magnetic resonance spectroscopy study. Neuroimage Clin 2020; 28:102473. [PMID: 33395967 PMCID: PMC7663215 DOI: 10.1016/j.nicl.2020.102473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Increasing evidence indicates the involvement of the GABAergic system in the pathophysiology of hypothyroidism. We aimed to investigate longitudinal changes of brain GABA in primary hypothyroidism before and after levothyroxine (L-T4) treatment. MATERIAL AND METHODS In 18 patients with hypothyroidism, we used the MEGA-PRESS (Mescher-Garwood point-resolved spectroscopy) editing sequence to measure brain GABA levels from medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) at baseline and after 6-months of L-T4 treatment. Sex- and age-matched healthy controls (n = 18) were scanned at baseline. Thyroid function and neuropsychological tests were also performed. RESULTS GABA signals were successfully quantified from all participants with fitting errors lower than 15%. GABA signal was labeled as GABA+ due to contamination from co-edited macromoleculars and homocarnosine. In hypothyroid patients, mean GABA+ was significantly lower in the mPFC region compared with controls (p = 0.031), and the mPFC GABA+ measurements were significantly correlated with depressive symptoms and memory function (r = -0.558, p = 0.016; r = 0.522, p = 0.026, respectively). After adequate L-T4 treatment, the mPFC GABA+ in hypothyroid patients increased to normal level, along with relieved neuropsychological impairments. CONCLUSION The study suggested the decrease of GABA+ may be an important neurobiological factor in the pathophysiology of hypothyroidism. Treatment of L-T4 may reverse the abnormal GABA+ and hypothyroidism-induced neuropsychiatric impairments, indicating the action mode of L-T4 in adjunctive treatment of affective disorders.
Collapse
Affiliation(s)
- Bo Liu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhensong Wang
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Liangjie Lin
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Huan Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Tao Gong
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Benson KL, Bottary R, Schoerning L, Baer L, Gonenc A, Eric Jensen J, Winkelman JW. 1H MRS Measurement of Cortical GABA and Glutamate in Primary Insomnia and Major Depressive Disorder: Relationship to Sleep Quality and Depression Severity. J Affect Disord 2020; 274:624-631. [PMID: 32663996 PMCID: PMC10662933 DOI: 10.1016/j.jad.2020.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Both Major Depressive Disorder (MDD) and Primary Insomnia (PI) have been linked to deficiencies in cortical γ-aminobutyric acid (GABA) and glutamate (Glu) thus suggesting a shared neurobiological link between these two conditions. The extent to which comorbid insomnia contributes to GABAergic or glutamatergic deficiencies in MDD remains unclear. METHODS We used single-voxel proton magnetic resonance spectroscopy (1H MRS) at 4 Tesla to examine GABA+ and Glu relative to creatine (Cr) in the dorsal anterior cingulate cortex (dACC) and in the parieto-occipital cortex (POC) of 51 non-medicated adults with MDD, 24 adults with Primary Insomnia (PI), and 25 age- and sex-matched good sleeper controls (HC). Measures of depression severity and subjective and objective sleep quality were compared with 1H MRS metabolite measures. RESULTS MDD subjects exhibited a 15% decrease in Glu/Cr in the dACC compared to HC. Within the MDD group, there was a trend inverse correlation between dACC Glu/Cr and anhedonia ratings. We observed no significant association between measures of sleep quality with dACC Glu/Cr in those with MDD. LIMITATIONS The protocol and data interpretation would have been enhanced by the recruitment of MDD subjects with a broader range of affect severity and a more comprehensive assessment of clinical features. CONCLUSIONS These findings support the role of cortical glutamatergic mechanisms in the pathophysiology of MDD. Insomnia severity did not further contribute to the relative deficiency of glutamatergic measures in MDD.
