1
|
Yao Y, Jin C, Liao Y, Huang X, Wei Z, Zhang Y, Li D, Su H, Han W, Qin D. Schizophrenia-Like Behaviors Arising from Dysregulated Proline Metabolism Are Associated with Altered Neuronal Morphology and Function in Mice with Hippocampal PRODH Deficiency. Aging Dis 2024; 15:1952-1968. [PMID: 37815900 PMCID: PMC11272211 DOI: 10.14336/ad.2023.0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 10/12/2023] Open
Abstract
Despite decades of research being conducted to understand what physiological deficits in the brain are an underlying basis of psychiatric diseases like schizophrenia, it has remained difficult to establish a direct causal relationship between neuronal dysfunction and specific behavioral phenotypes. Moreover, it remains unclear how metabolic processes, including amino acid metabolism, affect neuronal function and consequently modulate animal behaviors. PRODH, which catalyzes the first step of proline degradation, has been reported as a susceptibility gene for schizophrenia. It has consistently been shown that PRODH knockout mice exhibit schizophrenia-like behaviors. However, whether the loss of PRODH directly impacts neuronal function or whether such neuronal deficits are linked to schizophrenia-like behaviors has not yet been examined. Herein, we first ascertained that dysregulated proline metabolism in humans is associated with schizophrenia. We then found that PRODH was highly expressed in the oreins layer of the mouse dorsal hippocampus. By using AAV-mediated shRNA, we depleted PRODH expression in the mouse dorsal hippocampus and subsequently observed hyperactivity and impairments in the social behaviors, learning, and memory of these mice. Furthermore, the loss of PRODH led to altered neuronal morphology and function both in vivo and in vitro. Our study demonstrates that schizophrenia-like behaviors may arise from dysregulated proline metabolism due to the loss of PRODH and are associated with altered neuronal morphology and function in mice.
Collapse
Affiliation(s)
- Yuxiao Yao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| | - Chenchen Jin
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Yilie Liao
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Xiang Huang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Ziying Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| | - Yahong Zhang
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong SAR, China.
| |
Collapse
|
2
|
González-Arnay E, Pérez-Santos I, Jiménez-Sánchez L, Cid E, Gal B, de la Prida LM, Cavada C. Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis. Brain Struct Funct 2024; 229:359-385. [PMID: 38180568 PMCID: PMC10917878 DOI: 10.1007/s00429-023-02725-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024]
Abstract
The primate hippocampus includes the dentate gyrus, cornu ammonis (CA), and subiculum. CA is subdivided into four fields (CA1-CA3, plus CA3h/hilus of the dentate gyrus) with specific pyramidal cell morphology and connections. Work in non-human mammals has shown that hippocampal connectivity is precisely patterned both in the laminar and longitudinal axes. One of the main handicaps in the study of neuropathological semiology in the human hippocampus is the lack of clear laminar and longitudinal borders. The aim of this study was to explore a histochemical segmentation of the adult human hippocampus, integrating field (medio-lateral), laminar, and anteroposterior longitudinal patterning. We provide criteria for head-body-tail field and subfield parcellation of the human hippocampus based on immunodetection of Rabphilin3a (Rph3a), Purkinje-cell protein 4 (PCP4), Chromogranin A and Regulation of G protein signaling-14 (RGS-14). Notably, Rph3a and PCP4 allow to identify the border between CA3 and CA2, while Chromogranin A and RGS-14 give specific staining of CA2. We also provide novel histological data about the composition of human-specific regions of the anterior and posterior hippocampus. The data are given with stereotaxic coordinates along the longitudinal axis. This study provides novel insights for a detailed region-specific parcellation of the human hippocampus useful for human brain imaging and neuropathology.
Collapse
Affiliation(s)
- Emilio González-Arnay
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Basic Medical Science-Division of Human Anatomy, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lorena Jiménez-Sánchez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad CEU-San Pablo, Madrid, Spain
| | | | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Dönmezler S, Sönmez D, Yılbaş B, Öztürk Hİ, İskender G, Kurt İ. Thalamic nuclei volume differences in schizophrenia patients and healthy controls using probabilistic mapping: A comparative analysis. Schizophr Res 2024; 264:266-271. [PMID: 38198878 DOI: 10.1016/j.schres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
AIM We aimed to investigate potential discrepancies in the volume of thalamic nuclei between individuals with schizophrenia and healthy controls. METHODS The imaging data for this study were obtained from the MCICShare data repository within SchizConnect. We employed probabilistic mapping technique developed by Iglesias et al. (2018). The analytical component entailed volumetric segmentation of the thalamus using the FreeSurfer image analysis suite. Our analysis focused on evaluating the differences in the volumes of various thalamic nuclei groups within the thalami, specifically the anterior, intralaminar, medial, posterior, lateral, and ventral groups in both the right and left thalami, between schizophrenia patients and healthy controls. We employed MANCOVA to analyse these dependent variables (volumes of 12 distinct thalamic nuclei groups), with diagnosis (SCZ vs. HCs) as the main explanatory variable, while controlling for covariates such as eTIV and age. RESULTS The assumptions of MANCOVA, including the homogeneity of covariance matrices, were met. Specific univariate tests for the right thalamus revealed significant differences in the medial (F[1, 200] = 26.360, p < 0.001), and the ventral groups (F[1, 200] = 4.793, p = 0.030). For the left thalamus, the medial (F[1, 200] = 22.527, p < 0.001); posterior (F[1, 200] = 8.227, p = 0.005), lateral (F[1, 200] = 7.004, p = 0.009), and ventral groups (F[1, 200] = 9.309, p = 0.003) showed significant differences. CONCLUSION These findings suggest that particular thalamic nuclei groups in both the right and left thalami may be most affected in schizophrenia, with more pronounced differences observed in the left thalamic nuclei. FUNDINGS The authors received no financial support for the research.
