1
|
Shao J, Wang X, Liu Q, Lv H, Qi Q, Li C, Zhang J, Chen X, Chen X. Eucommia ulmoides leaf extracts combined with Astragalus polysaccharides: Effects on growth, antioxidant capacity, and intestinal inflammation in juvenile large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110229. [PMID: 40015491 DOI: 10.1016/j.fsi.2025.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Eucommia ulmoides leaf extract (ELE) and Astragalus polysaccharides (APS) have been widely used as immunopotentiators in aquaculture. Our prior research on large yellow croaker (Larimichthys crocea) demonstrated that dietary 1 g/kg APS bolstered fish immunity and antioxidant defense. However, the combined effect of ELE and APS in juvenile large yellow croaker remains unknown. Hence, this study aimed to investigate the synergistic effect of ELE and APS on the growth, antioxidant capacity, and intestinal inflammation in large yellow croaker. A total of 1200 fish were divided into five groups and fed diets with 1 g/kg APS and varying ELE levels: 0 g/kg (ELE0), 0.25 g/kg (ELE0.25), 0.5 g/kg (ELE0.5), 1 g/kg (ELE1), and 2 g/kg (ELE2). After an 8-week feeding period, the ELE0.5 and ELE1 groups showed superior weight gain rate, specific growth rate, and feed efficiency compared to other groups. The ELE1 group also had elevated trypsin and lipase activities in the intestine, whereas α-amylase activity was not influenced by ELE addition. Antioxidant enzyme activities, such as hepatopancreas superoxide dismutase (SOD) and glutathione peroxidase (GPX) in the ELE1 group were significantly enhanced, while malondialdehyde (MDA) levels decreased with increasing ELE. Intestinal morphology revealed the highest villi height in proximal and distal intestines of ELE1 group, with no significant change in mucosal thickness. In terms of cytokines, the ELE1 group showed significant down-regulation of pro-inflammatory (tnf-α, il-1β and il-6) and up-regulation of anti-inflammatory (il-4/13a, il-10 and tgf-β) markers, modulated by MAPK and mTOR signaling. In conclusion, this study indicates that supplementing diets with 1 g/kg ELE alongside 1 g/kg APS in juvenile large yellow croaker offers the best synergistic effect on fish immunity, including enhanced growth, antioxidant capacity, and relieved intestinal inflammation through MAPK and mTOR signaling.
Collapse
Affiliation(s)
- Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China
| | - Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China
| | - Qianqian Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Lv
- Beijing Engineering Technology Research Center for Traditional Chinese Veterinary Medicine, Beijing Centre Biology Co., Ltd., Beijing, 100000, China
| | - Qiong Qi
- Beijing Engineering Technology Research Center for Traditional Chinese Veterinary Medicine, Beijing Centre Biology Co., Ltd., Beijing, 100000, China
| | - Changhui Li
- Key Laboratory of Special Aquatic Formula Feed of Fujian Province, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou, 350002, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Formula Feed of Fujian Province, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou, 350002, China
| | - Xiaojuan Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Zhao YY, Wang XY, Jiang KF, Zhou QQ, Ma YB, Li YX, Li XB, Zhang C. Astragalus polysaccharide mitigates Eimeria tenella-induced damage in laying chicks by modulating immunity, inflammation, and intestine barrier. J Anim Sci 2025; 103:skaf080. [PMID: 40125653 PMCID: PMC12048863 DOI: 10.1093/jas/skaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Astragalus polysaccharides (APS), the main active component of the traditional Chinese medicine Astragalus, exhibit immunomodulatory and antioxidant properties. This study analyzed the preventive and therapeutic effects of APS on chicks infected with Eimeria tenellaE. tenella and its impact on intestinal health. A total of 120 1-d-old Hy-Line Brown chicks were assigned to four groups (2 × 2 factorial): 1) Control (0 mg/L APS + 0 sporulated oocysts/chick), 2) APS (1,000 mg/L APS + 0 sporulated oocysts/chick), 3) E. tenellaE. tenella (0 mg/L APS + 5 × 104 sporulated oocysts/chick), 4) E. tenella + APS (1,000 mg/L APS + 5 × 104 sporulated oocysts/chick). The results showed that the addition of APS to the drinking water increased the average daily gain and body weight (day 25) while reduced feed conversion ratio in E. tenella-infected chicks (P < 0.05). APS mitigated cecal lesions (P < 0.05), decreased oocyst shedding (P < 0.05), lowered spleen index (P < 0.05), and elevated bursa and thymus indices (P < 0.05). Serum total protein and alkaline phosphatase activity increased (P < 0.05). Cecal tissue mRNA expression of IL-2, IgG, IgM, Claudin1, Claudin2, ZO-1, and Occludin were increased (P < 0.05), whereas IL-1β, TNF-α, and NF-κB were decreased (P < 0.05). APS enriched cecal f_Lactobacillaceae, g_Lactobacillus, g_Tuzzerella, g_Oscillospira, and g_UBA1819 (P < 0.05). Furthermore, the anticoccidial index (142.10) indicated low-level efficacy. In conclusion, APS alleviated E. tenella damage by modulating immunity, inflammation, microbiota, and intestinal barriers. Although APS demonstrated limited direct anticoccidial activity, its multifaceted protective effects suggest potential in the prevention and treatment of coccidiosis.