Collapse
Affiliation(s)
- Kathleen L Benson
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ryan Bottary
- Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Laura Schoerning
- University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Lee Baer
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Atilla Gonenc
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - J Eric Jensen
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John W Winkelman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Seo HS, Jeong EK, Choi S, Kwon Y, Park HJ, Kim I. Changes of Neurotransmitters in Youth with Internet and Smartphone Addiction: A Comparison with Healthy Controls and Changes after Cognitive Behavioral Therapy. AJNR Am J Neuroradiol 2020; 41:1293-1301. [PMID: 32616578 DOI: 10.3174/ajnr.a6632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/01/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Neurotransmitter changes in youth addicted to the Internet and smartphone were compared with normal controls and in subjects after cognitive behavioral therapy. In addition, the correlations between neurotransmitters and affective factors were investigated. MATERIALS AND METHODS Nineteen young people with Internet and smartphone addiction and 19 sex- and age-matched healthy controls (male/female ratio, 9:10; mean age, 15.47 ± 3.06 years) were included. Twelve teenagers with Internet and smartphone addiction (male/female ratio, 8:4; mean age, 14.99 ± 1.95 years) participated in 9 weeks of cognitive behavioral therapy. Meshcher-Garwood point-resolved spectroscopy was used to measure γ-aminobutyric acid and Glx levels in the anterior cingulate cortex. The γ-aminobutyric acid and Glx levels in the addicted group were compared with those in controls and after cognitive behavioral therapy. The γ-aminobutyric acid and Glx levels correlated with clinical scales of Internet and smartphone addiction, impulsiveness, depression, anxiety, insomnia, and sleep quality. RESULTS Brain parenchymal and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios were higher in subjects with Internet and smartphone addiction (P = .028 and .016). After therapy, brain parenchymal- and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios were decreased (P = .034 and .026). The Glx level was not statistically significant in subjects with Internet and smartphone addiction compared with controls and posttherapy status. Brain parenchymal- and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios correlated with clinical scales of Internet and smartphone addictions, depression, and anxiety. Glx/Cr was negatively correlated with insomnia and sleep quality scales. CONCLUSIONS The high γ-aminobutyric acid levels and disrupted balance of γ-aminobutyric acid-to-Glx including glutamate in the anterior cingulate cortex may contribute to understanding the pathophysiology and treatment of Internet and smartphone addiction and associated comorbidities.
Collapse
Affiliation(s)
- H S Seo
- From the Department of Radiology (H.S.S.), Korea University Ansan Hospital, Ansan, Korea
| | - E-K Jeong
- Utah Center for Advanced Imaging Research (E.-K.J.), University of Utah, Salt Lake City, Utah
| | - S Choi
- Department of Psychology (S.C., Y.K.), Duksung Women's University, Seoul, Korea
| | - Y Kwon
- Department of Psychology (S.C., Y.K.), Duksung Women's University, Seoul, Korea
| | - H-J Park
- Department of Nuclear Medicine (H.-J.P.), Yonsei University College of Medicine, Seoul, Korea
| | - I Kim
- Siemens Healthcare (I.K.), Seoul, Korea
| |
Collapse
|
13
|
Denzel D, Colic L, Demenescu LR, von Düring F, Ristow I, Nießen H, Hermann L, Kaufmann J, Dannlowski U, Frommer J, Vogel M, Li M, Lord A, Walter M. Local glutamate in cingulate cortex subregions differentially correlates with affective network activations during face perception. Eur J Neurosci 2020; 52:3047-3060. [PMID: 32239708 DOI: 10.1111/ejn.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/01/2022]
Abstract
The cingulate cortex is involved in emotion recognition/perception and regulation. Rostral and caudal subregions belong to different brain networks with distinct roles in affective perception. Despite recent accounts of the relevance of cingulate cortex glutamate (Glu) on blood-oxygen-level-dependent (BOLD) responses, the specificity of the subregional Glu levels during emotional tasks remains unclear. Seventy-two healthy participants (age = 27.33 ± 6.67, 32 women) performed an affective face-matching task and underwent magnetic resonance spectroscopy (MRS) at 7 Tesla. Correlations between the BOLD response during emotion perception and Glu concentration in the pregenual anterior cingulate cortex (pgACC) and anterior midcingulate cortex (aMCC) were compared on a whole-brain level. Post hoc specificity of the association with an affect was assessed. Lower Glu in the pgACC correlated with stronger activation differences between negative and positive faces in the left inferior and superior frontal gyrus (L IFG and L SFG). In contrast, lower Glu in the aMCC correlated with BOLD contrasts in the posterior cingulate cortex (PCC). Furthermore, negative face detection was associated with prolonged response time (RT). Our results demonstrate a subregion-specific involvement of cingulate cortex Glu in interindividual differences during viewing of affective facial expressions. Glu levels in the pgACC were correlated with frontal area brain activations, whereas Glu in the salience network component aMCC modulated responses in the PCC-precuneus. We show that region-specific metabolite mapping enables specific activation of different BOLD signals in the brain underlying emotional perception.