Collapse
Affiliation(s)
- Süleyman Dönmezler
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey.
| | - Doğuş Sönmez
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Barış Yılbaş
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey
| | - Halil İbrahim Öztürk
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey
| | - Gizem İskender
- Istanbul Prof. Dr. Cemil Tascioglu City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - İmren Kurt
- Başakşehir Çam and Sakura City Hospital, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
4
|
McHugo M, Roeske MJ, Vandekar SN, Armstrong K, Avery SN, Heckers S. Smaller anterior hippocampal subfields in the early stage of psychosis. Transl Psychiatry 2024; 14:69. [PMID: 38296964 PMCID: PMC10830481 DOI: 10.1038/s41398-023-02719-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Hippocampal volume is smaller in schizophrenia, but it is unclear when in the illness the changes appear and whether specific regions (anterior, posterior) and subfields (CA1, CA2/3, dentate gyrus, subiculum) are affected. Here, we used a high-resolution T2-weighted sequence specialized for imaging hippocampal subfields to test the hypothesis that anterior CA1 volume is lower in early psychosis. We measured subfield volumes across hippocampal regions in a group of 90 individuals in the early stage of a non-affective psychotic disorder and 70 demographically similar healthy individuals. We observed smaller volume in the anterior CA1 and dentate gyrus subfields in the early psychosis group. Our findings support models that implicate anterior CA1 and dentate gyrus subfield deficits in the mechanism of psychosis.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Atwood B, Yassin W, Chan SY, Hall MH. Subfield-specific longitudinal changes of hippocampal volumes in patients with early-stage bipolar disorder. Bipolar Disord 2023; 25:301-311. [PMID: 36855850 PMCID: PMC10330583 DOI: 10.1111/bdi.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND The hippocampus is a heterogeneous structure composed of biologically and functionally distinct subfields. Hippocampal aberrations are proposed to play a fundamental role in the etiology of psychotic symptoms. Bipolar disorder (BPD) has substantial overlap in symptomatology and genetic liability with schizophrenia (SZ), and reduced hippocampal volumes, particularly at the chronic illness stages, are documented in both disorders. Studies of hippocampal subfields in the early stage of BPD are limited and cross-sectional findings to date report no reduction in hippocampal volumes. To our knowledge, there have been no longitudinal studies of BPD evaluating hippocampal volumes in the early phase of illness. We investigated the longitudinal changes in hippocampal regions and subfields in BPD mainly and in early stage of psychosis (ESP) patients more broadly and compared them to those in controls (HC). METHODS Baseline clinical and structural MRI data were acquired from 88 BPD, from a total of 143 ESP patients, and 74 HCs. Of those, 66 participants (23 HC, 43 patients) completed a 12-month follow-up visit. The hippocampus regions and subfields were segmented using Freesurfer automated pipeline. RESULTS We found general baseline deficits in hippocampal volumes among BPD and ESP cohorts. Both cohorts displayed significant increases in the anterior hippocampal region and dentate gyrus compared with controls. Additionally, antipsychotic medications were positively correlated with the posterior region at baseline. CONCLUSION These findings highlight brain plasticity in BPD and in ESP patients providing evidence that deviations in hippocampal volumes are adaptive responses to atypical signaling rather than progressive degeneration.
Collapse
Affiliation(s)
- Bruce Atwood
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Walid Yassin
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Cope EC, Wang SH, Waters RC, Gore IR, Vasquez B, Laham BJ, Gould E. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice. Nat Commun 2023; 14:1750. [PMID: 36991001 PMCID: PMC10060401 DOI: 10.1038/s41467-023-37248-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Mutation or deletion of the SHANK3 gene, which encodes a synaptic scaffolding protein, is linked to autism spectrum disorder and Phelan-McDermid syndrome, conditions associated with social memory impairments. Shank3B knockout mice also exhibit social memory deficits. The CA2 region of the hippocampus integrates numerous inputs and sends a major output to the ventral CA1 (vCA1). Despite finding few differences in excitatory afferents to the CA2 in Shank3B knockout mice, we found that activation of CA2 neurons as well as the CA2-vCA1 pathway restored social recognition function to wildtype levels. vCA1 neuronal oscillations have been linked to social memory, but we observed no differences in these measures between wildtype and Shank3B knockout mice. However, activation of the CA2 enhanced vCA1 theta power in Shank3B knockout mice, concurrent with behavioral improvements. These findings suggest that stimulating adult circuitry in a mouse model with neurodevelopmental impairments can invoke latent social memory function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Samantha H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Betsy Vasquez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Blake J Laham
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
De Felice M, Chen C, Rodríguez-Ruiz M, Szkudlarek HJ, Lam M, Sert S, Whitehead SN, Yeung KKC, Rushlow WJ, Laviolette SR. Adolescent Δ-9-tetrahydrocannabinol exposure induces differential acute and long-term neuronal and molecular disturbances in dorsal vs. ventral hippocampal subregions. Neuropsychopharmacology 2023; 48:540-551. [PMID: 36402837 PMCID: PMC9852235 DOI: 10.1038/s41386-022-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Chaochao Chen
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Michael Lam
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Selvi Sert
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Shawn N Whitehead
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
- Department of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada.
| |
Collapse
|
8
|
Abstract
Growing evidence indicates that a suboptimal intrauterine environment confers risk for schizophrenia. The developmental model of schizophrenia posits that aberrant brain growth during early brain development and adolescence may interact to contribute to this psychiatric disease in adulthood. Although a variety of factors may perturb the environment of the developing fetus and predispose for schizophrenia later, a common mechanism has yet to be elucidated. Micronutrient deficiencies during the perinatal period are known to induce potent effects on brain development by altering neurodevelopmental processes. Iron is an important candidate nutrient to consider because of its role in energy metabolism, monoamine synthesis, synaptogenesis, myelination, and the high prevalence of iron deficiency (ID) in the mother-infant dyad. Understanding the current state of science regarding perinatal ID as an early risk factor for schizophrenia is imperative to inform empirical work investigating the etiology of schizophrenia and develop prevention and intervention programs. In this narrative review, we focus on perinatal ID as a common mechanism underlying the fetal programming of schizophrenia. First, we review the neural aberrations associated with perinatal ID that indicate risk for schizophrenia in adulthood, including disruptions in dopaminergic neurotransmission, hippocampal-dependent learning and memory, and sensorimotor gating. Second, we review the pathophysiology of perinatal ID as a function of maternal ID during pregnancy and use epidemiological and cohort studies to link perinatal ID with risk of schizophrenia. Finally, we review potential confounding phenotypes, including nonanemic causes of perinatal brain ID and future risk of schizophrenia.
