1
|
Mitchell O, Roddy DW, Connaughton M. Early life adversity and white matter microstructural organization-a systematic review. Brain Imaging Behav 2025:10.1007/s11682-025-01007-8. [PMID: 40279009 DOI: 10.1007/s11682-025-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Early life adversity, defined as exposure to stressful events during childhood, is a significant risk factor for the development of psychiatric disorders. Diffusion tensor imaging studies employing tract-based spatial statistics have shown microstructural abnormalities in white matter among individuals exposed to early life adversity; however, robust conclusions are yet to be drawn. This systematic review synthesizes findings of previous tract-based spatial statistics studies to identify the white matter alterations in adult brains exposed to early life adversity, in papers with methodological consistency. The literature search (April 2024) was conducted to identify tract-based spatial statistics studies that compared diffusion metrics between adults exposed to early life adversity and adults not. Embase, Pubmed, and PsycInfo were searched, retrieving 2458 articles. Following deduplication, 1739 titles and/or abstracts were screened. 1699 articles were excluded, and 40 full texts were reviewed. Seven articles, reporting on 764 subjects, met the inclusion criteria and were included in the narrative synthesis. Compared to controls, adults exposed to early life adversity showed lower fractional anisotropy values in white matter tracts of the limbic and visual processing systems, specifically the anterior thalamic radiation, inferior longitudinal fasciculus, corona radiata, uncinate fasciculus, inferior fronto-occipital fasciculus, and cingulum bundle. This systematic review highlights that early life adversity may underlie emotional dysregulation and contribute to an increased risk of psychopathology in later life and explores the potential neurobiological mechanisms that underpin these structural changes. Understanding these associations is crucial for developing targeted interventions aimed at mitigating the long-term impact of early life adversity.
Collapse
Affiliation(s)
- Orla Mitchell
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Darren W Roddy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Michael Connaughton
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
2
|
Segal A, Smith RE, Chopra S, Oldham S, Parkes L, Aquino K, Kia SM, Wolfers T, Franke B, Hoogman M, Beckmann CF, Westlye LT, Andreassen OA, Zalesky A, Harrison BJ, Davey CG, Soriano-Mas C, Cardoner N, Tiego J, Yücel M, Braganza L, Suo C, Berk M, Cotton S, Bellgrove MA, Marquand AF, Fornito A. Multiscale heterogeneity of white matter morphometry in psychiatric disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00127-2. [PMID: 40204235 DOI: 10.1016/j.bpsc.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Inter-individual variability in the neurobiological and clinical characteristics of mental illnesses are often overlooked by classical group-mean case-control studies. Studies using normative modelling to infer person-specific deviations of grey matter volume have indicated that group means are not representative of most individuals. The extent to which this variability is present in white matter morphometry, which is integral to brain function, remains unclear. METHODS We applied Warped Bayesian Linear Regression normative models to T1-weighted magnetic resonance imaging data and mapped inter-individual variability in person-specific white matter volume deviations in 1,294 cases (58% male) diagnosed with one of six disorders (attention-deficit/hyperactivity, autism, bipolar, major depressive, obsessive-compulsive and schizophrenia) and 1,465 matched controls (54% male) recruited across 25 scan sites. We developed a framework to characterize deviation heterogeneity at multiple spatial scales, from individual voxels, through inter-regional connections, specific brain regions, and spatially extended brain networks. RESULTS The specific locations of white matter volume deviations were highly heterogeneous across participants, affecting the same voxel in fewer than 8% of individuals with the same diagnosis. For autism and schizophrenia, negative deviations (i.e., areas where volume is lower than normative expectations) aggregated into common tracts, regions, and large-scale networks in up to 69% of individuals. CONCLUSIONS The prevalence of white matter volume deviations was lower than previously observed in grey matter, and the specific location of these deviations was highly heterogeneous when considering voxel-wise spatial resolution. Evidence of aggregation within common pathways and networks was apparent in schizophrenia and autism, but not other disorders.
Collapse
Affiliation(s)
- Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Wu Tsai Institute, Department of Neuroscience, Yale University, New Haven, United States.
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Stuart Oldham
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Seyed Mostafa Kia
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, the Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TÜCMH), University of Tübingen, Tübingen, Germany
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | | | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Narcís Cardoner
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leah Braganza
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Australian Characterisation Commons at Scale (ACCS) Project, Monash eResearch Centre, Melbourne, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Melbourne, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Sue Cotton
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Neuroimaging, Centre of Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, The United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Nenadić I, Mosebach J, Schmitt S, Meller T, Stein F, Brosch K, Ringwald K, Pfarr JK, Meinert S, Lemke H, Waltemate L, Thiel K, Opel N, Repple J, Grotegerd D, Steinsträter O, Sommer J, Hahn T, Jansen A, Dannlowski U, Krug A, Kircher T. Fronto-Thalamic Structural Connectivity Associated With Schizotypy, a Psychosis Risk Phenotype, in Nonclinical Subjects. Schizophr Bull 2025; 51:S137-S148. [PMID: 40037831 PMCID: PMC11879573 DOI: 10.1093/schbul/sbad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND HYPOTHESIS Schizotypy is a risk phenotype for the psychosis spectrum and pilot studies suggest a biological continuum underlying this phenotype across health and disease. It is unclear whether this biological continuum might include brain structural associations in networks altered in schizophrenia spectrum disorders, such as the fronto-thalamo-striatal system or nodes of the default mode network, such as the precuneus. STUDY DESIGN In this study, we analyze a large multi-center cohort of 673 nonclinical subjects phenotyped for schizotypal traits (using the Schizotypal Personality Questionnaire-Brief version) using tract-based spatial statistics of diffusion tensor imaging data, as well as voxel-based morphometry (VBM) analysis of regional brain volumes and gyrification analysis of early neurodevelopmental markers of cortical folding on T1-weighted MRI. STUDY RESULTS We identify significant (P < .05 family-wise error corrected) associations of schizotypy with major fiber tract fractional anisotropy: positive (cognitive-perceptual) schizotypy correlated negatively with the left anterior thalamic radiation (a principal thalamo-frontal projection), left uncinate fasciculus and cingulum, while negative (interpersonal) schizotypy correlated positively with left anterior thalamic radiation, cingulum, and the anterior corpus callosum, and disorganized schizotypy correlated negatively with right cingulum, and superior and inferior longitudinal fasciculi. VBM analyses showed a negative correlation of gray matter with negative schizotypy in the left cerebellum, while gyrification in the inferior parietal cortex correlated positively with negative (interpersonal) schizotypy. CONCLUSIONS These findings pave the way for a neural network conceptualization of schizotypy as a psychosis proneness trait across the general population, showing associations with fronto-subcortical and frontotemporal systems as structural substrates of this risk phenotype.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Johannes Mosebach
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core-Facility BrainImaging, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Jens Sommer
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core-Facility BrainImaging, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core-Facility BrainImaging, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
4
|
Hoffmann J, Meller T, Maj C, Hoffmann P, Forstner AJ, Nöthen MM, Nenadić I. Differential Association of Schizotypy Dimensions With Brain Structural Connectivity and Moderation by Schizophrenia Polygenic Risk. Schizophr Bull 2025; 51:S149-S159. [PMID: 40037820 PMCID: PMC11879560 DOI: 10.1093/schbul/sbae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
OBJECTIVE Schizotypy as a psychosis proneness marker has facilitated the study of schizophrenia spectrum models, linking phenotypic psychosis risk to brain structural and functional variation. However, association studies to structural connectome markers are limited and often do not consider relations to genetic risk. We tested the hypothesis that dimensions of schizotypy (rather than overall phenotype risk burden) are related to fiber tract integrity and that this is moderated by polygenic schizophrenia risk (or resilience). DESIGN In a cohort of 346 psychiatrically healthy subjects, we obtained diffusion tensor imaging, schizotypy using O-LIFE (Oxford-Liverpool Inventory of Feelings and Experiences), and polygenic risk scores (PRS) for schizophrenia risk and resilience to schizophrenia. Using FSL and TBSS (tract-based spatial statistics), we first analyzed the association between O-LIFE and fractional anisotropy (FA) for the anterior thalamic radiation, uncinate fascicle, and cingulum bundle, as well as moderation analyses with PRS scores. RESULTS O-LIFE dimensions were differentially associated with structural connectivity, in particular, negative schizotypy positively to right uncinate FA, positive schizotypy negatively to right cingulum and disorganized schizotypy negatively to left cingulum. In disorganized schizotypy the association was moderated by schizophrenia PRS. CONCLUSIONS Our results support a neurobiological continuum model of structural connectivity across psychosis proneness, emphasizing differential association with different schizotypy facets. Genetic schizophrenia risk, however, appears to impact only some of these associations, highlighting the need for further studies to understand the contribution of other genetic and/or environmental factors.