Collapse
Affiliation(s)
- Yi Yi Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
- Yunnan Province Nutrition and Metabolic Diseases Research Laboratory, Yunnan Agricultural University, Kunming, PR China
| | - Xue Ying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Kang Feng Jiang
- Yunnan Province Nutrition and Metabolic Diseases Research Laboratory, Yunnan Agricultural University, Kunming, PR China
| | - Qing Qing Zhou
- Yunnan Province Nutrition and Metabolic Diseases Research Laboratory, Yunnan Agricultural University, Kunming, PR China
| | - Yan Bo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Yuan Xiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Xiao Bing Li
- Yunnan Province Nutrition and Metabolic Diseases Research Laboratory, Yunnan Agricultural University, Kunming, PR China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| |
Collapse
|
3
|
Li Y, Zhou J, Guo T, Zhang H, Cao C, Cai Y, Zhang J, Li T, Zhang J. Effects of adding a kind of compound bio-enzyme to the diet on the production performance, serum immunity, and intestinal health of Pekin ducks. Poult Sci 2025; 104:104506. [PMID: 39700598 PMCID: PMC11720614 DOI: 10.1016/j.psj.2024.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
The use of bio-enzyme as feed additives holds significant potential. This study aimed to evaluate the impact of a kind of compound bio-enzyme supplementation (the main functional components are probiotics and astragalus polysaccharides) on the production performance, serum immunity, and intestinal health of Pekin ducks. A total of 126 male Pekin ducks were randomly assigned to three groups: a control group (CG, no additive), a low-dose group (LG, 0.1 % bio-enzyme), and a high-dose group (HG, 0.2 % bio-enzyme), with 6 replicates per group. Ducks were raised until 35 days of age, with weekly measurements of growth performance. At day 35, serum immunoglobulins were measured, carcass traits were recorded, and cecal contents were analyzed using 16S rRNA sequencing and metabolomics. Results indicated a significant increase in ADG (P = 0.049) and a decrease in feed-to-gain ratio (F:G) (P = 0.020) in LG and HG compared to CG during rearing. The HG showed a notable improvement in half eviscerated yield (HEY) (P = 0.023) and full eviscerated yield (FEY) (P = 0.008). No substantial changes were observed in immunological parameters (P > 0.05). The jejunal villus height to crypt depth ratio (VH/CD) significantly increased (P < 0.001) in LG, with notable improvements in duodenal (P = 0.001) and jejunal (P < 0.001) VH/CD in HG. The Shannon index (P = 0.042) and Pielou index (P = 0.038) of cecal microbiota were markedly lower in HG. Notable changes in the relative abundance of Firmicutes and Bacteroidota were observed in LG and HG. Differential bacteria and metabolites among the treatments were identified, and their correlations were analyzed. KEGG enrichment pathways of the metabolites were also identified. In conclusion, this bio-enzyme can improve production performance, intestinal wall structure, and microbiota in Pekin ducks. A 0.1 % concentration of this bio-enzyme is optimal for Pekin duck production.
Collapse
Affiliation(s)
- Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jie Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Tong Guo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Huiya Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
4
|
Lu C, Xiang Y, Xu K, Gao F, Zhu S, Lou F, Liu L, Peng X. Tetrastigma hemsleyanum as a feed additive: modulating gut microbiota for enhancing nutritional transport and growth performance in Jinhua yellow chickens. Poult Sci 2025; 104:104652. [PMID: 39689478 PMCID: PMC11719338 DOI: 10.1016/j.psj.2024.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
Tetrastigma hemsleyanum (TH) has attracted much attention for its heat clearing and detoxification effects, but whether it can become an effective feed supplement in chickens remains unclear. Herein, a total of 120 male Jinhua yellow chickens (two-mth-old) were randomly divided into into four groups (CON, TH-L, TH-M, and TH-H) for a 56-day feeding trial to explore its effects on growth performance and underlying mechanism. Results revealed that dietary TH notably increased the average daily growth (ADG), and decreased the average daily feed intake (ADFI) and feed conversion ratio (FCR) in TH-H group during 29-56 days. Meanwhile, dietary TH improved the development of duodenum and notably increased the contents of essential amino acids and flavor amino acids, while the serum oxidation stress index as well as abdominal fat deposition were not affected in Jinhua yellow chickens. Additionally, TH supplementation notably increased gut microbiota richness, then selectively increased the colonization of potential probiotics and the microbial abundance associated to amino acid synthesis and metabolic pathways in duodenum. Furthermore, qPCR analysis results preliminarily verified that dietary TH not only enhanced intestinal amino acids (rBAT and EAAT3) and peptides (PepT1 and APN) transport but also alleviated the inflammation (IL-1β, IL-6 and IFN-γ), thus thereby improved intestinal development and growth performance in Jinhua yellow chickens. These findings demonstrated that TH is a feed additive that can improve growth performance, muscle amino acids composition and intestinal development.