Collapse
Affiliation(s)
- Andrea M. Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Raghavendra B. Rao
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455 (USA)
- Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
9
|
Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness. Eur Arch Psychiatry Clin Neurosci 2022; 272:971-983. [PMID: 34557990 DOI: 10.1007/s00406-021-01333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.
Collapse
|
10
|
Roeske MJ, Lyu I, McHugo M, Blackford JU, Woodward ND, Heckers S. Incomplete Hippocampal Inversion: A Neurodevelopmental Mechanism for Hippocampal Shape Deformation in Schizophrenia. Biol Psychiatry 2022; 92:314-322. [PMID: 35487783 PMCID: PMC9339515 DOI: 10.1016/j.biopsych.2022.02.954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Shape analyses of patients with schizophrenia have revealed bilateral deformations of the anterolateral hippocampus, primarily localized to the CA1 subfield. Incomplete hippocampal inversion (IHI), an anatomical variant of the human hippocampus resulting from an arrest during neurodevelopment, is more prevalent and severe in patients with schizophrenia. We hypothesized that IHI would affect the shape of the hippocampus and contribute to hippocampal shape differences in schizophrenia. METHODS We studied 199 patients with schizophrenia and 161 healthy control participants with structural magnetic resonance imaging to measure the prevalence and severity of IHI. High-fidelity hippocampal surface reconstructions were generated with the SPHARM-PDM toolkit. We used general linear models in SurfStat to test for group shape differences, the impact of IHI on hippocampal shape variation, and whether IHI contributes to hippocampal shape abnormalities in schizophrenia. RESULTS Not including IHI as a main effect in our between-group comparison replicated well-established hippocampal shape differences in patients with schizophrenia localized to the CA1 subfield in the anterolateral hippocampus. Shape differences were also observed near the uncus and hippocampal tail. IHI was associated with outward displacements of the dorsal and ventral surfaces of the hippocampus and inward displacements of the medial and lateral surfaces. Including IHI as a main effect in our between-group comparison eliminated the bilateral shape differences in the CA1 subfield. Shape differences in the uncus persisted after including IHI. CONCLUSIONS IHI impacts hippocampal shape. Our results suggest IHI as a neurodevelopmental mechanism for the well-known shape differences, particularly in the CA1 subfield, in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Murphy F, Nasa A, Cullinane D, Raajakesary K, Gazzaz A, Sooknarine V, Haines M, Roman E, Kelly L, O'Neill A, Cannon M, Roddy DW. Childhood Trauma, the HPA Axis and Psychiatric Illnesses: A Targeted Literature Synthesis. Front Psychiatry 2022; 13:748372. [PMID: 35599780 PMCID: PMC9120425 DOI: 10.3389/fpsyt.2022.748372] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Studies of early life stress (ELS) demonstrate the long-lasting effects of acute and chronic stress on developmental trajectories. Such experiences can become biologically consolidated, creating individual vulnerability to psychological and psychiatric issues later in life. The hippocampus, amygdala, and the medial prefrontal cortex are all important limbic structures involved in the processes that undermine mental health. Hyperarousal of the sympathetic nervous system with sustained allostatic load along the Hypothalamic Pituitary Adrenal (HPA) axis and its connections has been theorized as the basis for adult psychopathology following early childhood trauma. In this review we synthesize current understandings and hypotheses concerning the neurobiological link between childhood trauma, the HPA axis, and adult psychiatric illness. We examine the mechanisms at play in the brain of the developing child and discuss how adverse environmental stimuli may become biologically incorporated into the structure and function of the adult brain via a discussion of the neurosequential model of development, sensitive periods and plasticity. The HPA connections and brain areas implicated in ELS and psychopathology are also explored. In a targeted review of HPA activation in mood and psychotic disorders, cortisol is generally elevated across mood and psychotic disorders. However, in bipolar disorder and psychosis patients with previous early life stress, blunted cortisol responses are found to awakening, psychological stressors and physiological manipulation compared to patients without previous early life stress. These attenuated responses occur in bipolar and psychosis patients on a background of increased cortisol turnover. Although cortisol measures are generally raised in depression, the evidence for a different HPA activation profile in those with early life stress is inconclusive. Further research is needed to explore the stress responses commonalities between bipolar disorder and psychosis in those patients with early life stress.
Collapse
Affiliation(s)
- Felim Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Kesidha Raajakesary
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Areej Gazzaz
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vitallia Sooknarine
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Madeline Haines
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Linda Kelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aisling O'Neill
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
|
13
|
Genon S, Bernhardt BC, La Joie R, Amunts K, Eickhoff SB. The many dimensions of human hippocampal organization and (dys)function. Trends Neurosci 2021; 44:977-989. [PMID: 34756460 DOI: 10.1016/j.tins.2021.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022]
Abstract
The internal organization of hippocampal formation has been studied for more than a century. Although early accounts emphasized its subfields along the medial-lateral axis, findings in recent decades have highlighted also the anterior-to-posterior (i.e., longitudinal) axis as a key contributor to this brain region's functional organization. Hence, understanding of hippocampal function likely demands characterizing both medial-to-lateral and anterior-to-posterior axes, an approach that has been concretized by recent advances in in vivo parcellation and gradient mapping techniques. Following a short historical overview, we review the evidence provided by these approaches in brain-mapping studies, as well as the perspectives they open for addressing the behavioral relevance of the interacting organizational axes in healthy and clinical populations.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | - Renaud La Joie
- Memory and Aging Center, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Roeske MJ, McHugo M, Vandekar S, Blackford JU, Woodward ND, Heckers S. Incomplete hippocampal inversion in schizophrenia: prevalence, severity, and impact on hippocampal structure. Mol Psychiatry 2021; 26:5407-5416. [PMID: 33437006 PMCID: PMC8589684 DOI: 10.1038/s41380-020-01010-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022]
Abstract
Incomplete hippocampal inversion (IHI) is an anatomical variant of the human brain resulting from an arrest in brain development, especially prevalent in the left hemisphere. We hypothesized that IHI is more common in schizophrenia and contributes to the well-known hippocampal structural differences. We studied 199 schizophrenia patients and 161 healthy control participants with 3 T MRI to establish IHI prevalence and the relationship of IHI with hippocampal volume and asymmetry. IHI was more prevalent (left hemisphere: 15% of healthy control participants, 27% of schizophrenia patients; right hemisphere: 4% of healthy control participants, 10% of schizophrenia patients) and more severe in schizophrenia patients compared to healthy control participants. Severe IHI cases were associated with a higher rate of automated segmentation failure. IHI contributed to smaller hippocampal volume and increased R > L volume asymmetry in schizophrenia. The increased prevalence and severity of IHI supports the neurodevelopmental model of schizophrenia. The impact of this developmental variant deserves further exploration in studies of the hippocampus in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Research Health Scientist, Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Plassard AJ, Bao S, McHugo M, Beason-Held L, Blackford JU, Heckers S, Landman BA. Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe. Magn Reson Imaging 2021; 81:17-23. [PMID: 33901584 PMCID: PMC8715642 DOI: 10.1016/j.mri.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Examining volumetric differences of the amygdala and anterior-posterior regions of the hippocampus is important for understanding cognition and clinical disorders. However, the gold standard manual segmentation of these structures is time and labor-intensive. Automated, accurate, and reproducible techniques to segment the hippocampus and amygdala are desirable. Here, we present a hierarchical approach to multi-atlas segmentation of the hippocampus head, body and tail and the amygdala based on atlases from 195 individuals. The Open Vanderbilt Archive of the temporal Lobe (OVAL) segmentation technique outperforms the commonly used FreeSurfer, FSL FIRST, and whole-brain multi-atlas segmentation approaches for the full hippocampus and amygdala and nears or exceeds inter-rater reproducibility for segmentation of the hippocampus head, body and tail. OVAL has been released in open-source and is freely available.