Collapse
Affiliation(s)
- Jonas Hoffmann
- Cognitive Neuropsychiatry Laboratory, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg 35039, Germany
| | - Tina Meller
- Cognitive Neuropsychiatry Laboratory, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg 35039, Germany
- Center for Mind, Brain, and Behavior (CMBB), Universities of Marburg, Gießen, and Darmstadt, Marburg 35032, Germany
| | - Carlo Maj
- Center for Human Genetics, Philipps Universität Marburg 35033, Marburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn 53127, Germany
| | - Andreas J Forstner
- Center for Human Genetics, Philipps Universität Marburg 35033, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn 53127, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn 53127, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry Laboratory, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg 35039, Germany
- Center for Mind, Brain, and Behavior (CMBB), Universities of Marburg, Gießen, and Darmstadt, Marburg 35032, Germany
- LOEWE Center DYNAMIC, University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
5
|
Sasaki H, Kubota M, Miyata J, Murai T. Left posterior superior temporal gyrus and its structural connectivity in schizophrenia. Psychiatry Res Neuroimaging 2025; 347:111947. [PMID: 39798501 DOI: 10.1016/j.pscychresns.2025.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
The left posterior superior temporal gyrus (pSTG) is thought to be involved in the pathophysiology and core symptoms of schizophrenia, although its structural connectivity has not yet been systematically investigated. Here, we aimed to evaluate its white matter (WM) connectivity with Broca's area, the thalamus, and the right pSTG. Eighty-three patients with schizophrenia and 141 healthy controls underwent diffusion-weighted imaging and T1-weighted three-dimensional magnetic resonance imaging. Probabilistic tractography was performed from the left pSTG to the Broca area, the left thalamus, and the right pSTG. Group comparison of WM fractional anisotropy (FA) in these pathways, as well as its correlations with the pSTG volume and clinical characteristics in the patient group, were examined. Patients showed significantly lower FA in the left pSTG-Broca and left-right pSTG pathways, but not in the left pSTG-thalamus pathway. Patients also revealed a trend toward a smaller left pSTG volume. Significant negative correlations were found in patients between FA in the left-right pSTG pathway and the left pSTG volume, and between FA in the left pSTG-Broca pathway and positive symptom severity. The present results suggest fiber-specific alterations in structural connectivity linked to the left pSTG, possibly supporting the "inner speech" and "interhemispheric disconnection" hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Sasaki Clinic, Address: #2F Patio-Okamoto 3-3-14 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-0003, Japan
| | - Manabu Kubota
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Jun Miyata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Aichi Medical University, Address: 1-1 Yazakokarimata, Nagakute, Aichi 4801195, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
6
|
Iseli GC, Ulrich S, Stämpfli P, Studerus E, Coynel D, Riecher-Rössler A, Homan P, Kaiser S, Borgwardt S, Kirschner M, Schmidt A. Parsing heterogeneity in global and local white matter integrity at different stages across the psychosis continuum. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:106. [PMID: 39537644 PMCID: PMC11561281 DOI: 10.1038/s41537-024-00516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Psychosis progresses along a continuum. While heterogeneity is evident across the continuum, it remains unknown whether this is also reflected in white matter (WM) heterogeneity and whether parsing WM heterogeneity may reveal subgroups with more pronounced clinical features. This analysis included 212 participants consisting of healthy controls (HC, n = 59), individuals with high schizotypy (SPT, n = 27), at-risk mental state (ARMS, n = 35), and patients with first episode psychosis (FEP, n = 50) and schizophrenia (SZ, n = 41). Fractional anisotropy (FA) and mean diffusivity (MD) were derived from diffusion tensor imaging (DTI), and fibre density (FD), a non-tensor-derived diffusion marker, was computed. The Person-Based-Similarity Index (PBSI) and Coefficient of Variation Ratio (CVR) were computed to assess global and local heterogeneity. ANOVAs were performed to determine whether people with deviating PBSIs exhibit more pronounced clinical features. Global heterogeneity for all diffusion parameters significantly differed across groups, with greatest difference in heterogeneity between SZ and HC. Results further indicate that FA deviators exhibit lower global functioning and higher negative symptoms. Local FA heterogeneity was greater in FEP relative to ARMS and HC in almost all WM tracts, while SZ patients specifically showed greater heterogeneity in the right thalamic radiation and the left uncinate compared to HCs. Group differences in WM heterogeneity might be indicative of symptom specificity and duration. While these findings offer valuable insights into the neurobiological variability of psychosis, they are primarily hypothesis-generating. Future large-scale studies are warranted to test the robustness of diffusion markers and their clinical relevance.
Collapse
Affiliation(s)
- Galya C Iseli
- University of Basel, Department of Clinical Research (DKF), University Psychiatric Clinics (UPK), Translational Neurosciences, Basel, Switzerland.
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Sarah Ulrich
- Experimental Cognitive and Clinical Affective Neuroscience (ECAN) Laboratory, Department of Clinical Research (DKF), Basel, Switzerland
- Center for Affective, Stress and Sleep Disorders, University Psychiatric Clinics (UPK), Basel, Switzerland
| | - Philipp Stämpfli
- Department of Adult Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Erich Studerus
- Division of Personality and Developmental Psychology, Department of Psychology, University of Basel, Basel, Switzerland
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Philipp Homan
- Department of Adult Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - André Schmidt
- University of Basel, Department of Clinical Research (DKF), University Psychiatric Clinics (UPK), Translational Neurosciences, Basel, Switzerland
| |
Collapse
|
7
|
Enokida T, Hattori K, Ota M, Tatsumi M, Hidese S, Sato N, Hoshino M, Kunugi H. Correlation between myelin basic protein levels in cerebrospinal fluid and motor speed in patients with schizophrenia. Neuropsychopharmacol Rep 2024; 44:663-670. [PMID: 39133634 PMCID: PMC11544460 DOI: 10.1002/npr2.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 11/09/2024] Open
Abstract
Alterations in the white matter have been implicated in schizophrenia. Myelin basic protein (MBP), a component of the myelin sheath, in the cerebrospinal fluid (CSF) has been suggested as a biomarker for white matter damage in demyelinating diseases. This prompted us to examine the CSF-MBP levels in patients with schizophrenia. We analyzed the CSF-MBP levels in 152 patients with schizophrenia and 117 age- and sex-matched controls. A significant positive correlation between age and CSF-MBP levels was observed both in the patients (p < 0.001) and controls (p = 0.014). No significant difference was observed in the CSF-MBP levels between the two groups. However, among a subsample of the patients (N = 32), a significantly negative correlation was observed between CSF-MBP and age-adjusted motor speed score of the brief assessment of cognition in schizophrenia (ρ = -0.59, p < 0.001). Further, among patients who underwent diffusional magnetic resonance imaging of the brain (N = 27), the CSF-MBP levels showed a significantly negative correlation with the mean kurtosis value in the right temporo-parietal region (p < 0.001). Our results suggest that the CSF-MBP level has limited utility as a diagnostic marker; however, higher CSF-MBP levels are associated with poorer motor speed, which may be associated with regional white matter damage in the brain in patients with schizophrenia.
Collapse
Affiliation(s)
- Takako Enokida
- Department of Bioresources, Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
- Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
- Department of Mental Disorder Research, National Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Miho Ota
- Department of RadiologyNational Center Hospital of Neurology and PsychiatryTokyoJapan
- Department of NeuropsychiatryUniversity of TsukubaTsukubaJapan
| | - Megumi Tatsumi
- Department of Bioresources, Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Shinsuke Hidese
- Department of PsychiatryTeikyo University School of MedicineTokyoJapan
| | - Noriko Sato
- Department of RadiologyNational Center Hospital of Neurology and PsychiatryTokyoJapan
| | - Mikio Hoshino
- Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Biochemistry and Cellular Biology, National Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
- Department of PsychiatryTeikyo University School of MedicineTokyoJapan
| |
Collapse
|
8
|
Leroux E, Masson L, Tréhout M, Dollfus S. Effects of Adapted Physical Activity on White Matter Integrity in Patients with Schizophrenia. Brain Sci 2024; 14:710. [PMID: 39061450 PMCID: PMC11274719 DOI: 10.3390/brainsci14070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is associated with changes in white matter (WM) integrity and with reduced life expectancy, in part because of the cardiometabolic side effects of antipsychotics. Physical activity (PA) has emerged as a candidate lifestyle intervention that is safe and effective. The study aimed to assess how an adapted PA program delivered remotely by web (e-APA) improved WM integrity in patients with schizophrenia (SZPs) and healthy controls (HCs) and to evaluate associations among WM integrity, cardiorespiratory fitness, and symptom severity. This longitudinal study was conducted over 16 weeks with 31 participants (18 SZPs and 13 HCs). Diffusion tensor imaging and tract-based spatial statistics were employed to assess WM integrity. Cardiorespiratory fitness was measured by maximal oxygen uptake (VO2max), and assessments for clinical symptoms included the Positive and Negative Syndrome Scale, Self-evaluation of Negative Symptoms and the Brief Negative Syndrome Scale (BNSS). Only the SZPs had significantly increased WM integrity after the e-APA program, with increased fractional anisotropy and decreased radial diffusivity in fasciculi involved in motor functions and language process. Furthermore, decreased negative symptoms assessed with BNSS were associated with greater WM integrity following the program. These findings suggest that e-APA may improve WM integrity abnormalities and support e-APA as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Elise Leroux
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
| | - Laura Masson
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
| | - Maxime Tréhout
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
- CHU de Caen Normandie, Centre Esquirol, Service de Psychiatrie Adulte, 14000 Caen, France
| | - Sonia Dollfus
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
- CHU de Caen Normandie, Centre Esquirol, Service de Psychiatrie Adulte, 14000 Caen, France
- Normandie Univ, Université de Caen Normandie, UFR de Santé, 14000 Caen, France
- Fédération Hospitalo-Universitaire “Améliorer le Pronostic des Troubles Addictifs et Mentaux par une Médecine Personnalisée (A2M2P)“, 14000 Caen, France
| |
Collapse
|
9
|
Mamah D, Chen S, Shimony JS, Harms MP. Tract-based analyses of white matter in schizophrenia, bipolar disorder, aging, and dementia using high spatial and directional resolution diffusion imaging: a pilot study. Front Psychiatry 2024; 15:1240502. [PMID: 38362028 PMCID: PMC10867155 DOI: 10.3389/fpsyt.2024.1240502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Structural brain connectivity abnormalities have been associated with several psychiatric disorders. Schizophrenia (SCZ) is a chronic disabling disorder associated with accelerated aging and increased risk of dementia, though brain findings in the disorder have rarely been directly compared to those that occur with aging. Methods We used an automated approach to reconstruct key white matter tracts and assessed tract integrity in five participant groups. We acquired one-hour-long high-directional diffusion MRI data from young control (CON, n =28), bipolar disorder (BPD, n =21), and SCZ (n =22) participants aged 18-30, and healthy elderly (ELD, n =15) and dementia (DEM, n =9) participants. Volume, fractional (FA), radial diffusivity (RD) and axial diffusivity (AD) of seven key white matter tracts (anterior thalamic radiation, ATR; dorsal and ventral cingulum bundle, CBD and CBV; corticospinal tract, CST; and the three superior longitudinal fasciculi: SLF-1, SLF-2 and SLF-3) were analyzed with TRACULA. Group comparisons in tract metrics were performed using multivariate and univariate analyses. Clinical relationships of tract metrics with recent and chronic symptoms were assessed in SCZ and BPD participants. Results A MANOVA showed group differences in FA (λ=0.5; p=0.0002) and RD (λ=0.35; p<0.0001) across the seven tracts, but no significant differences in tract AD and volume. Post-hoc analyses indicated lower tract FA and higher RD in ELD and DEM groups compared to CON, BPD and SCZ groups. Lower FA and higher RD in SCZ compared to CON did not meet statistical significance. In SCZ participants, a significant negative correlation was found between chronic psychosis severity and FA in the SLF-1 (r= -0.45; p=0.035), SLF-2 (r= -0.49; p=0.02) and SLF-3 (r= -0.44; p=0.042). Discussion Our results indicate impaired white matter tract integrity in elderly populations consistent with myelin damage. Impaired tract integrity in SCZ is most prominent in patients with advanced illness.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - ShingShiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Klaassen AL, Michel C, Stüble M, Kaess M, Morishima Y, Kindler J. Reduced anterior callosal white matter in risk for psychosis associated with processing speed as a fundamental cognitive impairment. Schizophr Res 2024; 264:211-219. [PMID: 38157681 DOI: 10.1016/j.schres.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research in psychotic disorders discovered associations between reduced integrity of white matter (WM) in the corpus callosum (CC) and impaired cognitive functions, suggesting processing speed as a central construct. However, it is still largely unexplored to what extent disruption in callosal WM is related to cognitive deficits during the risk stage prior to psychosis. METHODS To address this gap, we measured the WM integrity in CC by fractional anisotropy (FA) and assessed cognition in 60 clinical-high risk for psychosis (CHR) patients during adolescence/young adulthood and 38 healthy control (HC) subjects. We employed tract based spatial statistics to examine group differences and associations between CC-FA and processing speed, executive function, and spatial working memory. RESULTS We revealed deficits in processing speed, executive function, and spatial working memory of CHR patients, and reductions in FA of the genu and the body of the CC (p < 0.05, corrected for multiple comparisons) compared to HC. A mediation analysis using the combined sample (CHR + HC) showed that processing speed mediates the associations between the impaired CC structure and executive function and spatial working memory, respectively. Exploratory analyses between CC-FA and the cognitive domains located associations of processing speed in the genu and the body of CC with distinct spatial distributions of executive function and spatial working memory. CONCLUSION We suggest processing speed as a subordinate cognitive factor contributing to the associations between callosal WM, executive function and working memory. These results extend findings in psychotic disorders to the prior risk stage.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland.