Collapse
Affiliation(s)
- Dominik Denzel
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany.,Department Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Felicia von Düring
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany.,Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inka Ristow
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany.,Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Nießen
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Luisa Hermann
- Department of Psychiatry and Psychotherapy, Eberhard-Karls-University, Tübingen, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Jörg Frommer
- Department of Psychosomatic Medicine and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Vogel
- Department of Psychosomatic Medicine and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany.,Max Planck Institute for Biological Cybernetics Tübingen, Tübingen, Germany
| | - Anton Lord
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,School of Public Health, The University of Queensland, Herston, Qld, Australia
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany.,Department Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Eberhard-Karls-University, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
14
|
Oxaloacetate reduces emotional symptoms in premenstrual syndrome (PMS): results of a placebo-controlled, cross-over clinical trial. Obstet Gynecol Sci 2020; 63:195-204. [PMID: 32206660 PMCID: PMC7073356 DOI: 10.5468/ogs.2020.63.2.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/07/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Objective Premenstrual syndrome (PMS) affects millions of women. While over-the-counter products have helped with the physical symptoms of PMS, emotional symptoms have been less well supported. The objective of this trial was to measure the effect of an oxaloacetate/vitamin C combination on the major emotional symptoms of PMS, including depression, anxiety, perceived stress, aggression, and suicidal ideation. Methods Forty-eight women experiencing PMS completed a baseline survey comprising the Beck's Depression Inventory, Cohen Perceived Stress Scale, Generalized Anxiety Disorder Test, and Buss-Perry Aggression Questionnaire. After baseline measurements, participants were randomly assigned to take either 2 capsules of 100 mg oxaloacetate/150 mg ascorbic acid, or 2 capsules of rice flour (placebo) for their entire menstrual cycle. At menstruation, the women completed the 4 surveys again. The women then switched capsules in a cross-over design and continued the study for an additional menstrual cycle. The final assessment was repeated at menstruation. Statistical analysis of the 4 surveys was performed to examine efficacy. Results Oxaloacetate/vitamin C supplementation during PMS significantly improved depression, perceived stress, anxiety, aggression, and suicidal ideation. The mean improvement in depression was 54.1%, 35.8% for perceived stress, 51.43% for generalized anxiety, and 17.8% for aggression. Suicidal ideation was reduced by 47.9%. All results were highly significant. Conclusion A combination of oxaloacetate and vitamin C supplementation helped to alleviate depression, anxiety, perceived stress, aggression, and suicidal ideation symptoms associated with PMS. Trial Registration ClinicalTrials.gov Identifier: NCT03509714.
Collapse
|
15
|
He S, Zhang W, Zhang X, Xu P, Hong M, Qu S. The 4b-4c loop of excitatory amino acid transporter 1 containing four critical residues essential for substrate transport. J Biomol Struct Dyn 2019; 38:3599-3609. [PMID: 31496428 DOI: 10.1080/07391102.2019.1664935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the mammalians, the 4b-4c loop of excitatory amino acid transporters (EAATs) spans more than 50 amino-acid residues that are absent in glutamate transporter homologue of Pyrococcus horikoshii (GltPh). This part of insertion is unique for metazoans and indispensable to the localization of EAATs. The excitatory amino acid transporter (EAAT) 1 is one of the two glial glutamate transporters, which are responsible for efficiently clearing glutamate from the synaptic cleft to prevent neurotoxicity and cell death. Although the crystal structure of EAAT1cryst (a human thermostable EAAT1) was resolved in 2017, the structure-function relationship of the 4b-4c loop has not been elucidated in EAAT1cryst. To investigate the role of the 4b-4c loop, we performed alanine-scanning mutagenesis in the mutants and observed dramatically decreased transport activities in T192A, Y194A, N242A, and G245A mutants. The surface expression of T192A and