Collapse
Affiliation(s)
- Andrew J Plassard
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Shunxing Bao
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Maureen McHugo
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, 31 Center Dr, #5C27 MSC 2292, Building 31, Room 5C27, Bethesda, Maryland, 20892-0001, USA.
| | - Jennifer U Blackford
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Stephan Heckers
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Bennett A Landman
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University, Electrical Engineering, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| |
Collapse
|
16
|
Dugré JR, Dumais A, Tikasz A, Mendrek A, Potvin S. Functional connectivity abnormalities of the long-axis hippocampal subregions in schizophrenia during episodic memory. NPJ SCHIZOPHRENIA 2021; 7:19. [PMID: 33658524 PMCID: PMC7930183 DOI: 10.1038/s41537-021-00147-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023]
Abstract
Past evidence suggests that hippocampal subregions, namely the anterior and posterior parts, may be engaged in distinct networks underlying the memory functions which may be altered in patients with schizophrenia. However, of the very few studies that have investigated the hippocampal longitudinal axis subdivisions functional connectivity in patients with schizophrenia, the majority was based on resting-state data, and yet, none aimed to examine these during an episodic memory task. A total of 41 patients with schizophrenia and 45 healthy controls were recruited for a magnetic resonance imaging protocol in which they performed an explicit memory task. Seed-based functional connectivity analysis was employed to assess connectivity abnormalities between hippocampal subregions and voxel-wise connectivity targets in patients with schizophrenia. We observed a significantly reduced connectivity between the posterior hippocampus and regions from the default mode network, but increased connectivity with the primary visual cortex, in patients with schizophrenia compared to healthy subjects. Increased connectivity between the anterior hippocampus and anterior temporal regions also characterized patients with schizophrenia. In the current study, we provided evidence and support for studying hippocampal subdivisions along the longitudinal axis in schizophrenia. Our results suggest that the abnormalities in hippocampal subregions functional connectivity reflect deficits in episodic memory that may be implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, QC, Canada
| | - Andras Tikasz
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Adriana Mendrek
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, Bishop's University, Sherbrooke, QC, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
17
|
Varela P, Carvalho G, Martin RP, Pesquero JB. Fabry disease: GLA deletion alters a canonical splice site in a family with neuropsychiatric manifestations. Metab Brain Dis 2021; 36:265-272. [PMID: 33156427 DOI: 10.1007/s11011-020-00640-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Fabry disease (FD) is a rare X-linked glycosphingolipidosis caused by mutations in GLA, a gene responsible for encoding α-galactosidase A, an enzyme required for degradation of glycosphingolipids, mainly globotriaosylceramide (Gb3) in all cells of the body. FD patients present a broad spectrum of clinical phenotype and many symptoms are shared with other diseases, making diagnosis challenging. Here we describe a novel GLA variant located in the 5' splice site of the intron 3, in four members of a family with neuropsychiatric symptoms. Analysis of the RNA showed the variant promotes alteration of the wild type donor site, affecting splicing and producing two aberrant transcripts. The functional characterization showed absence of enzymatic activity in cells expressing both transcripts, confirming their pathogenicity. The family presents mild signs of FD, as angiokeratoma, cornea verticillata, acroparesthesia, tinnitus, vertigo, as well as accumulation of plasma lyso-Gb3 and urinary Gb3. Interestingly, the man and two women present psychiatric symptoms, as depression or schizophrenia. Although psychiatric illnesses, especially depression, are frequently reported in patients with FD and studies have shown that the hippocampus is an affected brain structure in these patients, it is not clear whether the Gb3 accumulation in the brain is responsible for these symptoms or they are secondary. Therefore, new studies are needed to understand whether the accumulation of Gb3 could produce neuronal alterations leading to psychiatric symptoms.