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| | - Miriam Stüble
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; University Hospital Heidelberg, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Yosuke Morishima
- University Hospital of Psychiatry Bern, Department of Psychiatric Neurophysiology, University of Bern, Switzerland
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| |
Collapse
|
11
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
12
|
Chen Y, Liu S, Zhang B, Zhao G, Zhang Z, Li S, Li H, Yu X, Deng H, Cao H. Baseline symptom-related white matter tracts predict individualized treatment response to 12-week antipsychotic monotherapies in first-episode schizophrenia. Transl Psychiatry 2024; 14:23. [PMID: 38218952 PMCID: PMC10787827 DOI: 10.1038/s41398-023-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024] Open
Abstract
There is significant heterogeneity in individual responses to antipsychotic drugs, but there is no reliable predictor of antipsychotics response in first-episode psychosis. This study aimed to investigate whether psychotic symptom-related alterations in fractional anisotropy (FA) and mean diffusivity (MD) of white matter (WM) at the early stage of the disorder may aid in the individualized prediction of drug response. Sixty-eight first-episode patients underwent baseline structural MRI scans and were subsequently randomized to receive a single atypical antipsychotic throughout the first 12 weeks. Clinical symptoms were evaluated using the eight "core symptoms" selected from the Positive and Negative Syndrome Scale (PANSS-8). Follow-up assessments were conducted at the 4th, 8th, and 12th weeks by trained psychiatrists. LASSO regression model and cross-validation were conducted to examine the performance of baseline symptom-related alterations FA and MD of WM in the prediction of individualized treatment outcome. Fifty patients completed both clinical follow-up assessments by the 8th and 12th weeks. 30 patients were classified as responders, and 20 patients were classified as nonresponders. At baseline, the altered diffusion properties of fiber tracts in the anterior thalamic radiation, corticospinal tract, callosum forceps minor, longitudinal fasciculi (ILF), inferior frontal-occipital fasciculi (IFOF) and superior longitudinal fasciculus (SLF) were related to the severity of symptoms. These abnormal fiber tracts, especially the ILF, IFOF, and SLF, significantly predicted the response to antipsychotic treatment at the individual level (AUC = 0.828, P < 0.001). These findings demonstrate that early microstructural WM changes contribute to the pathophysiology of psychosis and may serve as meaningful individualized predictors of response to antipsychotics.
Collapse
Affiliation(s)
- Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Hope Recovery and Rehabilitation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shanming Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Gaofeng Zhao
- Shandong Daizhuang Hospital, Jining, Shangdong, China
| | - Zhuoqiu Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shuiying Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Haiming Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hong Deng
- Hope Recovery and Rehabilitation Center, West China Hospital of Sichuan University, Chengdu, China.
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| |
Collapse
|
13
|
Wu D, Wu Q, Li F, Wang Y, Zeng J, Tang B, Bishop JR, Xiao L, Lui S. Free water alterations in different inflammatory subgroups in schizophrenia. Brain Behav Immun 2024; 115:557-564. [PMID: 37972880 DOI: 10.1016/j.bbi.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1β (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1β level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1β levels, peripheral IL-1β was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
| | - Qi Wu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Li Xiao
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Kristensen TD, Raghava JM, Skjerbæk MW, Dhollander T, Syeda W, Ambrosen KS, Bojesen KB, Nielsen MØ, Pantelis C, Glenthøj BY, Ebdrup BH. Fibre density and fibre-bundle cross-section of the corticospinal tract are distinctly linked to psychosis-specific symptoms in antipsychotic-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1797-1812. [PMID: 37012463 PMCID: PMC10713712 DOI: 10.1007/s00406-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Martin W Skjerbæk
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
16
|
Roberts D, Rösler L, Wijnen JP, Thakkar KN. Associations between N-Acetylaspartate and white matter integrity in individuals with schizophrenia and unaffected relatives. Psychiatry Res Neuroimaging 2023; 330:111612. [PMID: 36805928 PMCID: PMC10023491 DOI: 10.1016/j.pscychresns.2023.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Compromised white matter has been reported in schizophrenia; however, few studies have investigated neurochemical abnormalities underlying microstructural differences. N-acetylaspartate (NAA) is used to synthesize myelin and is often reduced in persons with schizophrenia (PSZ) and their unaffected first-degree relatives (REL). Low levels of NAA could affect white matter by preventing the synthesis or repair of myelin. We used magnetic resonance spectroscopy and diffusion tensor imaging to investigate the relationship between NAA and white matter integrity in PSZ. REL were included to examine whether putative relationships are associated with symptom expression or illness liability. 52 controls, 23 REL and 25 PSZ underwent 7T proton magnetic resonance spectroscopy and/or 3T diffusion tensor imaging. NAA in the visual cortex and basal ganglia were measured and compared across groups. Diffusivity measures were compared across groups using tract-based spatial statistics and related to NAA concentrations. Visual cortex NAA was significantly reduced in PSZ compared to controls. White matter integrity did not differ between groups. Reduced cortical and subcortical NAA were associated with diffusivity measures of poor white matter microstructure. These data suggest that levels of neural NAA may be related to white matter integrity similarly across individuals with schizophrenia, those at genetic risk, and controls.
Collapse
Affiliation(s)
- Dominic Roberts
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lara Rösler
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, High Field MR Research, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States; Department of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan, United States.
| |
Collapse
|
17
|
Efficacy of Serotonin and Dopamine Activity Modulators in the Treatment of Negative Symptoms in Schizophrenia: A Rapid Review. Biomedicines 2023; 11:biomedicines11030921. [PMID: 36979900 PMCID: PMC10046337 DOI: 10.3390/biomedicines11030921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Schizophrenia is among the fifteen most disabling diseases worldwide. Negative symptoms (NS) are highly prevalent in schizophrenia, negatively affect the functional outcome of the disorder, and their treatment is difficult and rarely specifically investigated. Serotonin-dopamine activity modulators (SDAMs), of which aripiprazole, cariprazine, brexpiprazole, and lumateperone were approved for schizophrenia treatment, represent a possible therapy to reduce NS. The aim of this rapid review is to summarize the evidence on this topic to make it readily available for psychiatrists treating NS and for further research. We searched the PubMed database for original studies using SDAM, aripiprazole, cariprazine, brexpiprazole, lumateperone, schizophrenia, and NS as keywords. We included four mega-analyses, eight meta-analyses, two post hoc analyses, and 20 clinical trials. Aripiprazole, cariprazine, and brexpiprazole were more effective than placebo in reducing NS. Only six studies compared SDAMs with other classes of antipsychotics, demonstrating a superiority in the treatment of NS mainly for cariprazine. The lack of specific research and various methodological issues, related to the study population and the assessment of NS, may have led to these partial results. Here, we highlight the need to conduct new methodologically robust investigations with head-to-head treatment comparisons and long-term observational studies on homogeneous groups of patients evaluating persistent NS with first- and second-generation scales, namely the Brief Negative Symptom Scale and the Clinical Assessment Interview for Negative Symptoms. This rapid review can expand research on NS therapeutic strategies in schizophrenia, which is fundamental for the long-term improvement of patients’ quality of life.
Collapse
|
18
|
Kai J, Mackinley M, Khan AR, Palaniyappan L. Aberrant frontal lobe "U"-shaped association fibers in first-episode schizophrenia: A 7-Tesla Diffusion Imaging Study. Neuroimage Clin 2023; 38:103367. [PMID: 36913907 PMCID: PMC10011060 DOI: 10.1016/j.nicl.2023.103367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Schizophrenia is believed to be a developmental disorder with one hypothesis suggesting that symptoms arise due to abnormal interactions (or disconnectivity) between different brain regions. While some major deep white matter pathways have been extensively studied (e.g. arcuate fasciculus), studies of short-ranged, "U"-shaped tracts have been limited in patients with schizophrenia, in part due to the sheer abundance of tracts present and due to the spatial variations across individuals that defy probabilistic characterization in the absence of reliable templates. In this study, we use diffusion magnetic resonance imaging (dMRI) to investigate frontal lobe superficial white matter that are present in the majority of study participants, comparing healthy controls and minimally treated patients with first-episode schizophrenia (<3 median days of lifetime treatment). Through group comparisons, 3 out of 63 frontal lobe "U"-shaped tracts were found to demonstrate localized aberrations affecting the microstructural tissue properties (via diffusion tensor metrics) in this early stage of disease. No associations were found in patients between aberrant segments of affected tracts and clinical or cognitive variables. Aberrations in the frontal lobe "U"-shaped tracts in early untreated stages of psychosis occur irrespective of symptom burden, and are distributed across critical functional networks associated with executive function and salience processing. While we limited the investigation to the frontal lobe, a framework has been developed to study such connections in other brain regions, enabling further extensive investigations jointly with the major deep white matter pathways.