Y194A mutants even decreased by more than 80%, and most of them were detained in the cytoplasm. However, when T192 and Y194 were substituted with conservative residues, the transport activities and the surface expressions of T192S and Y194F were largely recovered, and their kinetic parameters (Km values) were comparable to the wild-type EAAT1 as well. In contrast, N242 and G245 substituted with conservative residues could not rescue the uptake function, suggesting that N242 and G245 may play irreplaceable roles in the glutamate uptake process. These results indicate that the 4b-4c loop of EAAT1 may not only affect the glutamate uptake activity, but also influence the surface localization of EAAT1 by T192 and Y194.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suifen He
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenlong Zhang
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Hong
- College of Life Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev 2019; 97:10-33. [DOI: 10.1016/j.neubiorev.2018.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|
17
|
Metabolic Changes Associated with a Rat Model of Diabetic Depression Detected by Ex Vivo 1H Nuclear Magnetic Resonance Spectroscopy in the Prefrontal Cortex, Hippocampus, and Hypothalamus. Neural Plast 2018; 2018:6473728. [PMID: 29849562 PMCID: PMC5911311 DOI: 10.1155/2018/6473728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/12/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients often present with comorbid depression. However, the pathogenetic mechanisms underlying diabetic depression (DD) remain unclear. To explore the mechanisms underpinning the pathogenesis of the disease, we used ex vivo 1H nuclear magnetic resonance spectroscopy and immunohistochemistry to investigate the main metabolic and pathological changes in various rat brain areas in an animal model of DD. Compared with the control group, rats in the DD group showed significant decreases in neurotransmitter concentrations of glutamate (Glu) and glutamine (Gln) in the prefrontal cortex (PFC), hippocampus, and hypothalamus and aspartate and glycine in the PFC and hypothalamus. Gamma-aminobutyric acid (GABA) was decreased only in the hypothalamus. Levels of the energy product, lactate, were higher in the PFC, hippocampus, and hypothalamus of rats with DD than those in control rats, while creatine was lower in the PFC and hippocampus, and alanine was lower in the hypothalamus. The levels of other brain metabolites were altered, including N-acetyl aspartate, taurine, and choline. Immunohistochemistry analysis revealed that expressions of both glutamine synthetase and glutaminase were decreased in the PFC, hippocampus, and hypothalamus of rats with DD. The metabolic changes in levels of Glu, Gln, and GABA indicate an imbalance of the Glu-Gln metabolic cycle between astrocytes and neurons. Our results suggest that the development of DD in rats may be linked to brain metabolic changes, including inhibition of the Glu-Gln cycle, increases in anaerobic glycolysis, and disturbances in the lactate-alanine shuttle, and associated with dysfunction of neurons and astrocytes.
Collapse
|
18
|
Bai W, Zhou YG. Homeostasis of the Intraparenchymal-Blood Glutamate Concentration Gradient: Maintenance, Imbalance, and Regulation. Front Mol Neurosci 2017; 10:400. [PMID: 29259540 PMCID: PMC5723322 DOI: 10.3389/fnmol.2017.00400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradient is dramatically disrupted under a variety of pathological conditions, resulting in an amplifying cascade that causes a series of pathological reactions in the CNS and peripheral organs. This eventually seriously worsens a patient’s prognosis. These two “isolated” systems are rarely considered as a whole even though they mutually influence each other. In this review, we summarize what is currently known regarding the maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-blood glutamate concentration gradient, discuss the interrelationships between these systems and further explore their significance in clinical practice.
Collapse
Affiliation(s)
- Wei Bai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Li CSR, Zhang S, Hung CC, Chen CM, Duann JR, Lin CP, Lee TSH. Depression in chronic ketamine users: Sex differences and neural bases. Psychiatry Res 2017; 269:1-8. [PMID: 28892733 PMCID: PMC5634929 DOI: 10.1016/j.pscychresns.2017.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 01/10/2023]
Abstract
Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users.
Collapse
Affiliation(s)
- Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China.