Collapse
Affiliation(s)
- Patrícia Varela
- Center for Research and Molecular Diagnostic of Genetic Diseases - Department of Biophysics, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9o andar, São Paulo, 04039-032, Brazil
| | - Gerson Carvalho
- Medical Genetics Unit, Hospital de Apoio de Brasília, Brasília, DF, Brazil
| | - Renan Paulo Martin
- Center for Research and Molecular Diagnostic of Genetic Diseases - Department of Biophysics, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9o andar, São Paulo, 04039-032, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases - Department of Biophysics, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9o andar, São Paulo, 04039-032, Brazil.
| |
Collapse
|
18
|
Chiappiniello A, Tarducci R, Muscio C, Bruzzone MG, Bozzali M, Tiraboschi P, Nigri A, Ambrosi C, Chipi E, Ferraro S, Festari C, Gasparotti R, Gianeri R, Giulietti G, Mascaro L, Montanucci C, Nicolosi V, Rosazza C, Serra L, Frisoni GB, Perani D, Tagliavini F, Jovicich J. Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test-retest reproducibility. Brain Struct Funct 2021; 226:137-150. [PMID: 33231744 PMCID: PMC7817563 DOI: 10.1007/s00429-020-02172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Accurate and reproducible automated segmentation of human hippocampal subfields is of interest to study their roles in cognitive functions and disease processes. Multispectral structural MRI methods have been proposed to improve automated hippocampal subfield segmentation accuracy, but the reproducibility in a multicentric setting is, to date, not well characterized. Here, we assessed test-retest reproducibility of FreeSurfer 6.0 hippocampal subfield segmentations using multispectral MRI analysis pipelines (22 healthy subjects scanned twice, a week apart, at four 3T MRI sites). The harmonized MRI protocol included two 3D-T1, a 3D-FLAIR, and a high-resolution 2D-T2. After within-session T1 averaging, subfield volumes were segmented using three pipelines with different multispectral data: two longitudinal ("long_T1s" and "long_T1s_FLAIR") and one cross-sectional ("long_T1s_FLAIR_crossT2"). Volume reproducibility was quantified in magnitude (reproducibility error-RE) and space (DICE coefficient). RE was lower in all hippocampal subfields, except for hippocampal fissure, using the longitudinal pipelines compared to long_T1s_FLAIR_crossT2 (average RE reduction of 0.4-3.6%). Similarly, the longitudinal pipelines showed a higher spatial reproducibility (1.1-7.8% of DICE improvement) in all hippocampal structures compared to long_T1s_FLAIR_crossT2. Moreover, long_T1s_FLAIR provided a small but significant RE improvement in comparison to long_T1s (p = 0.015), whereas no significant DICE differences were found. In addition, structures with volumes larger than 200 mm3 had better RE (1-2%) and DICE (0.7-0.95) than smaller structures. In summary, our study suggests that the most reproducible hippocampal subfield FreeSurfer segmentations are derived from a longitudinal pipeline using 3D-T1s and 3D-FLAIR. Adapting a longitudinal pipeline to include high-resolution 2D-T2 may lead to further improvements.
Collapse
Affiliation(s)
- Andrea Chiappiniello
- Department of Physics, University of Turin, Turin, Italy.
- Medical Physics Department, Ospedale Santa Maria della Misericordia, Piazzale Giorgio Menghini 1, 06129, Perugia, Italy.
| | - Roberto Tarducci
- Medical Physics Department, Ospedale Santa Maria della Misericordia, Piazzale Giorgio Menghini 1, 06129, Perugia, Italy
| | - Cristina Muscio
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, Fondazione IRCCS Santa Lucia, Rome, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Pietro Tiraboschi
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ambrosi
- Neuroradiology Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Elena Chipi
- Laboratory of Clinical Neurochemistry, Neurology Clinic, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Stefania Ferraro
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Festari
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ruben Gianeri
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Giulietti
- Neuroimaging Laboratory, Fondazione IRCCS Santa Lucia, Rome, Italy
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorella Mascaro
- Department of Diagnostic Imaging, Medical Physics Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Chiara Montanucci
- Laboratory of Clinical Neurochemistry, Neurology Clinic, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Valentina Nicolosi
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Rosazza
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Serra
- Neuroimaging Laboratory, Fondazione IRCCS Santa Lucia, Rome, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging of Aging, LANVIE, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - Daniela Perani
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
19
|
Mancini V, Sandini C, Padula MC, Zöller D, Schneider M, Schaer M, Eliez S. Positive psychotic symptoms are associated with divergent developmental trajectories of hippocampal volume during late adolescence in patients with 22q11DS. Mol Psychiatry 2020; 25:2844-2859. [PMID: 31164700 DOI: 10.1038/s41380-019-0443-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Low hippocampal volume is a consistent finding in schizophrenia and across the psychosis spectrum. However, there is a lack of studies investigating longitudinal hippocampal development and its relationship with psychotic symptoms. The 22q11.2 deletion syndrome (22q11DS) has proven to be a remarkable model for the prospective study of individuals at high risk of schizophrenia to unravel the pathophysiological processes predating the onset of psychosis. Repeated cerebral MRIs were acquired from 140 patients with 22q11DS (53 experiencing moderate-to-severe psychotic symptoms) and 135 healthy controls aged from 6 to 35 years and with up to 5 time points per participant. Hippocampal subfield analysis was conducted using FreeSurfer-v.6 and FIRST-FSL. Then, whole hippocampal and subfield volumes were compared across the groups. Relative to controls, patients with 22q11DS showed a remarkably lower volume of all subfields except for CA2/3. No divergent trajectories in hippocampal development were found. When comparing patients with 22q11DS exhibiting psychotic symptoms to those without psychosis, we detected a volume decrease during late adolescence, starting in CA1 and spreading to other subfields. Our findings suggested that hippocampal volume is consistently smaller in patients with 22q11DS. Moreover, we have demonstrated that patients with 22q11DS and psychotic symptoms undergo a further decrease in volume during adolescence, a vulnerable period for the emergence of psychosis. Interestingly, CA2/3, despite being affected in patients with psychotic symptoms, was the only area not reduced in patients with 22q11DS relative to controls, thus suggesting that its atrophy exclusively correlates with the presence of positive psychotic symptoms.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maria C Padula
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
20
|
Lynch KM, Shi Y, Toga AW, Clark KA. Hippocampal Shape Maturation in Childhood and Adolescence. Cereb Cortex 2020; 29:3651-3665. [PMID: 30272143 DOI: 10.1093/cercor/bhy244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 11/14/2022] Open
Abstract
The hippocampus is a subcortical structure critical for learning and memory, and a thorough understanding of its neurodevelopment is important for studying these processes in health and disease. However, few studies have quantified the typical developmental trajectory of the structure in childhood and adolescence. This study examined the cross-sectional age-related changes and sex differences in hippocampal shape in a multisite, multistudy cohort of 1676 typically developing children (age 1-22 years) using a novel intrinsic brain mapping method based on Laplace-Beltrami embedding of surfaces. Significant age-related expansion was observed bilaterally and nonlinear growth was observed primarily in the right head and tail of the hippocampus. Sex differences were also observed bilaterally along the lateral and medial aspects of the surface, with females exhibiting relatively larger surface expansion than males. Additionally, the superior posterior lateral surface of the left hippocampus exhibited an age-sex interaction with females expanding faster than males. Shape analysis provides enhanced sensitivity to regional changes in hippocampal morphology over traditional volumetric approaches and allows for the localization of developmental effects. Our results further support evidence that hippocampal structures follow distinct maturational trajectories that may coincide with the development of learning and memory skills during critical periods of development.