Collapse
Affiliation(s)
- Jason Kai
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Michael Mackinley
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Xie M, Cai J, Liu Y, Wei W, Zhao Z, Dai M, Wu Y, Huang Y, Tang Y, Xiao L, Zhang G, Li C, Guo W, Ma X, Deng W, Du X, Wang Q, Li T. Association between childhood trauma and white matter deficits in first-episode schizophrenia. Psychiatry Res 2023; 323:115111. [PMID: 36924585 DOI: 10.1016/j.psychres.2023.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the relationship between childhood trauma (ChT) and white matter (WM) deficits in first-episode schizophrenia (FES). METHODS A total of 103 individuals with FES and 206 healthy control individuals (HCs) were enrolled and assessed based on ChT Questionnaire (CTQ) and Positive and Negative Symptoms Scale (PANSS). Diffusion tensor imaging was acquired on a Signa 3.0 T scanner. Map of fractional anisotropy (FA) was analyzed using Tract-Based Spatial Statistics. Hierarchical logistic regression analyses were used to examine associations of sociodemographic characteristics, total CTQ scores, and WM deficits. RESULTS Compared with the HCs group, the FES group showed significantly lower FA in several WM bundles (left anterior thalamic radiation, left inferior frontal-occipital fasciculus, left cingulum, forceps major, and forceps minor), and the mean FA value in these WM bundles was inversely related to the total CTQ score. In addition, a higher CTQ score may increase the risk of schizophrenia, while higher FA values may decrease the risk of schizophrenia. CONCLUSION This study demonstrates that individuals with FES evince widespread cerebral WM abnormalities and that these abnormalities were associated with ChT. These results provide clues about the neural basis and potential biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Min Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia Cai
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunjia Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Wei
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Zhengyang Zhao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minhan Dai
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulu Wu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunqi Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiguo Tang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liling Xiao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guangya Zhang
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Chuanwei Li
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Wanjun Guo
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tao Li
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China.
| |
Collapse
|
20
|
Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm (Vienna) 2023; 130:195-205. [PMID: 36370183 PMCID: PMC9660136 DOI: 10.1007/s00702-022-02567-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Since more than 3 decades, schizophrenia (SZ) has been regarded as a neurodevelopmental disorder. The neurodevelopmental hypothesis proposes that SZ is associated with genetic and environmental risk factors, which influence connectivity in neuronal circuits during vulnerable developmental periods. We carried out a non-systematic review of genetic/environmental factors that increase SZ risk in light of its neurodevelopmental hypothesis. We also reviewed the potential impact of SZ-related environmental and genetic risk factors on grey and white matter pathology and brain function based on magnetic resonance imaging and post-mortem studies. Finally, we reviewed studies that have used patient-derived neuronal models to gain knowledge of the role of genetic and environmental factors in early developmental stages. Taken together, these studies indicate that a variety of environmental factors may interact with genetic risk factors during the pre- or postnatal period and/or during adolescence to induce symptoms of SZ in early adulthood. These risk factors induce disturbances of macro- and microconnectivity in brain regions involving the prefrontal, temporal and parietal cortices and the hippocampus. On the molecular and cellular level, a disturbed synaptic plasticity, loss of oligodendrocytes and impaired myelination have been shown in brain regions of SZ patients. These cellular/histological phenotypes are related to environmental risk factors such as obstetric complications, maternal infections and childhood trauma and genetic risk factors identified in recent genome-wide association studies. SZ-related genetic risk may contribute to active processes interfering with synaptic plasticity in the adult brain. Advances in stem cell technologies are providing promising mechanistic insights into how SZ risk factors impact the developing brain. Further research is needed to understand the timing of the different complex biological processes taking place as a result of the interplay between genetic and environmental factors.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany.
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Serum Inflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis-A Cross-Sectional Study. J Clin Med 2023; 12:jcm12020683. [PMID: 36675612 PMCID: PMC9866306 DOI: 10.3390/jcm12020683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Chronic subclinical inflammation is believed to be an important factor in the pathogenesis of schizophrenia. Meta-analyses confirm the presence of increased levels of peripheral inflammatory markers (IM) in schizophrenia and its prodromal stages. Peripheral cytokines may affect the brain microstructure through chronic activation of microglia. Disruptions in the integrity of the superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF) are commonly seen in patients with schizophrenia spectrum disorders. We therefore attempted to verify in a cross-sectional study whether there is a correlation between levels of peripheral IM and the integrity of these brain regions in healthy controls, from prodromal states and first episode psychosis to long-term schizophrenia. The integrity of white matter was measured using diffusion tensor imaging. Despite a broad analysis of six IM (CRP, IL-6, IL-8, IL-10, TNF-α, and IFN-γ), we did not find any correlations with the integrity of the SLF or ILF in any of the analyzed groups (after correction for multiple comparisons). In conclusion, our study does not support the existence of a link between disrupted levels of peripheral IM and reduced integrity of ILF and SLF in schizophrenia spectrum disorders. However, prospective studies are needed to verify this over a long period of time.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
- Correspondence:
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| | | | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | | | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| |
Collapse
|
22
|
Bıçakcı Ay Ş, Oğuz KK, Özçelik Eroğlu E, Has AC, Ertuğrul A. A diffusion tensor imaging study in schizophrenia patients with clozapine induced obsessive compulsive symptoms. Hum Psychopharmacol 2023; 38:e2857. [PMID: 36382404 DOI: 10.1002/hup.2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate brain connectivity by diffusion tensor imaging (DTI) in schizophrenia patients with clozapine-induced obsessive compulsive symptoms (OCS). METHODS Eighteen schizophrenia patients, nine of which had clozapine-induced OCS (Clz-OCS (+)), 9 without OCS (Clz-OCS (-)) and 9 healthy controls were included. Psychopathology was evaluated with Positive and Negative Syndrome Scale and Yale-Brown Obsession and Compulsion Scale in the patient groups. All groups were assesed with neurocognitive tests and DTI. RESULTS Tract-Based Spatial Statistics based comparison of DTI revealed lower fractional anisotropy in the genu of corpus callosum (CC), right cingulum, left frontal white matter (WM) in the Clz-OCS (+) group, compared to controls. Fractional anisotropy was found to be lower in the bilateral occipital WM and higher in the bilateral medial temporal regions, anterior limb of internal capsule, cingulum, frontoparietal peripheral WM, right external capsule and genu of CC in Clz-OCS (+) patients compared to Clz-OCS (-). CONCLUSIONS WM integrity in several pathways such as cortico-striato-thalamo-cortical circuitry and orbito-frontal tracts seems to be affected differently in patients with Clz-OCS (+). Different neuroplastic effects of clozapine leading to occurrence of OCS in a subgroup of patients is possible, and needs further evaluation by longitudinal follow-up studies.
Collapse
Affiliation(s)
- Şule Bıçakcı Ay
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Kader K Oğuz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.,National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Elçin Özçelik Eroğlu
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Arzu Ceylan Has
- National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Aygün Ertuğrul
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
23
|
White matter microstructure of superior longitudinal fasciculus II is associated with intelligence and treatment response of negative symptoms in patients with schizophrenia. SCHIZOPHRENIA 2022; 8:43. [PMID: 35853887 PMCID: PMC9262917 DOI: 10.1038/s41537-022-00253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Although the potential role of superior longitudinal fasciculus (SLF) in intellectual deficits and treatment response (TR) in patients with schizophrenia (SZ) has been previously described, little is known about the white-matter (WM) integrity of SLF subcomponents (SLF I, II, III, and arcuate fasciculus) and their particular relationships with the clinical presentations of the illness. This study examined the associations between fractional anisotropy (FA) of SLF subcomponents and intelligence level and 6-month treatment response (TR) of negative symptoms (NS) in patients with SZ. At baseline, 101 patients with SZ and 101 healthy controls (HCs) underwent structural magnetic resonance imaging. Voxel-wise group comparison analysis showed significant SLF FA reductions in patients with SZ compared with HCs. Voxel-wise correlation analyses revealed significant positive correlations of FAs of right SLF II with Korean–Wechsler Adult Intelligence Scale at baseline and the percentage reduction of negative syndrome subscale of the Positive and Negative Syndrome Scales at 6 months. These findings suggest that aberrance in WM microstructure in SLF II may be associated with intellectual deficits in patients with SZ and TR of NS, which may support the potential role of SLF II as a novel neuroimaging biomarker for clinical outcomes of the illness.
Collapse
|
24
|
León-Ortiz P, Reyes-Madrigal F, Kochunov P, Gómez-Cruz G, Moncada-Habib T, Malacara M, Mora-Durán R, Rowland LM, de la Fuente-Sandoval C. White matter alterations and the conversion to psychosis: A combined diffusion tensor imaging and glutamate 1H MRS study. Schizophr Res 2022; 249:85-92. [PMID: 32595100 PMCID: PMC10025976 DOI: 10.1016/j.schres.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Widespread white matter abnormalities and alterations in glutamate levels have been reported in patients with schizophrenia. We hypothesized that alterations in white matter integrity and glutamate levels in individuals at clinical high risk (CHR) for psychosis are associated with the subsequent development of psychosis. METHODS Participants included 33 antipsychotic naïve CHR (Female 7/Male 26, Age 19.55 (4.14) years) and 38 healthy controls (Female 10/Male 28, Age 20.92 (3.37) years). Whole brain diffusion tensor imaging for fractional anisotropy (FA) and right frontal white matter proton magnetic resonance spectroscopy for glutamate levels were acquired. CHR participants were clinically followed for 2 years to determine conversion to psychosis. RESULTS CHR participants that transitioned to psychosis (N = 7, 21%) were characterized by significantly lower FA values in the posterior thalamic radiation compared to those who did not transition and healthy controls. In the CHR group that transitioned to psychosis only, positive exploratory correlations between glutamate levels and FA values of the posterior thalamic radiation and the retrolenticular part of the internal capsule and a negative correlation between glutamate levels and the cingulum FA values were found. CONCLUSION The results of the present study highlight that alterations in white matter structure and glutamate are related with the conversion to psychosis.
Collapse
Affiliation(s)
- Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Department of Education, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States of America
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Tomás Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Melanie Malacara
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ricardo Mora-Durán
- Emergency Department, Hospital Fray Bernardino Álvarez, Mexico City, Mexico
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States of America
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
25
|
Abram SV, Hua JPY, Ford JM. Consider the pons: bridging the gap on sensory prediction abnormalities in schizophrenia. Trends Neurosci 2022; 45:798-808. [PMID: 36123224 PMCID: PMC9588719 DOI: 10.1016/j.tins.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.
Collapse
Affiliation(s)
- Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Jessica P Y Hua
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, The University of California, San Francisco, CA, USA
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA.
| |
Collapse
|
26
|
Rasmussen JØ, Nordholm D, Glenthøj LB, Jensen MA, Garde AH, Ragahava JM, Jennum PJ, Glenthøj BY, Nordentoft M, Baandrup L, Ebdrup BH, Kristensen TD. White matter microstructure and sleep-wake disturbances in individuals at ultra-high risk of psychosis. Front Hum Neurosci 2022; 16:1029149. [PMID: 36393990 PMCID: PMC9649829 DOI: 10.3389/fnhum.2022.1029149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Aim White matter changes in individuals at ultra-high risk for psychosis (UHR) may be involved in the transition to psychosis. Sleep-wake disturbances commonly precede the first psychotic episode and predict development of psychosis. We examined associations between white matter microstructure and sleep-wake disturbances in UHR individuals compared to healthy controls (HC), as well as explored the confounding effect of medication, substance use, and level of psychopathology. Methods Sixty-four UHR individuals and 35 HC underwent clinical interviews and diffusion weighted imaging. Group differences on global and callosal mean fractional anisotropy (FA) was tested using general linear modeling. Sleep-wake disturbances were evaluated using the subjective measures disturbed sleep index (DSI) and disturbed awakening index (AWI) from the Karolinska Sleep Questionnaire, supported by objective sleep measures from one-night actigraphy. The primary analyses comprised partial correlation analyses between global FA/callosal FA and sleep-wake measures. Secondary analyses investigated multivariate patterns of covariance between measures of sleep-wake disturbances and FA in 48 white matter regions of interest using partial least square correlations. Results Ultra-high risk for psychosis individuals displayed lower global FA (F = 14.56, p < 0.001) and lower callosal FA (F = 11.34, p = 0.001) compared to HC. Subjective sleep-wake disturbances were significantly higher among the UHR individuals (DSI: F = 27.59, p < 0.001, AWI: F = 36.42, p < 0.001). Lower callosal FA was correlated with increased wake after sleep onset (r = -0.34, p = 0.011) and increased sleep fragmentation index (r = -0.31, p = 0.019) in UHR individuals. Multivariate analyses identified a pattern of covariance in regional FA which were associated with DSI and AWI in UHR individuals (p = 0.028), but not in HC. Substance use, sleep medication and antipsychotic medication did not significantly confound these associations. The association with objective sleep-wake measures was sustained when controlling for level of depressive and UHR symptoms, but symptom level confounded the covariation between FA and subjective sleep-wake measures in the multivariate analyses. Conclusion Compromised callosal microstructure in UHR individuals was related to objectively observed disruptions in sleep-wake functioning. Lower FA in ventrally located regions was associated with subjectively measured sleep-wake disturbances and was partly explained by psychopathology. These findings call for further investigation of sleep disturbances as a potential treatment target.