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chia-Chun Hung
- Bali Psychiatric Center, Ministry of Health and Welfare, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
| | - Tony Szu-Hsien Lee
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
20
|
Rosa CE, Soares JC, Figueiredo FP, Cavalli RC, Barbieri MA, Schaufelberger MS, Salmon CEG, Del-Ben CM, Santos AC. Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy. Psychiatry Res Neuroimaging 2017; 265:18-25. [PMID: 28494346 DOI: 10.1016/j.pscychresns.2017.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Although postpartum depression (PPD) is a prevalent subtype of major depressive disorder, neuroimaging studies on PPD are rare, particularly those identifying neurochemical abnormalities obtained by proton magnetic resonance spectroscopy (¹H-MRS). The dorsolateral prefrontal (DLPF) and the anterior cingulate gyrus (ACG) are part of the neural pathways involved in executive functions and emotional processing, and both structures have been implicated in the neurobiology of depressive disorders. This study aimed to evaluate brain metabolites abnormalities in women with PPD compared with healthy postpartum (HP) women. Thirty-six PPD (34 without antidepressants) and 25 HP women underwent a ¹H-MRS acquired on a 3-T MRI system, with the volume of interest positioned in ACG and DLPF. An ANCOVA was conducted with age, postpartum time, and contraceptive type as covariates. PPD group presented significantly lower Glutamate+Glutamine (Glx, -0.95mM) and N-acetylaspartate+N-acetylaspartylglutamate (NAA, -0.60mM) values in DLPF. There were no significant differences between groups in ACG, but we found a significant increase of Glutamate (Glu, 2.18mM) and Glx (1.84mM) in participants using progestogen-only contraceptives. These findings suggest glutamatergic dysfunction and neuronal damage in the DLPF of PPD patients, similarly to other subtypes of depressive disorders. Progestogens seem to interfere in the neurochemistry of ACG.
Collapse
Affiliation(s)
- Carlos E Rosa
- Department of Internal Medicine, Radiology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jair C Soares
- Psychiatry and Behavioral Sciences at the University of Texas Health Science Center at Houston, USA
| | - Felipe P Figueiredo
- Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo C Cavalli
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marco A Barbieri
- Department of the Pediatrics and Puericulture, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maristela S Schaufelberger
- Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina M Del-Ben
- Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio C Santos
- Department of Internal Medicine, Radiology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Corticolimbic hyper-response to emotion and glutamatergic function in people with high schizotypy: a multimodal fMRI-MRS study. Transl Psychiatry 2017; 7:e1083. [PMID: 28375210 PMCID: PMC5416694 DOI: 10.1038/tp.2017.53] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 02/05/2023] Open
Abstract
Animal models and human neuroimaging studies suggest that altered levels of glutamatergic metabolites within a corticolimbic circuit have a major role in the pathophysiology of schizophrenia. Rodent models propose that prefrontal glutamate dysfunction could lead to amygdala hyper-response to environmental stress and underlie hippocampal overdrive in schizophrenia. Here we determine whether changes in brain glutamate are present in individuals with high schizotypy (HS), which refers to the presence of schizophrenia-like characteristics in healthy individuals, and whether glutamate levels are related to altered corticolimbic response to emotion. Twenty-one healthy HS subjects and 22 healthy subjects with low schizotypy (LS) were selected based on their Oxford and Liverpool Inventory of Feelings and Experiences rating. Glutamate levels were measured in the anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy, followed by a functional magnetic resonance imaging (fMRI) scan to measure corticolimbic response during emotional processing. fMRI results and fMRI × glutamate interactions were considered significant after voxel-wise P<0.05 family-wise error correction. While viewing emotional pictures, HS individuals showed greater activation than did subjects with LS in the caudate, and marginally in the ACC, hippocampus, medial prefrontal cortex (MPFC) and putamen. Although no between-group differences were found in glutamate concentrations, within the HS group ACC glutamate was negatively correlated with striatal activation (left: z=4.30, P=0.004 and right: z=4.12 P=0.008 caudate; left putamen: z=3.89, P=0.018) and marginally with MPFC (z=3.55, P=0.052) and amygdala (left: z=2.88, P=0.062; right: z=2.79, P=0.079), correlations that were not present in LS subjects. These findings provide, to our knowledge, the first evidence that brain glutamate levels are associated with hyper-responsivity in brain regions thought to be critical in the pathophysiology of psychosis.