Collapse
Affiliation(s)
- Kirsten M Lynch
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Yonggang Shi
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
21
|
Hippocampal volume in early psychosis: a 2-year longitudinal study. Transl Psychiatry 2020; 10:306. [PMID: 32873788 PMCID: PMC7463254 DOI: 10.1038/s41398-020-00985-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Cross-sectional studies suggest that hippocampal volume declines across stages of psychosis. In contrast, longitudinal studies indicate that hippocampal volume is stable in the critical period following illness onset. How can these seemingly disparate sets of findings be resolved? In the present study, we examine two previously unexplored reasons for this discrepancy. First, only specific subregions of the hippocampus may change during the early stage of psychosis. Second, there is diagnostic heterogeneity in the early stage of psychosis and cross-sectional analysis does not permit examination of illness trajectory. Some early stage individuals will have persistent illness leading to a diagnosis of schizophrenia, whereas in others, psychosis will remit. Hippocampal volume may be reduced only in individuals who will ultimately be diagnosed with schizophrenia. We acquired longitudinal structural MRI data from 63 early psychosis and 63 healthy control participants, with up to 4 time points per participant collected over 2 years. Subfield volumes were measured in the anterior and posterior hippocampus using automated segmentation specialized for longitudinal analysis. We observed a volume deficit in early psychosis participants compared to healthy controls that was most pronounced in the anterior hippocampus, but this deficit did not change over 2 years. Importantly, we found that anterior cornu ammonis volume is smaller at baseline in individuals who were diagnosed with schizophrenia at follow-up, but normal in those who maintained a diagnosis of schizophreniform disorder over 2 years. Smaller hippocampal volume is not diagnostic of psychosis, but is instead prognostic of clinical outcome.
Collapse
|
22
|
Abstract
In primary polydipsia pathologically high levels of water intake physiologically lower arginine vasopressin (AVP) secretion, and in this way mirror the secondary polydipsia in diabetes insipidus in which pathologically low levels of AVP (or renal responsiveness to AVP) physiologically increase water intake. Primary polydipsia covers several disorders whose clinical features and significance, risk factors, pathophysiology and treatment are reviewed here. While groupings may appear somewhat arbitrary, they are associated with distinct alterations in physiologic parameters of water balance. The polydipsia is typically unrelated to homeostatic regulation of water intake, but instead reflects non-homeostatic influences. Recent technological advances, summarized here, have disentangled functional neurocircuits underlying both homeostatic and non-homeostatic physiologic influences, which provides an opportunity to better define the mechanisms of the disorders. We summarize this recent literature, highlighting hypothalamic circuitry that appears most clearly positioned to contribute to primary polydipsia. The life-threatening water imbalance in psychotic disorders is caused by an anterior hippocampal induced stress-diathesis that can be reproduced in animal models, and involves phylogenetically preserved pathways that appear likely to include one or more of these circuits. Ongoing translational neuroscience studies in these animal models may potentially localize reversible pathological changes which contribute to both the water imbalance and psychotic disorder.
Collapse
Affiliation(s)
- Leeda Ahmadi
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Morris B Goldman
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Sahakyan L, Meller T, Evermann U, Schmitt S, Pfarr JK, Sommer J, Kwapil TR, Nenadić I. Anterior vs Posterior Hippocampal Subfields in an Extended Psychosis Phenotype of Multidimensional Schizotypy in a Nonclinical Sample. Schizophr Bull 2020; 47:207-218. [PMID: 32691055 PMCID: PMC8208318 DOI: 10.1093/schbul/sbaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies have implicated involvement of the hippocampus in the etiology and expression of schizophrenia-spectrum psychopathology, and reduced hippocampal volume is one of the most robust brain abnormalities reported in schizophrenia. Recent studies indicate that early stages of schizophrenia are specifically characterized by reductions in anterior hippocampal volume; however, studies have not examined hippocampal volume reductions in subclinical schizotypy. The present study was the first to examine the associations of positive, negative, and disorganized schizotypy dimensions with hippocampal subfield volumes in a large sample (n = 195) of nonclinically ascertained young adults, phenotyped using the Multidimensional Schizotypy Scale (MSS). Hippocampal subfields were analyzed from high-resolution 3 Tesla structural magnetic resonance imaging scans testing anatomical models, including anterior vs posterior regions and the cornu ammonis (CA), dentate gyrus (DG), and subiculum subfields separately for the left and right hemispheres. We demonstrate differential spatial effects across anterior vs posterior hippocampus segments across different dimensions of the schizotypy risk phenotype. The interaction of negative and disorganized schizotypy robustly predicted left hemisphere volumetric reductions for the anterior and total hippocampus, and anterior CA and DG, and the largest reductions were seen in participants high in negative and disorganized schizotypy. These findings extend previous early psychosis studies and together with behavioral studies of hippocampal-related memory impairments provide the basis for a dimensional neurobiological hippocampal model of schizophrenia risk. Subtle hippocampal subfield volume reductions may be prevalent prior to the onset of detectable prodromal clinical symptoms of psychosis and play a role in the etiology and development of such conditions.