Collapse
Affiliation(s)
- Jesper Ø. Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Dorte Nordholm
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Louise B. Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie A. Jensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne H. Garde
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra M. Ragahava
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Poul J. Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina D. Kristensen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| |
Collapse
|
27
|
Smigielski L, Stämpfli P, Wotruba D, Buechler R, Sommer S, Gerstenberg M, Theodoridou A, Walitza S, Rössler W, Heekeren K. White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk. Neuroimage Clin 2022; 35:103067. [PMID: 35679786 PMCID: PMC9178487 DOI: 10.1016/j.nicl.2022.103067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
This DTI cross-sectional study compared UHR, basic symptom & control groups (n = 112). The splenium of UHR individuals exhibited differences in fractional anisotropy (FA). Basic symptoms alone were not associated with white matter microstructure changes. Large differences in FA & radial diffusivity were found in converters to psychosis. Regional FA was inversely correlated with the general psychopathology domain.
Background Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis. Methods An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses. Results Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls. Conclusions These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
Collapse
Affiliation(s)
- Lukasz Smigielski
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| |
Collapse
|
28
|
Prasad KM, Gertler J, Tollefson S, Wood JA, Roalf D, Gur RC, Gur RE, Almasy L, Pogue-Geile MF, Nimgaonkar VL. Heritable anisotropy associated with cognitive impairments among patients with schizophrenia and their non-psychotic relatives in multiplex families. Psychol Med 2022; 52:989-1000. [PMID: 32878667 PMCID: PMC8218223 DOI: 10.1017/s0033291720002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND To test the functional implications of impaired white matter (WM) connectivity among patients with schizophrenia and their relatives, we examined the heritability of fractional anisotropy (FA) measured on diffusion tensor imaging data acquired in Pittsburgh and Philadelphia, and its association with cognitive performance in a unique sample of 175 multigenerational non-psychotic relatives of 23 multiplex schizophrenia families and 240 unrelated controls (total = 438). METHODS We examined polygenic inheritance (h2r) of FA in 24 WM tracts bilaterally, and also pleiotropy to test whether heritability of FA in multiple WM tracts is secondary to genetic correlation among tracts using the Sequential Oligogenic Linkage Analysis Routines. Partial correlation tests examined the correlation of FA with performance on eight cognitive domains on the Penn Computerized Neurocognitive Battery, controlling for age, sex, site and mother's education, followed by multiple comparison corrections. RESULTS Significant total additive genetic heritability of FA was observed in all three-categories of WM tracts (association, commissural and projection fibers), in total 33/48 tracts. There were significant genetic correlations in 40% of tracts. Diagnostic group main effects were observed only in tracts with significantly heritable FA. Correlation of FA with neurocognitive impairments was observed mainly in heritable tracts. CONCLUSIONS Our data show significant heritability of all three-types of tracts among relatives of schizophrenia. Significant heritability of FA of multiple tracts was not entirely due to genetic correlations among the tracts. Diagnostic group main effect and correlation with neurocognitive performance were mainly restricted to tracts with heritable FA suggesting shared genetic effects on these traits.
Collapse
Affiliation(s)
- KM Prasad
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - J Gertler
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - S Tollefson
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - JA Wood
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - D Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - RC Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - RE Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - L Almasy
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - MF Pogue-Geile
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - VL Nimgaonkar
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA
| |
Collapse
|
29
|
Matrone M, Kotzalidis GD, Romano A, Bozzao A, Cuomo I, Valente F, Gabaglio C, Lombardozzi G, Trovini G, Amici E, Perrini F, De Persis S, Iasevoli F, De Filippis S, de Bartolomeis A. Treatment-resistant schizophrenia: Addressing white matter integrity, intracortical glutamate levels, clinical and cognitive profiles between early- and adult-onset patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110493. [PMID: 34883221 DOI: 10.1016/j.pnpbp.2021.110493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Treatment-resistance in schizophrenia is 30-40%. Its neurobiology remains unclear; to explore it, we conducted a combined spectrometry/tractography/cognitive battery and psychopathological rating study on patients with treatment-resistant schizophrenia (TRS), dividing the sample into early-onset (N = 21) and adult-onset TRS (N = 20). Previous studies did not differentiate between early- (onset 13-18 years) and adult-onset (>18 years at formal diagnosis of schizophrenia) TRS. METHODS We evaluated cross-sectionally 41 TRS patients (26 male and 15 female) and 20 matched healthy controls (HCs) with psychopathological and cognitive testing prior to participating in brain imaging scanning using magnetic resonance spectroscopy and diffusion tensor imaging to determine the relationship between their symptoms and their glutamate levels and white matter integrity. RESULTS TRS patients scored lower than HCs on all cognitive domains; early-onset patients performed better than adult-onset patients only on the Symbol Coding domain. TRS correlated with symptom severity, especially negative symptoms. Glutamate levels and glutamate/creatine were increased in anterior cingulate cortex. Diffusion tensor imaging showed low fractional anisotropy in TRS patients in specific white matter tracts compared to HCs (bilateral anterior thalamic radiation, cortico-spinal tract, forceps minor, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, and right uncinate fasciculus). CONCLUSIONS We identified specific magnetic resonance spectroscopy and diffusion tensor imaging alterations in TRS patients. Adult-onset TRS differed little from early-onset TRS on most measures; this points to alterations being present since the outset of schizophrenia and may constitute a biological signature of treatment-resistance.
Collapse
Affiliation(s)
- Marta Matrone
- Section of Psychiatry Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Georgios D Kotzalidis
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Andrea Romano
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Alessandro Bozzao
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Ilaria Cuomo
- UOC SM I Distretto ASL ROMA 1, C.C. Regina Cœli, Via della Lungara 29, 00165 Rome, Italy.
| | - Francesca Valente
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy; Department of Human Neurosciences, Institute of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, Italy.
| | - Chiara Gabaglio
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Ginevra Lombardozzi
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Giada Trovini
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Emanuela Amici
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Filippo Perrini
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy; UOC SMREE Distretto ASL ROMA 6, TSMREE, Via S. Biagio, 12, 00049, Velletri, Rome, Italy.
| | - Simone De Persis
- UOSD Attività Terapeutiche Riabilitative per i Disturbi da uso di Sostanze e nuove Dipendenze, ASL Rieti, Via Salaria per Roma 36, 02100 Rieti, Italy.
| | - Felice Iasevoli
- Section of Psychiatry Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy.
| | - Sergio De Filippis
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
30
|
Buchsbaum MS, Mitelman SA, Christian BT, Merrill BM, Buchsbaum BR, Mitelman D, Mukherjee J, Lehrer DS. Four-modality imaging of unmedicated subjects with schizophrenia: 18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, and MRI. Psychiatry Res Neuroimaging 2022; 320:111428. [PMID: 34954446 DOI: 10.1016/j.pscychresns.2021.111428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.
Collapse
Affiliation(s)
- Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, Irvine and San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Danielle Mitelman
- The Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, United States
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
31
|
El Nagar Z, El Shahawi HH, Effat SM, El Sheikh MM, Adel A, Ibrahim YA, Aufa OM. Single episode brief psychotic disorder versus bipolar disorder: A diffusion tensor imaging and executive functions study. Schizophr Res Cogn 2022; 27:100214. [PMID: 34557386 PMCID: PMC8446778 DOI: 10.1016/j.scog.2021.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Despite fast progress in neuroscientific approaches, the neurobiological continuum links psychotic spectrum, and affective disorder is obscure. White matter WM abnormalities found utilizing Diffusion Tensor Imaging (DTI) showing impaired communication in both disorders have been consistently demonstrated; however, direct comparisons of findings between them are scarce. This study aims to study WM abnormalities in single episode bipolar I disorder, and single episode brief psychotic disorder related to healthy control with the association of executive function. METHODS A cross-sectional case-control study was used to assess 60 subjects divided into 20 patients with single episode bipolar I disorder, 20 individuals with single episode brief psychotic disorder (both groups of patients were in remission), and 20 healthy controls. The present study examined the superior longitudinal fasciculus (SLF), and cingulum bundle fractional anisotropy (FA) determined from DTI images symmetrically and connected these results with cognitive functions as assessed by the trail making test (TMT) and Wisconsin card sorting test (WCST). RESULTS DTI data indicated that the psychotic group had a significant decrease in FA of the right SLF (p-value less than 0.001), left SLF (p-value less than 0.001), and left cingulum (p-value less than 0.001) than the bipolar I group. In terms of executive functioning, the psychotic group performed significantly worse than the bipolar I group on the TMT part B (p-value less than 0.001), the WCST (number of classifications fulfilled) (p-value less than 0.001), and perseverative errors (p-value less than 0.001). CONCLUSION Even after clinical remission, individuals with single episode brief psychotic disorder had more pronounced white matter impairments and executive function deficiencies than individuals with single episode bipolar I disorder.
Collapse
Affiliation(s)
- Zeinab El Nagar
- Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba H. El Shahawi
- Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Safeya M. Effat
- Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M. El Sheikh
- Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Adel
- Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yosra A. Ibrahim
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ola M. Aufa
- Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
33
|
Podwalski P, Tyburski E, Szczygieł K, Rudkowski K, Waszczuk K, Andrusewicz W, Kucharska-Mazur J, Michalczyk A, Mak M, Cyranka K, Misiak B, Sagan L, Samochowiec J. Psychopathology and Integrity of the Superior Longitudinal Fasciculus in Deficit and Nondeficit Schizophrenia. Brain Sci 2022; 12:brainsci12020267. [PMID: 35204030 PMCID: PMC8870217 DOI: 10.3390/brainsci12020267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
The superior longitudinal fasciculus (SLF) is a white matter bundle that connects the frontal areas with the parietal areas. As part of the visuospatial attentional network, it may be involved in the development of schizophrenia. Deficit syndrome (DS) is characterized by primary and enduring negative symptoms. The present study assessed SLF integrity in DS and nondeficit schizophrenia (NDS) patients and examined possible relationships between it and psychopathology. Twenty-six DS patients, 42 NDS patients, and 36 healthy controls (HC) underwent psychiatric evaluation and diffusion tensor imaging (DTI). After post-processing, fractional anisotropy (FA) values within the SLF were analyzed. Psychopathology was assessed with the Positive and Negative Syndrome Scale, Brief Negative Symptom Scale, and Self-evaluation of Negative Symptoms. The PANSS proxy for the deficit syndrome was used to diagnose DS. NDS patients had lower FA values than HC. DS patients had greater negative symptoms than NDS patients. After differentiating clinical groups and HC, we found no significant correlations between DTI measures and psychopathological dimensions. These results suggest that changes in SLF integrity are related to schizophrenia, and frontoparietal dysconnection plays a role in its etiopathogenesis. We confirmed that DS patients have greater negative psychopathology than NDS patients. These results are preliminary; further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (E.T.); (M.M.)