Collapse
|
22
|
Liu B, Yang H, Gao F, Wang Q, Zhao B, Gong T, Wang Z, Chen W, Wang G, Edden RA. Investigation of brain GABA+ in primary hypothyroidism using edited proton MR spectroscopy. Clin Endocrinol (Oxf) 2017; 86:256-262. [PMID: 27581339 PMCID: PMC5512100 DOI: 10.1111/cen.13177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/17/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Evidence indicates that thyroid hormones have effects on the inhibitory GABAergic system. The aim of this study was to investigate whether brain GABA levels are altered in patients with hypothyroidism compared with healthy controls. DESIGN/METHODS Fifteen patients with primary hypothyroidism and 15 matched healthy controls underwent single-voxel MEGA-PRESS magnetic resonance spectroscopy at 3T, to quantify GABA levels in the median prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). All participants underwent thyroid function test. Neuropsychological performances were evaluated by administration of the Montreal Cognitive Assessment (MoCA) and the 21-item Beck Depression Inventory-II (BDI-II). RESULTS The patients with hypothyroidism had significantly lower GABA+ levels in the mPFC compared with healthy controls (P = 0·016), whereas no significant difference (P = 0·214) was observed in the PCC. Exploratory analyses revealed that mPFC GABA+ levels were negatively correlated with the BDI-II scores in patient group (r = -0·60, P = 0·018). No correlations were found between GABA+ levels and TSH or fT3 or fT4 levels in either region (all P > 0·05). CONCLUSION This study suggests that alteration of GABAergic neurotransmission may play an important role in the pathophysiology of primary hypothyroidism, providing intriguing neurochemical clues to understand thyroid-brain interactions.
Collapse
Affiliation(s)
- Bo Liu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huan Yang
- Shandong Medical Imaging Research Institute affiliated to Shandong University, Jinan, China
| | - Fei Gao
- Shandong Medical Imaging Research Institute affiliated to Shandong University, Jinan, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Zhao
- Shandong Medical Imaging Research Institute affiliated to Shandong University, Jinan, China
| | - Tao Gong
- Shandong Medical Imaging Research Institute affiliated to Shandong University, Jinan, China
| | - Zhensong Wang
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Guangbin Wang
- Shandong Medical Imaging Research Institute affiliated to Shandong University, Jinan, China
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Lisdexamfetamine Effects on Executive Activation and Neurochemistry in Menopausal Women with Executive Function Difficulties. Neuropsychopharmacology 2017; 42:437-445. [PMID: 27550732 PMCID: PMC5399233 DOI: 10.1038/npp.2016.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/15/2016] [Accepted: 08/12/2016] [Indexed: 01/04/2023]
Abstract
Many women with no history of executive dysfunction report difficulties in this domain during the menopause transition. Lisdexamfetamine (LDX) has been suggested to be a safe and effective treatment option for these women. However, the mechanism by which LDX improves executive functioning in these women is not known. Here we investigated the effects of LDX on brain activation and neurochemistry, hypothesizing that LDX would be associated with increased activation and decreased glutamate in executive regions. Fourteen women underwent multimodal neuroimaging at 7T at three time points in this baseline-corrected, double-blind, placebo-controlled, crossover study. Effects of LDX on symptom severity, blood-oxygen-level-dependent (BOLD) signal, and dorsolateral prefrontal cortex (DLPFC) glutamate+glutamine (Glx) were measured using a clinician-administered questionnaire, fMRI during performance of a fractal n-back task, and 1H-MRS, respectively. The effect of treatment (LDX minus baseline vs placebo minus baseline) on these behavioral and neural markers of executive function was examined using repeated measures mixed effects models. LDX treatment was associated with decreased symptom severity, increased activation in the insula and DLPFC, and decreased DLPFC Glx. In addition, the magnitude of LDX-induced improvement in symptom severity predicted both direction and magnitude of LDX-induced change in insular and DLPFC activation. Moreover, symptom severity was positively correlated with Glx concentration in the left DLPFC at baseline. These findings provide novel evidence that the neural mechanisms by which LDX acts to improve self-reported executive functioning in healthy menopausal women with midlife onset of executive difficulties include modulation of insular and DLPFC recruitment as well as decrease in DLPFC Glx concentration.