Collapse
Affiliation(s)
- Lili Sahakyan
- Department of Psychology and Beckman Institute for Advanced Science and
Technology, University of Illinois, Champaign, IL
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Simon Schmitt
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Jens Sommer
- Core Facility BrainImaging, School of Medicine, Philipps-University
Marburg, Marburg, Germany
| | - Thomas R Kwapil
- Department of Psychology and Beckman Institute for Advanced Science and
Technology, University of Illinois, Champaign, IL
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany,To whom correspondence should be addressed; Department of Psychiatry and
Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg,
Germany; tel: +49-6421-58-65002, fax: +49-6421-58-68939, e-mail:
| |
Collapse
|
24
|
Shortall SE, Brown AM, Newton-Mann E, Dawe-Lane E, Evans C, Fowler M, King MV. Calbindin Deficits May Underlie Dissociable Effects of 5-HT 6 and mGlu 7 Antagonists on Glutamate and Cognition in a Dual-Hit Neurodevelopmental Model for Schizophrenia. Mol Neurobiol 2020; 57:3439-3457. [PMID: 32533466 PMCID: PMC7340678 DOI: 10.1007/s12035-020-01938-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Despite several compounds entering clinical trials for the negative and cognitive symptoms of schizophrenia, few have progressed beyond phase III. This is partly attributed to a need for improved preclinical models, to understand disease and enable predictive evaluation of novel therapeutics. To this end, one recent approach incorporates "dual-hit" neurodevelopmental insults like neonatal phencyclidine plus isolation rearing (PCP-Iso). Glutamatergic dysfunction contributes to schizophrenia pathophysiology and may represent a treatment target, so we used enzyme-based microsensors to evaluate basal- and drug-evoked glutamate release in hippocampal slices from rats that received neonatal PCP and/or isolation rearing. 5-HT6 antagonist-evoked glutamate release (thought to be mediated indirectly via GABAergic disinhibition) was reduced in PCP-Iso, as were cognitive effects of a 5-HT6 antagonist in a hippocampal glutamate-dependent novel object discrimination task. Yet mGlu7 antagonist-evoked glutamatergic and cognitive responses were spared. Immunohistochemical analyses suggest these findings (which mirror the apparent lack of clinical response to 5-HT6 antagonists in schizophrenia) are not due to reduced hippocampal 5-HT input in PCP-Iso, but may be explained by reduced calbindin expression. This calcium-binding protein is present in a subset of GABAergic interneurons receiving preferential 5-HT innervation and expressing 5-HT6 receptors. Its loss (in schizophrenia and PCP-Iso) would be expected to reduce interneuron firing and potentially prevent further 5-HT6 antagonist-mediated disinhibition, without impacting on responses of VIP-expressing interneurons to mGlu7 antagonism. This research highlights the importance of improved understanding for selection of appropriate preclinical models, especially where disease neurobiology impacts on cells mediating the effects of potential therapeutics.
Collapse
Affiliation(s)
- Sinead E Shortall
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Angus M Brown
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eliot Newton-Mann
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Erin Dawe-Lane
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Chanelle Evans
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maxine Fowler
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
25
|
Huang J, Zhu Y, Fan F, Chen S, Hong Y, Cui Y, Luo X, Tan S, Wang Z, Shang L, Yuan Y, Zhang J, Yang F, Li CSR, Rowland LM, Kochunov P, Zhang F, Hong LE, Tan Y. Hippocampus and cognitive domain deficits in treatment-resistant schizophrenia: A comparison with matched treatment-responsive patients and healthy controls ✰,✰✰,★,★★. Psychiatry Res Neuroimaging 2020; 297:111043. [PMID: 32062167 PMCID: PMC7490244 DOI: 10.1016/j.pscychresns.2020.111043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/27/2023]
Abstract
Some patients with schizophrenia do not respond to pharmacotherapy. More severe cognitive dysfunctions have been associated with treatment-resistant schizophrenia (TRS). This study examines cognitive functions and hippocampal volumes in 43 patients with TRS and compared them to 43 treatment-responsive patients (NTRS), matched on age, sex and education, as well as 53 healthy controls (HC). The results showed that there were significant deficits in all domains of cognition and hippocampal volumes in TRS as compared to HC group. However, TRS specific deficits, as indicated by comparisons with matched NTRS, were limited to poorer performance in working memory (p = 0.003) and smaller total hippocampal volume (p = 0.01). Logistic regression analysis showed that working memory deficits [OR 0.94 (95% CI 0.89-0.98), p = 0.005] and smaller hippocampal volume [OR 0.89 (95% CI 0.81-0.97), p = 0.01], but not their interactions (p = 0.68), contributed to higher risk of treatment resistance. The findings suggest that treatment-resistance to currently available antipsychotic medications may not be due to global cognitive deficits in these patients, but be associated with specific deficits in working memory and hippocampus deficits in the subgroup of schizophrenia.
Collapse
Affiliation(s)
- Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Yu Zhu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Yuan Hong
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, United States
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P.R. China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Lan Shang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Ying Yuan
- School of Foreign Languages and Literature, Tianjin University, Tianjin, P. R. China
| | - Jianxin Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Fengyu Zhang
- Global Clinical and Translational Research Institute, Bethesda, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China.
| |
Collapse
|
26
|
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2020; 20:540-553. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy St Stoyanov
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
27
|
Jiang L, Xue C, Dai S, Chen S, Chen P, Sham PC, Wang H, Li M. DESE: estimating driver tissues by selective expression of genes associated with complex diseases or traits. Genome Biol 2019; 20:233. [PMID: 31694669 PMCID: PMC6836538 DOI: 10.1186/s13059-019-1801-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/25/2019] [Indexed: 02/08/2023] Open
Abstract
The driver tissues or cell types in which susceptibility genes initiate diseases remain elusive. We develop a unified framework to detect the causal tissues of complex diseases or traits according to selective expression of disease-associated genes in genome-wide association studies (GWASs). This framework consists of three components which run iteratively to produce a converged prioritization list of driver tissues. Additionally, this framework also outputs a list of prioritized genes as a byproduct. We apply the framework to six representative complex diseases or traits with GWAS summary statistics, which leads to the estimation of the lung as an associated tissue of rheumatoid arthritis.