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (E.T.); (M.M.)
| | - Katarzyna Cyranka
- Department of Psychiatry, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Department of Metabolic Diseases, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
34
|
Spindler C, Mallien L, Trautmann S, Alexander N, Muehlhan M. A coordinate-based meta-analysis of white matter alterations in patients with alcohol use disorder. Transl Psychiatry 2022; 12:40. [PMID: 35087021 PMCID: PMC8795454 DOI: 10.1038/s41398-022-01809-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Besides the commonly described gray matter (GM) deficits, there is growing evidence of significant white matter (WM) alterations in patients with alcohol use disorder (AUD). WM changes can be assessed using volumetric and diffusive magnetic resonance imaging methods, such as voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). The aim of the present meta-analysis is to investigate the spatial convergence of the reported findings on WM alterations in AUD. METHODS Systematic literature search on PubMed and further databases revealed 18 studies eligible for inclusion, entailing a total of 462 AUD patients and 416 healthy controls (up to January 18, 2021). All studies that had used either VBM or DTI whole-brain analyzing methods and reported results as peak-coordinates in standard reference space were considered for inclusion. We excluded studies using approaches non-concordant with recent guidelines for neuroimaging meta-analyses and studies investigating patient groups with Korsakoff syndrome or other comorbid substance use disorders (except tobacco). RESULTS Anatomical likelihood estimation (ALE) revealed four significant clusters of convergent macro- and microstructural WM alterations in AUD patients that were assigned to the genu and body of the corpus callosum, anterior and posterior cingulum, fornix, and the right posterior limb of the internal capsule. DISCUSSION The changes in WM could to some extent explain the deteriorations in motor, cognitive, affective, and perceptual functions seen in AUD. Future studies are needed to clarify how WM alterations vary over the course of the disorder and to what extent they are reversible with prolonged abstinence.
Collapse
Affiliation(s)
- Carolin Spindler
- grid.461732.5Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany ,grid.461732.5ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Louisa Mallien
- grid.461732.5Department of Human Medicine, Faculty of Medicine, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Sebastian Trautmann
- grid.461732.5Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany ,grid.461732.5ICPP Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Nina Alexander
- grid.461732.5Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany ,grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany ,grid.10253.350000 0004 1936 9756Center for Mind, Brain and Behavior, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany. .,ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
35
|
Chen S, Tang Y, Fan X, Qiao Y, Wang J, Wen H, Wang W, Wang H, Yang F, Sheng J. The role of white matter abnormality in the left anterior corona radiata: In relation to formal thought disorder in patients with schizophrenia. Psychiatry Res 2022; 307:114302. [PMID: 34890908 DOI: 10.1016/j.psychres.2021.114302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
White matter abnormality has been widely reported in patients with schizophrenia (Sz). However, few studies have focused on the relationship between the white matter deficit and formal thought disorder (FTD). Moreover, the role of genetic high risk in FTD-related white matter deficit remains unclear. The present study recruited 46 Sz patients, 18 unaffected first-degree relatives of Sz patients, and 29 healthy controls. There was a widespread fractional anisotropy (FA) reduction in Sz. In addition, reduced FA in the left anterior corona radiata was related to more severe FTD symptoms in Sz. However, the genetic high-risk group only showed lower mean FA in the left anterior limb of the internal capsule than healthy controls. Our findings suggest that abnormality in the left anterior corona radiata may only occur in Sz but not in the genetic high-risk group. Such an abnormality might be associated with the severity of FTD symptoms. Meanwhile, genetic vulnerability may contribute to the abnormality in the left anterior limb of the internal capsule. Better analytical methods are needed to validate our results.
Collapse
Affiliation(s)
- Shan Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai 200030, China
| | - Xiaoduo Fan
- UMass Memorial Health Care & University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Yi Qiao
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai 200030, China
| | - Hun Wen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Wenzheng Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Hongyan Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Fuzhong Yang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Jianhua Sheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| |
Collapse
|
36
|
Xu F, Jin C, Zuo T, Wang R, Yang Y, Wang K. Segmental abnormalities of superior longitudinal fasciculus microstructure in patients with schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder: An automated fiber quantification tractography study. Front Psychiatry 2022; 13:999384. [PMID: 36561639 PMCID: PMC9766353 DOI: 10.3389/fpsyt.2022.999384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Superior longitudinal fasciculus (SLF) is a white matter (WM) tract that connects the frontal, parietal and temporal lobes. SLF integrity has been widely assessed in neuroimaging studies of psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD). However, prior studies have revealed inconsistent findings and comparisons across disorders have not been fully examined. METHODS Here, we obtained data for 113 patients (38 patients with SZ, 40 with BD, 35 with ADHD) and 94 healthy controls from the UCLA Consortium for Neuropsychiatric Phenomic LA5c dataset. We assessed the integrity of 20 major WM tracts with a novel segmentation method by automating fiber tract quantification (AFQ). The AFQ divides each tract into 100 equal parts along the direction of travel, with fractional anisotropy (FA) of each part taken as a characteristic. Differences in FA among the four groups were examined. RESULTS Compared to healthy controls, patients with SZ showed significantly lower FA in the second half (51-100 parts) of the SLF. No differences were found between BD and healthy controls, nor between ADHD and healthy controls. Results also demonstrated that patients with SZ showed FA reduction in the second half of the SLF relative to patients with BP. Moreover, greater FA in patients in SLF was positively correlated with the manic-hostility score of the Brief Psychiatry Rating scale. DISCUSSION These findings indicated that differences in focal changes in SLF might be a key neurobiological abnormality contributing to characterization of these psychiatric disorders.
Collapse
Affiliation(s)
- Feiyu Xu
- School of Mental Health, Jining Medical University, Jining, China.,Shandong Mental Health Center, Shandong University, Jinan, China
| | - Chengliang Jin
- School of Mental Health, Jining Medical University, Jining, China.,Shandong Mental Health Center, Shandong University, Jinan, China
| | - Tiantian Zuo
- Shandong Mental Health Center, Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruzhan Wang
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Ying Yang
- Shandong Mental Health Center, Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
37
|
Zong X, Zhang Q, He C, Huang X, Zhang J, Wang G, Lv L, Sang D, Zou X, Chen H, Zheng J, Hu M. DNA Methylation Basis in the Effect of White Matter Integrity Deficits on Cognitive Impairments and Psychopathological Symptoms in Drug-Naive First-Episode Schizophrenia. Front Psychiatry 2021; 12:777407. [PMID: 34966308 PMCID: PMC8710603 DOI: 10.3389/fpsyt.2021.777407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mounting evidence from diffusion tensor imaging (DTI) and epigenetic studies, respectively, confirmed the abnormal alterations of brain white matter integrity and DNA methylation (DNAm) in schizophrenia. However, few studies have been carried out in the same sample to simultaneously explore the WM pathology relating to clinical behaviors, as well as the DNA methylation basis underlying the WM deficits. Methods: We performed DTI scans in 42 treatment-naïve first-episode schizophrenia patients and 38 healthy controls. Voxel-based method of fractional anisotropy (FA) derived from DTI was used to assess WM integrity. Participants' peripheral blood genomic DNAm status, quantified by using Infinium® Human Methylation 450K BeadChip, was examined in parallel with DTI scanning. Participants completed Digit Span test and Trail Making test, as well as Positive and Negative Syndrome Scale measurement. We acquired genes that are differentially expressed in the brain regions with abnormal FA values according to the Allen anatomically comprehensive atlas, obtained DNAm levels of the corresponding genes, and then performed Z-test to compare the differential epigenetic-imaging associations (DEIAs) between the two groups. Results: Significant decreases of FA values in the patient group were in the right middle temporal lobe WM, right cuneus WM, right anterior cingulate WM, and right inferior parietal lobe WM, while the significant increases were in the bilateral middle cingulate WM (Ps < 0.01, GRF correction). Abnormal FA values were correlated with patients' clinical symptoms and cognitive impairments. In the DEIAs, patients showed abnormal couple patterns between altered FA and DNAm components, for which the enriched biological processes and pathways could be largely grouped into three biological procedures: the neurocognition, immune, and nervous system. Conclusion: Schizophrenia may not cause widespread neuropathological changes, but subtle alterations affecting local cingulum WM, which may play a critical role in positive symptoms and cognitive impairments. This imaging-epigenetics study revealed for the first time that DNAm of genes enriched in neuronal, immunologic, and cognitive processes may serve as the basis in the effect of WM deficits on clinical behaviors in schizophrenia.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinran Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China
| | - Changchun He
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangbo Zhang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China
| | - Huafu Chen
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute, Nanjing Medical University, Nanjing, China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Alizadeh M, Delborde Y, Ahmadpanah M, Seifrabiee MA, Jahangard L, Bazzazi N, Brand S. Non-linear associations between retinal nerve fibre layer (RNFL) and positive and negative symptoms among men with acute and chronic schizophrenia spectrum disorder. J Psychiatr Res 2021; 141:81-91. [PMID: 34182380 DOI: 10.1016/j.jpsychires.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Schizophrenia Spectrum Disorder (SSD) is a chronic psychiatric disorder with modest treatment outcomes. Changes in neuronal morphology may be associated with the symptomatology of SSD. In the present study, we compared the retinal nerve fibre layer thickness (RNFLT) of typically developed adults with that of individuals with SSD in both acute and chronic stages. METHODS Fifteen healthy adult males (mean age: 36.40 years) and 30 individuals with SSD (mean age: 37.9 years) took part in the study. Among the latter, 15 had a chronic mean SSD for 15.33 years, while 15 were in an acute psychotic phase with a mean illness duration of 12.20 years. Experts rated positive and negative symptoms of SSD. Retinal nerve fibre layer thickness (RNFLT) of all participants was measured with optical coherence tomography (OCT). RESULTS Compared to healthy controls, individuals with acute SSD had the lowest macula thickness in the right eye. For nerve fiber layer atrophy, participants with acute SSD showed the largest atrophy (right eye, inferior quadrant). For retinal thickness and macular volume cube, compared to healthy controls, participants with acute SSD had the lowest thickness in the subfield of the right eye. Non-linear associations were observed between RNFL and positive and negative symptoms: e.g., for macula central and subfoveal thickness (left and right eye) and for participants with both acute and chronic SSD, exclusively positive and exclusively negative symptoms (as opposed to prevalently negative with some positive symptoms or prevalently positive with some negative symptoms) were associated with lower volumes. In participants with acute SSD, a longer disease duration was associated with thicker RNFL, while in participants with a chronic SSD a longer disease duration was associated with a thinner RNFL. CONCLUSION The present results confirm previous findings that specific neuronal morphological abnormalities can be observed among individuals with SSD. The non-linear associations between neuronal alterations and positive and negative symptomatology suggested that higher pronounced SSD severity appears to be particularly related to morphological changes. Disease duration and RNFL thickness were linearly associated, though, in opposite directions depending on the chronic or acute state.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Hamadan University of Medical Sciences. Department of Ophthalmology, Hamadan, Iran
| | - Yegane Delborde
- Hamadan University of Medical Sciences. Research Center for Behavioral Disorders and Substances Abuse. Hamadan, Iran
| | - Mohammad Ahmadpanah
- Hamadan University of Medical Sciences. Research Center for Behavioral Disorders and Substances Abuse. Hamadan, Iran
| | | | - Leila Jahangard
- Hamadan University of Medical Sciences. Research Center for Behavioral Disorders and Substances Abuse. Hamadan, Iran
| | - Nooshin Bazzazi
- Hamadan University of Medical Sciences. Department of Ophthalmology, Hamadan, Iran.