Collapse
|
24
|
Huang Y, Shen Z, Hu L, Xia F, Li Y, Zhuang J, Chen P, Huang Q. Exposure of mother rats to chronic unpredictable stress before pregnancy alters the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus of offspring in early adolescence in a sexually dimorphic manner. Psychiatry Res 2016; 246:236-245. [PMID: 27723521 DOI: 10.1016/j.psychres.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 01/18/2023]
Abstract
There is increasing evidence that mothers' exposure to stress before or during pregnancy is linked to an incidence of psychiatric disorders in offspring. However, a few studies have estimated the role of sex in the detrimental effects of pre-gestational stress on the offspring rats at early adolescence. Sex differences regarding the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus were investigated by MRS when the offspring rats reached 30 days. Additionally, the impact of pre-gestational stress exposed on an additional short-term acute stressor, such as forced swim, was examined in the male and female offspring rats. Our findings showed female offspring rats were more vulnerable to stressful conditions for either pre-gestational stress or acute stress in early adolescence, and had decreased GABA/Cr+PCr and Glu/Cr+PCr in the right hippocampus. Interestingly, in response to forced swim, male offspring rats whose mothers were exposed to pre-gestational stress were more affected by the short-term acute stressor and this was manifested by change of Glu/GABA and Glu/Gln in the right hippocampus. These data indicated that although female offspring rats were more vulnerable to pre-gestational stress from their mothers than males, in response to an additional acute stressor they showed better response. Therefore, both sexually dimorphic manner and combination of stressful procedures should be carefully considered in the study of stress-related psychiatric disorders in early adolescence.
Collapse
Affiliation(s)
- Yuejun Huang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, West Huangpu Rd, Guangzhou 510632, Guangdong, China; Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China
| | - Zhiwei Shen
- Department of Imageology, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China
| | - Liu Hu
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China
| | - Fang Xia
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China
| | - Yuewa Li
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China
| | - Jingwen Zhuang
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China.
| | - Peishan Chen
- Department of Obstetrics, Second Affiliated Hospital of Medical College of Shantou University, North Dongxia Rd, Shantou 515041, Guangdong, China.
| | - Qingjun Huang
- Joint Lab of Biological Psychiatry, Mental Health Center of Shantou University, Taishan Rd, Shantou 515041, Guangdong, China.
| |
Collapse
|
25
|
Delli Pizzi S, Padulo C, Brancucci A, Bubbico G, Edden RA, Ferretti A, Franciotti R, Manippa V, Marzoli D, Onofrj M, Sepede G, Tartaro A, Tommasi L, Puglisi-Allegra S, Bonanni L. GABA content within the ventromedial prefrontal cortex is related to trait anxiety. Soc Cogn Affect Neurosci 2015; 11:758-66. [PMID: 26722018 DOI: 10.1093/scan/nsv155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/16/2015] [Indexed: 11/13/2022] Open
Abstract
The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Caterina Padulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Alfredo Brancucci
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology, "The Johns Hopkins University" School of Medicine, Baltimore, MD, USA, F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Valerio Manippa
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Daniele Marzoli
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gianna Sepede
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University "A. Moro" of Bari, Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, University "La Sapienza" of Roma, Italy, and Foundation Santa Lucia, IRCCS, Rome, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy,
| |
Collapse
|
26
|
Hayes DJ. GABAergic circuits underpin valuative processing. Front Syst Neurosci 2015; 9:76. [PMID: 26029062 PMCID: PMC4428122 DOI: 10.3389/fnsys.2015.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/26/2015] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dave J Hayes
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Research Institute, Toronto Western Hospital, University Health Network Toronto, ON, Canada
| |
Collapse
|
27
|
Liu B, Wang G, Gao D, Gao F, Zhao B, Qiao M, Yang H, Yu Y, Ren F, Yang P, Chen W, Rae CD. Alterations of GABA and glutamate-glutamine levels in premenstrual dysphoric disorder: a 3T proton magnetic resonance spectroscopy study. Psychiatry Res 2015; 231:64-70. [PMID: 25465316 DOI: 10.1016/j.pscychresns.2014.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Increasing evidence has suggested that the GABAergic neurotransmitter system is involved in the pathogenesis of premenstrual dysphoric disorder (PMDD). We used proton magnetic resonance spectroscopy ((1)H MRS) to investigate whether PMDD is associated with alterations in brain GABA levels. Levels of glutamate-glutamine (Glx) were also explored. Participants comprised 22 women with PMDD and 22 age-matched healthy controls who underwent 3T (1)H MRS during the late luteal phase of the menstrual cycle. GABA+ and Glx levels were quantified in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and the left basal ganglia (ltBG). Water-scaled GABA+ concentrations and GABA+/tCr ratios were significantly lower in both the ACC/mPFC and ltBG regions of PMDD women than in healthy controls. Glx/tCr ratios were significantly higher in the ACC/mPFC region of PMDD women than healthy controls. Our preliminary findings provide the first report of abnormal levels of GABA+ and Glx in mood-related brain regions of women with PMDD, indicating that dysregulation of the amino acid neurotransmitter system may be an important neurobiological mechanism in the pathogenesis of PMDD.