Collapse
Affiliation(s)
- Lin Jiang
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Pituitary Tumour Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Xue
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China
| | - Sheng Dai
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shangzhen Chen
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peikai Chen
- Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Pak Chung Sham
- Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Haijun Wang
- Department of Pituitary Tumour Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Miaoxin Li
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China. .,Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
28
|
Zhang Y, Gong X, Yin Z, Cui L, Yang J, Wang P, Zhou Y, Jiang X, Wei S, Wang F, Tang Y. Association between NRGN gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC Psychiatry 2019; 19:108. [PMID: 30953482 PMCID: PMC6451258 DOI: 10.1186/s12888-019-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Based on genome-wide association studies, a single-nucleotide polymorphism in the NRGN gene (rs12807809) is considered associated with schizophrenia (SZ). Moreover, hippocampal dysfunction is associated with rs12807809. In addition, converging evidence suggests that hippocampal dysfunction is involved in SZ pathophysiology. However, the association among rs12807809, hippocampal dysfunction and SZ pathophysiology is unknown. Therefore, this study investigated the association between rs12807809 and hippocampal functional connectivity at rest in SZ. METHODS In total, 158 participants were studied, including a C-carrier group carrying the non-risk C allele (29 SZ patients and 46 healthy controls) and a TT homozygous group carrying the risk T allele (30 SZ patients and 53 healthy controls). All participants were scanned using resting-state functional magnetic resonance imaging. Hippocampal functional connectivity was computed and compared among the 4 groups. RESULTS Significant main effects of diagnosis were observed in the functional connectivity between the hippocampus and bilateral fusiform gyrus, bilateral lingual gyrus, left inferior temporal gyrus, left caudate nucleus, bilateral thalamus and bilateral anterior cingulate gyri. In contrast, no significant main effect of genotype was found. In addition, a significant genotype by diagnosis interaction in the functional connectivity between the hippocampus and left anterior cingulate gyrus, as well as bilateral middle cingulate gyri, was observed, with TT homozygotes with SZ showing less functional connectivity than C-carriers with SZ and healthy control TT homozygotes. CONCLUSIONS These findings are the first to suggest an association between rs12807809 and abnormal Papez circuit function in patients with SZ. This study also implicates NRGN variation and abnormal Papez circuit function in SZ pathophysiology.
Collapse
Affiliation(s)
- Yifan Zhang
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Xiaohong Gong
- 0000 0001 0125 2443grid.8547.eState Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Zhiyang Yin
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Lingling Cui
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Jian Yang
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Pengshuo Wang
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Yifang Zhou
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China ,grid.412636.4Department of Psychiatry and Gerontology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, He ping District, Shenyang, Liaoning 110001 People’s Republic of China
| | - Xiaowei Jiang
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China ,grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Shengnan Wei
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China. .,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China. .,Brain Function Research Section and Department of Psychiatry and Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, He ping District, Shenyang, Liaoning, 110001, People's Republic of China.
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China. .,Department of Psychiatry and Gerontology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, He ping District, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
29
|
McHugo M, Talati P, Woodward ND, Armstrong K, Blackford JU, Heckers S. Regionally specific volume deficits along the hippocampal long axis in early and chronic psychosis. Neuroimage Clin 2018; 20:1106-1114. [PMID: 30380517 PMCID: PMC6202690 DOI: 10.1016/j.nicl.2018.10.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 11/23/2022]
Abstract
Previous studies in psychosis patients have shown hippocampal volume deficits across anterior and posterior regions or across subfields, but subfield specific changes in volume along the hippocampal long axis have not been examined. Here, we tested the hypothesis that volume changes exist across the hippocampus in chronic psychosis but only the anterior CA region is affected in early psychosis patients. We analyzed structural MRI data from 179 patients with a non-affective psychotic disorder (94 chronic psychosis; 85 early psychosis) and 167 heathy individuals demographically matched to the chronic and early psychosis samples respectively (82 matched to chronic patients; 85 matched to early patients). We measured hippocampal volumes using Freesurfer 6-derived automated segmentation of both anterior and posterior regions and the CA, dentate gyrus, and subiculum subfields. We found a hippocampal volume deficit in both anterior and posterior regions in chronic psychosis, but this deficit was limited to the anterior hippocampus in early psychosis patients. This volume change was more pronounced in the anterior CA subfield of early psychosis patients than in the dentate gyrus or subiculum. Our findings support existing models of psychosis implicating initial CA dysfunction with later progression to other hippocampal regions and suggest that the anterior hippocampus may be an important target for early interventions.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Pratik Talati
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
30
|
Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Brain-derived neurotrophic factor as a biomarker for cognitive recovery in acute schizophrenia: 12-week results from a prospective longitudinal study. Psychopharmacology (Berl) 2018; 235:1191-1198. [PMID: 29392373 DOI: 10.1007/s00213-018-4835-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/14/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE It is generally accepted that impaired cognitive function is a core feature of schizophrenia. There is evidence for the role of brain-derived neurotrophic factor (BDNF) in cognitive function. Olanzapine was reported to yield cognitive improvement in patients with schizophrenia. OBJECTIVES In this study, we performed a prospective, open-label, 12-week observation trial to investigate whether peripheral BDNF may represent a potential biomarker for the effect of cognitive improvement induced by olanzapine in patients with schizophrenia. METHODS In total, 95 patients with acute schizophrenia were enrolled in the study. We also recruited 72 healthy individuals for a control group. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate symptom severity and treatment response. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Plasma BDNF levels were measured with an enzyme-linked immunosorbent assay. RESULTS Of the 95 patients consented into the study, 68 completed the 12-week follow up. Our results showed that schizophrenia patients with acute exacerbation had significantly poorer performance than that of the controls (Ps < 0.01). A significantly decreased plasma level of BDNF in patients was observed compared with the controls (F = 7.77, P = 0.006). A significant improvement in each PANSS subscore and total score was observed when the patients completed this study (Ps < 0.01). Additionally, 12-week olanzapine treatment exhibited significant improvements in RBANS immediate memory, attention, and total scores (P = 0.018, 0.001, and 0.007, respectively). Along with the clinical improvement, plasma BDNF levels after 12-week olanzapine monotherapy (4.67 ± 1.74 ng/ml) were also significantly increased compared with those at baseline (3.38 ± 2.11 ng/ml) (P < 0.01). Spearman's correlation analysis showed that the increase in plasma levels of BDNF is significantly correlated with the change in the RBANS total scores (r = 0.28, P = 0.02) but not with the change in the PANSS total scores (r = - 0.18, P = 0.13). There is a significant correlation of BDNF increase with the change of RBANS attention subscore (r = 0.27, P = 0.028). CONCLUSIONS Our findings suggest that olanzapine improves psychiatric symptoms and cognitive dysfunction, particularly attention and immediate memory, in patients with acute schizophrenia, in parallel with increased plasma BDNF levels. Plasma BDNF levels may be a potential biomarker for cognitive recovery in acute schizophrenia.
Collapse
Affiliation(s)
- Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|