| | - Serge Brand
- University of Basel Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders, Basel, Switzerland; University of Basel, Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, Basel, Switzerland; Kermanshah University of Medical Sciences (KUMS), Substance Abuse Prevention Research Center, Health Institute, Kermanshah, Iran; Kermanshah University of Medical Sciences (KUMS), Sleep Disorders Research Center, Health Institute, Kermanshah, Iran; Tehran University of Medical Sciences (TUMS), School of Medicine, Tehran, Iran.
| |
Collapse
|
39
|
Potential contribution of pineal atrophy and pineal cysts toward vulnerability and clinical characteristics of psychosis. NEUROIMAGE-CLINICAL 2021; 32:102805. [PMID: 34461434 PMCID: PMC8405969 DOI: 10.1016/j.nicl.2021.102805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies reported pineal gland atrophy in schizophrenia patients and individuals at a clinical high risk of developing psychosis, implicating abnormalities in melatonin secretion in the pathophysiology of psychosis. However, it currently remains unclear whether the morphology of the pineal gland contributes to symptomatology and sociocognitive functions. METHODS This MRI study examined pineal gland volumes and the prevalence of pineal cysts as well as their relationship with clinical characteristics in 57 at risk mental state (ARMS) subjects, 63 patients with schizophrenia, and 61 healthy controls. The Social and Occupational Functioning Assessment Scale (SOFAS), the Schizophrenia Cognition Rating Scale (SCoRS), and the Brief Assessment of Cognition in Schizophrenia (BACS) were used to assess sociocognitive functions, while the Positive and Negative Syndrome Scale was employed to evaluate clinical symptoms in ARMS subjects and schizophrenia patients. RESULTS Pineal gland volumes were significantly smaller in the ARMS and schizophrenia groups than in the controls, while no significant differences were observed in the prevalence of pineal cysts. Although BACS, SCoRS, and SOFAS scores were not associated with pineal morphology, patients with pineal cysts in the schizophrenia group exhibited severe positive psychotic symptoms with rather mild negative symptoms. CONCLUSION The present results indicate the potential of pineal atrophy as a vulnerability marker in various stages of psychosis and suggest that pineal cysts influence the clinical subtype of schizophrenia.
Collapse
|
40
|
Waszczuk K, Rek-Owodziń K, Tyburski E, Mak M, Misiak B, Samochowiec J. Disturbances in White Matter Integrity in the Ultra-High-Risk Psychosis State-A Systematic Review. J Clin Med 2021; 10:jcm10112515. [PMID: 34204171 PMCID: PMC8201371 DOI: 10.3390/jcm10112515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a severe and disabling mental illness whose etiology still remains unclear. The available literature indicates that there exist white matter (WM) abnormalities in people with schizophrenia spectrum disorders. Recent developments in modern neuroimaging methods have enabled the identification of the structure, morphology, and function of the underlying WM fibers in vivo. The purpose of this paper is to review the existing evidence about WM abnormalities in individuals at ultra-high risk of psychosis (UHR) with the use of diffusion tensor imaging (DTI) available from the National Center for Biotechnology Information PubMed (Medline) and Health Source: Nursing/Academic Edition databases. Of 358 relevant articles identified, 25 papers published in the years 2008–2020 were ultimately included in the review. Most of them supported the presence of subtle aberrations in WM in UHR individuals, especially in the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF). These alterations may therefore be considered a promising neurobiological marker for the risk of psychosis. However, due to methodological discrepancies and the relative scarcity of evidence, further investigation is called for, especially into connectome analysis in UHR patients.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
- Correspondence: ; Tel./Fax: +48-91-35-11-358
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.)
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, Tadeusza Kutrzeby 10 Street, 61-719 Poznan, Poland;
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, K. Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
| |
Collapse
|
41
|
Sampedro F, Roldán A, Alonso-Solís A, Grasa E, Portella MJ, Aguilar EJ, Núñez-Marín F, Gómez-Ansón B, Corripio I. Grey matter microstructural alterations in schizophrenia patients with treatment-resistant auditory verbal hallucinations. J Psychiatr Res 2021; 138:130-138. [PMID: 33852993 DOI: 10.1016/j.jpsychires.2021.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/07/2023]
Abstract
Treatment-resistant auditory verbal hallucinations (TRAVH) are a relatively prevalent and devastating symptom in patients with schizophrenia (SCZ). Even though their pathological mechanisms are poorly understood, they seem to differ from those underlying non-hallucinating SCZ. In this study, we characterise structural brain changes in SCZ patients with TRAVH. With respect to non-hallucinating patients and healthy controls, we studied macrostructural grey matter changes through cortical thickness and subcortical volumetric data. Additionally, we analysed microstructural differences across groups using intracortical and subcortical mean diffusivity data. This latter imaging metric has been claimed to detect incipient neuronal damage, as water can diffuse more freely in regions with reduced neural density. We found brain macrostructrural and microstructural alterations in SCZ patients with TRAVH (n = 29), both with respect to non-hallucinating (n = 20) patients and healthy controls (n = 27). Importantly, a microstructural -rather than a macrostructural- compromise was found in key brain regions such as the ventral ACC, the NAcc and the hippocampus. These microstructural alterations correlated, in turn, with clinical severity. TRAVH patients also showed accentuated age-related cortical deterioration and an abnormal longitudinal loss of cortical integrity over a one-year period. These findings highlight the potential role of microstructural imaging biomarkers in SCZ. Notably, they could be used both to detect and to monitor subtle grey matter alterations in critical brain regions such as deep brain stimulation targets. Moreover, our results support the existence of a more aggressive and active pathological mechanism in patients with TRAVH, providing new insight into the aetiology of this debilitating illness.
Collapse
Affiliation(s)
- Frederic Sampedro
- Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Spain
| | - Alexandra Roldán
- Psychiatry Department, Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau; Universitat Autònoma de Barcelona (UAB), Department of Psychiatry and Forensic Medicine, Barcelona, Spain
| | - Anna Alonso-Solís
- Psychiatry Department, Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau; Universitat Autònoma de Barcelona (UAB), Department of Psychiatry and Forensic Medicine, Barcelona, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain.
| | - Eva Grasa
- Psychiatry Department, Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau; Universitat Autònoma de Barcelona (UAB), Department of Psychiatry and Forensic Medicine, Barcelona, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain
| | - Maria J Portella
- Psychiatry Department, Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau; Universitat Autònoma de Barcelona (UAB), Department of Psychiatry and Forensic Medicine, Barcelona, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain
| | - Eduardo J Aguilar
- Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain; INCLIVA, School of Medicine, University of Valencia, Valencia, Spain
| | - Fidel Núñez-Marín
- Neuroradiology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB) Barcelona, Spain
| | - Beatriz Gómez-Ansón
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Spain; Neuroradiology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB) Barcelona, Spain
| | - Iluminada Corripio
- Psychiatry Department, Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau; Universitat Autònoma de Barcelona (UAB), Department of Psychiatry and Forensic Medicine, Barcelona, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain
| |
Collapse
|
42
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
43
|
Tronchin G, McPhilemy G, Ahmed M, Kilmartin L, Costello L, Forde NJ, Nabulsi L, Akudjedu TN, Holleran L, Hallahan B, Cannon DM, McDonald C. White matter microstructure and structural networks in treatment-resistant schizophrenia patients after commencing clozapine treatment: A longitudinal diffusion imaging study. Psychiatry Res 2021; 298:113772. [PMID: 33556689 DOI: 10.1016/j.psychres.2021.113772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
This study investigates changes on white matter microstructure and neural networks after 6 months of switching to clozapine in schizophrenia patients compared to controls, and whether any changes are related to clinical variables. T1 and diffusion-weighted MRI images were acquired at baseline before commencing clozapine and after 6 months of treatment for 22 patients with treatment-resistant schizophrenia and 23 controls. The Tract-based spatial statistics approach was used to compare changes over time between groups in fractional anisotropy (FA). Changes in structural network organisation weighted by FA and number of streamlines were assessed using graph theory. Patients displayed a significant reduction of FA over time (p<0.05) compared to controls in the genu and body of the corpus callosum and bilaterally in the anterior and superior corona radiata. There was no correlation between FA change in patients and changes in clinical variables or serum level of clozapine. There was no changes in structural network organisation between groups (F(7,280)=2.80;p = 0.187). This longitudinal study demonstrated progressive focal FA abnormalities in key anterior tracts, but preserved brain structural network organisation in patients. The FA reduction was independent of any clinical measures and may reflect progression of the underlying pathophysiology of this malignant form of schizophrenia illness.