Collapse
Affiliation(s)
- Bo Liu
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Dongmei Gao
- Basic Medical College, Shandong University of Traditional Chinese Medicine, No. 44, Wenhua Xi Road, 250012 Jinan, PR China
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China.
| | - Mingqi Qiao
- Basic Medical College, Shandong University of Traditional Chinese Medicine, No. 44, Wenhua Xi Road, 250012 Jinan, PR China
| | - Huan Yang
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Yanhong Yu
- Basic Medical College, Shandong University of Traditional Chinese Medicine, No. 44, Wenhua Xi Road, 250012 Jinan, PR China
| | - Fuxin Ren
- Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, 250021 Jinan, PR China
| | - Ping Yang
- Philips Healthcare, Shanghai, PR China
| | | | - Caroline D Rae
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales 2031, Australia
| |
Collapse
|
28
|
De Bondt T, De Belder F, Vanhevel F, Jacquemyn Y, Parizel PM. Prefrontal GABA concentration changes in women-Influence of menstrual cycle phase, hormonal contraceptive use, and correlation with premenstrual symptoms. Brain Res 2014; 1597:129-38. [PMID: 25481417 DOI: 10.1016/j.brainres.2014.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 12/25/2022]
Abstract
Prefrontal regions are involved in processing emotional stimuli and are a topic of interest in clinical and neurological research. Although sex steroids are potent neuromodulators, the influence of menstrual cycle phase and hormonal contraceptive use is rarely taken into account in neuroimaging studies. Our purpose was to evaluate changes in gamma-aminobutyric acid (GABA) in women, as measured by magnetic resonance spectroscopy (MRS), with phases of the menstrual cycle and use of hormonal contraceptives, and to assess correlations with premenstrual symptoms.Three MRI sessions per cycle were obtained in the natural cycle group, and two sessions in the hormonal contraceptives group. In addition to an anatomical scan, single voxel MRS in the prefrontal area was performed. After quality control, 10 women with natural cycle and 21 women taking hormonal contraceptives were included for analysis. Peripheral blood samples were obtained to determine endogenous hormone concentrations. Subjects were asked to complete a daily rating of severity of problems questionnaire, to quantify premenstrual symptoms. In the natural cycle group, we found a significant increase in prefrontal GABA concentration at the time of ovulation. Conversely, in the hormonal contraceptives group, no differences were found between the pill phase and pill-free phase. GABA concentrations did not significantly correlate with endogenous hormone levels, nor with premenstrual symptoms. Our results indicate that spectroscopically measured GABA concentrations are higher during ovulation in women with a natural menstrual cycle. We suggest that neuroimaging studies should take into account this variability.
Collapse
Affiliation(s)
- Timo De Bondt
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Belgium.
| | - Frank De Belder
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Belgium.
| | - Floris Vanhevel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Belgium.
| | - Yves Jacquemyn
- Department of Obstetrics and Gynaecology, Antwerp University Hospital & University of Antwerp, Belgium.
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Belgium.
| |
Collapse
|
29
|
Contoreggi C. Corticotropin releasing hormone and imaging, rethinking the stress axis. Nucl Med Biol 2014; 42:323-39. [PMID: 25573209 DOI: 10.1016/j.nucmedbio.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022]
Abstract
The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems have surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we've seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and pharmacology. Stress modulates the myriad of neurochemical and networks within and controlled through the central and peripheral nervous system and the effects of stress activation on imaging will be highlighted.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224.
| |
Collapse
|