Collapse
Affiliation(s)
- Giulia Tronchin
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Mohamed Ahmed
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Liam Kilmartin
- College of Science and Engineering, National University of Ireland Galway, Galway, Republic of Ireland
| | - Laura Costello
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Natalie J Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Institute of Medical Imaging & Visualisation, Faculty of Health & Social Science, Bournemouth University, Bournemouth, United Kingdom
| | - Laurena Holleran
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| |
Collapse
|
44
|
Lin X, Li W, Dong G, Wang Q, Sun H, Shi J, Fan Y, Li P, Lu L. Characteristics of Multimodal Brain Connectomics in Patients With Schizophrenia and the Unaffected First-Degree Relatives. Front Cell Dev Biol 2021; 9:631864. [PMID: 33718367 PMCID: PMC7947240 DOI: 10.3389/fcell.2021.631864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Increasing pieces of evidence suggest that abnormal brain connectivity plays an important role in the pathophysiology of schizophrenia. As an essential strategy in psychiatric neuroscience, the research of brain connectivity-based neuroimaging biomarkers has gained increasing attention. Most of previous studies focused on a single modality of the brain connectomics. Multimodal evidence will not only depict the full profile of the brain abnormalities of patients but also contribute to our understanding of the neurobiological mechanisms of this disease. METHODS In the current study, 99 schizophrenia patients, 69 sex- and education-matched healthy controls, and 42 unaffected first-degree relatives of patients were recruited and scanned. The brain was parcellated into 246 regions and multimodal network analyses were used to construct brain connectivity networks for each participant. RESULTS Using the brain connectomics from three modalities as the features, the multi-kernel support vector machine method yielded high discrimination accuracies for schizophrenia patients (94.86%) and for the first-degree relatives (95.33%) from healthy controls. Using an independent sample (49 patients and 122 healthy controls), we tested the model and achieved a classification accuracy of 64.57%. The convergent pattern within the basal ganglia and thalamus-cortex circuit exhibited high discriminative power during classification. Furthermore, substantial overlaps of the brain connectivity abnormality between patients and the unaffected first-degree relatives were observed compared to healthy controls. CONCLUSION The current findings demonstrate that decreased functional communications between the basal ganglia, thalamus, and the prefrontal cortex could serve as biomarkers and endophenotypes for schizophrenia.
Collapse
Affiliation(s)
- Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - WeiKai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangheng Dong
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Qiandong Wang
- Department of Psychology, Beijing Normal University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
45
|
Liloia D, Brasso C, Cauda F, Mancuso L, Nani A, Manuello J, Costa T, Duca S, Rocca P. Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: A revised coordinate-based meta-analysis. Neurosci Biobehav Rev 2021; 123:83-103. [PMID: 33497790 DOI: 10.1016/j.neubiorev.2021.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Characterizing neuroanatomical markers of different stages of schizophrenia (SZ) to assess pathophysiological models of how the disorder develops is an important target for the clinical practice. We performed a meta-analysis of voxel-based morphometry studies of genetic and clinical high-risk subjects (g-/c-HR), recently diagnosed (RDSZ) and chronic SZ patients (ChSZ). We quantified gray matter (GM) changes associated with these four conditions and compared them with contrast and conjunctional data. We performed the behavioral analysis and networks decomposition of alterations to obtain their functional characterization. Results reveal a cortical-subcortical, left-to-right homotopic progression of GM loss. The right anterior cingulate is the only altered region found altered among c-HR, RDSZ and ChSZ. Contrast analyses show left-lateralized insular, amygdalar and parahippocampal GM reduction in RDSZ, which appears bilateral in ChSZ. Functional decomposition shows involvement of the salience network, with an enlargement of the sensorimotor network in RDSZ and the thalamus-basal nuclei network in ChSZ. These findings support the current neuroprogressive models of SZ and integrate this deterioration with the clinical evolution of the disease.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Claudio Brasso
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Paola Rocca
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| |
Collapse
|
46
|
Nath M, Wong TP, Srivastava LK. Neurodevelopmental insights into circuit dysconnectivity in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110047. [PMID: 32721441 DOI: 10.1016/j.pnpbp.2020.110047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Schizophrenia is increasingly being recognized as a disorder of brain circuits of developmental origin. Animal models, however, have been technically limited in exploring the effects of early developmental circuit abnormalities on the maturation of the brain and associated behavioural outputs. This review discusses evidence of the developmental emergence of circuit abnormalities in schizophrenia, followed by a critical assessment on how animal models need to be adapted through optimized tools in order to spatially and temporally manipulate early developmental events, thereby providing insight into the causal contribution of developmental perturbations to schizophrenia.
Collapse
Affiliation(s)
- Moushumi Nath
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada.
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| |
Collapse
|
47
|
Schoorl J, Barbu MC, Shen X, Harris MR, Adams MJ, Whalley HC, Lawrie SM. Grey and white matter associations of psychotic-like experiences in a general population sample (UK Biobank). Transl Psychiatry 2021; 11:21. [PMID: 33414383 PMCID: PMC7791107 DOI: 10.1038/s41398-020-01131-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023] Open
Abstract
There has been a substantial amount of research reporting the neuroanatomical associations of psychotic symptoms in people with schizophrenia. Comparatively little attention has been paid to the neuroimaging correlates of subclinical psychotic symptoms, so-called "psychotic-like experiences" (PLEs), within large healthy populations. PLEs are relatively common in the general population (7-13%), can be distressing and negatively affect health. This study therefore examined gray and white matter associations of four different PLEs (auditory or visual PLEs, and delusional ideas about conspiracies or communications) in subjects of the UK Biobank study with neuroimaging data (N = 21,390, mean age = 63 years). We tested for associations between any PLE (N = 768) and individual PLEs with gray and white matter brain structures, controlling for sex, age, intracranial volume, scanning site, and position in the scanner. Individuals that reported having experienced auditory hallucinations (N = 272) were found to have smaller volumes of the caudate, putamen, and accumbens (β = -0.115-0.134, pcorrected = 0.048-0.036), and reduced temporal lobe volume (β = -0.017, pcorrected = 0.047) compared to those that did not. People who indicated that they had ever believed in unreal conspiracies (N = 111) had a larger volume of the left amygdala (β = 0.023, pcorrected = 0.038). Individuals that reported a history of visual PLEs (N = 435) were found to have reduced white matter microstructure of the forceps major (β = -0.029, pcorrected = 0.009), an effect that was more marked in participants who reported PLEs as distressing. These associations were not accounted for by diagnoses of psychotic or depressive illness, nor the known risk factors for psychotic symptoms of childhood adversity or cannabis use. These findings suggest altered regional gray matter volumes and white matter microstructure in association with PLEs in the general population. They further suggest that these alterations may appear more frequently with the presentation of different psychotic symptoms in the absence of clinically diagnosed psychotic disorders.
Collapse
Affiliation(s)
- Julie Schoorl
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Miruna C Barbu
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Xueyi Shen
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Mat R Harris
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Mark J Adams
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Heather C Whalley
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK.
| |
Collapse
|
48
|
Farnia V, Farshchian F, Farshchian N, Alikhani M, Sadeghi Bahmani D, Brand S. Comparisons of Voxel-Based Morphometric Brain Volumes of Individuals with Methamphetamine-Induced Psychotic Disorder and Schizophrenia Spectrum Disorder and Healthy Controls. Neuropsychobiology 2020; 79:170-178. [PMID: 31794972 DOI: 10.1159/000504576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/03/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Several psychological and neurological pathways are described to explain the emergence and maintenance of psychiatric disorders, and changes in brain volumes and brain activity are observed as correlates of psychiatric disorders. In the present study, we investigated if and to what extent specific voxel-based morphometric brain volume differences could be observed among individuals with methamphetamine-induced psychosis (MAIP) and schizophrenia spectrum disorder (SSD) compared to healthy controls. METHODS A total of 69 individuals took part in the present study. Of those, 26 were diagnosed with MAIP, 23 with SSD, and 20 were healthy controls. After a thorough psychiatric assessment, participants underwent brain volume measurement. RESULTS Compared to healthy controls, participants with MAIP had smaller volumes for left caudate and left and right parahippocampal gyrus. Compared to healthy controls, participants with SSD had smaller volumes for the gray and white matter, left amygdala, left hippocampus, left parahippocampal gyrus, left putamen, and the total volume. Compared to individuals with MAIP, individuals with SSD had a lower white matter brain volume. CONCLUSIONS The pattern of results suggests that individuals with MAIP and SSD showed specific and regional brain atrophies on the left hemisphere, always compared to healthy controls. Given the cross-sectional design, it remains undisclosed if specific and regional brain atrophies were the cause or the consequence of the psychiatric issues.
Collapse
Affiliation(s)
- Vahid Farnia
- Department of Psychiatry, Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Firoozeh Farshchian
- Department of Psychiatry, Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Farshchian
- Department of Radiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Alikhani
- Department of Psychiatry, Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dena Sadeghi Bahmani
- Department of Psychiatry, Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,University of Basel, Psychiatric Clinics (UPK), Center for Affective, Stress, and Sleep Disorders (ZASS), Basel, Switzerland.,Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Serge Brand
- Department of Psychiatry, Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran, .,University of Basel, Psychiatric Clinics (UPK), Center for Affective, Stress, and Sleep Disorders (ZASS), Basel, Switzerland, .,University of Basel, Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, Basel, Switzerland,
| |
Collapse
|
49
|
Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis. Pharmacol Rep 2020; 73:43-56. [PMID: 33125677 PMCID: PMC7862529 DOI: 10.1007/s43440-020-00177-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.
Collapse
|
50
|
Su W, Zhu T, Xu L, Wei Y, Zeng B, Zhang T, Cui H, Wang J, Jia Y, Wang J, Goff DC, Tang Y, Wang J. Effect of DAOA genetic variation on white matter alteration in corpus callosum in patients with first-episode schizophrenia. Brain Imaging Behav 2020; 15:1748-1759. [PMID: 32748316 DOI: 10.1007/s11682-020-00368-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
D-amino acid oxidase activator (DAOA) gene, which plays a crucial role in the process of glutamatergic transmission and mitochondrial function, is frequently linked with the liability for schizophrenia. We aimed to investigate whether the variation of DAOA rs2391191 is associated with alterations in white matter integrity of first-episode schizophrenia (FES) patients; and whether it influences the association between white matter integrity, cognitive function and clinical symptoms of schizophrenia. Forty-six patients with FES and forty-nine healthy controls underwent DTI and were genotyped for DAOA rs2391191. Psychopathological assessments were performed by Brief Psychiatric Rating Scale (BPRS) and Scale for Assessment of Negative Symptoms (SANS). Cognitive function was assessed by MATRICS Consensus Cognitive Battery (MCCB). Schizophrenia patients presented lower fractional anisotropy (FA) and higher radial diffusivity (RD), mainly spreading over the corpus callosum and corona radiata compared with healthy controls. Compared with patients carrying G allele, patients with AA showed lower FA in the body of corpus callosum, and higher RD in the genu of corpus callosum, right superior and anterior corona radiata, and left posterior corona radiata. In patients carrying G allele, FA in body of corpus callosum was positively correlated with working memory, RD in genu of corpus callosum was negatively associated with the speed of processing, working memory, and the composite score of MCCB, while no significant correlations were found in AA homozygotes. In our study, patients with FES presented abnormal white matter integrity in corpus callosum and corona radiata. Furthermore, this abnormality was associated with the genetic variation of DAOA rs2391191, with AA homozygotes showing less white matter integrity in the corpus callosum. Our findings possibly provide further support to the evidence that DAOA regulates the process of glutamatergic neurotransmission and mitochondrial function in the pathophysiological mechanism of schizophrenia.
Collapse
Affiliation(s)
- Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianyuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Botao Zeng
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, 266034, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jinhong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Donald C Goff
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Beijing, China. .,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|