Collapse
Affiliation(s)
- Chao Lu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China
| | - Yun Xiang
- Academy of Agriculture Science Research Jinhua city, Jinhua, 321017, PR China
| | - Kewei Xu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China
| | - Fengrui Gao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Shaofeng Zhu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China
| | - Fangfang Lou
- Academy of Agriculture Science Research Jinhua city, Jinhua, 321017, PR China
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China.
| |
Collapse
|
5
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
6
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
7
|
Lee IY, Wang TC, Kuo YJ, Shih WT, Yang PR, Hsu CM, Lin YS, Kuo RS, Wu CY. Astragalus Polysaccharides and Metformin May Have Synergistic Effects on the Apoptosis and Ferroptosis of Lung Adenocarcinoma A549 Cells. Curr Issues Mol Biol 2024; 46:7782-7794. [PMID: 39194678 DOI: 10.3390/cimb46080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Astragalus polysaccharides (APSs), the compounds extracted from the common herb Astragalus membranaceus, have been extensively studied for their antitumor properties. In this study, we investigated the effect of APS on lung adenocarcinoma A549 cells. The effects of APS and the anti-diabetic drug metformin on apoptosis and ferroptosis were compared. Furthermore, the combination treatment of APS and metformin was also investigated. We found that APS not only reduced the growth of lung cancer cells but also had a synergistic effect with metformin on A549 cells. The study results showed that it may be promising to use APS and metformin as a combination therapy for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Chung Wang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Jen Kuo
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ren-Shyang Kuo
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
8
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
10
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
11
|
Liu B, Ma R, Yang Q, Yang Y, Fang Y, Sun Z, Song D. Effects of Traditional Chinese Herbal Feed Additive on Production Performance, Egg Quality, Antioxidant Capacity, Immunity and Intestinal Health of Laying Hens. Animals (Basel) 2023; 13:2510. [PMID: 37570319 PMCID: PMC10417022 DOI: 10.3390/ani13152510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Chinese herbs have been used as feed additives in animal production. This study investigated the effects of a Chinese herbal feed-additive (TCM, which contained Elsholtzia ciliate, Atractylodes macrocephala, Punica granatum pericarpium, and Cyperus rotundus) on the production performance, egg quality, antioxidant capacity, immunity, and intestinal health of Roman laying hens. A total of 720 28-week-old hens were randomly allotted to three groups with six replicates of forty hens each. The groups were fed a basal diet (CON group), a basal diet with 50 mg/kg zinc bacitracin (ABX group), or a basal diet with 400 mg/kg TCM (TCM group) for 56 days. The results showed that the TCM group increased egg production, egg mass, albumen height, and Haugh unit compared with the CON group (p < 0.05). There were no significant differences in egg weight, feed intake, feed conversion rate, and eggshell strength among all three groups (p > 0.05). Compared with the CON group, the TCM group enhanced the activities of glutathione peroxidase, total antioxidant capacity, and superoxide dismutase in serum and liver, and reduced malondialdehyde content (p < 0.05). The TCM also increased the levels of interleukin-2, interferon-γ, immunoglobulin A, immunoglobulin M, and immunoglobulin G, and decreased the levels of interleukin-6 and interleukin-8 compared with the CON group (p < 0.05). Furthermore, the TCM group increased jejunal goblet cell density and decreased ileal crypt depth and lymphocyte density compared with the CON group (p < 0.05). The results of 16S rRNA demonstrated that the TCM can change the diversity and composition of intestinal microbiota. At the phylum level, the abundance of Bacteroides increased while that of Firmicutes decreased in the TCM group (p > 0.05). At the genus level, the abundance of Lactobacillus, Rikenellaceae_RC9_gut_group, and Phascolarctobacterium increased while that of Bacteroides and unclassified_o__Bacteroidales decreased in the TCM group (p > 0.05). The effects of ABX were weaker than those of the TCM. In conclusion, the TCM has positive effects on production performance and the intestinal health of hens.
Collapse
Affiliation(s)
- Baiheng Liu
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Ruyue Ma
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Qinlin Yang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - You Yang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Yuanjing Fang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Daijun Song
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| |
Collapse
|
12
|
Lactobacillus salivarius WZ1 Inhibits the Inflammatory Injury of Mouse Jejunum Caused by Enterotoxigenic Escherichia coli K88 by Regulating the TLR4/NF-κB/MyD88 Inflammatory Pathway and Gut Microbiota. Microorganisms 2023; 11:microorganisms11030657. [PMID: 36985229 PMCID: PMC10055675 DOI: 10.3390/microorganisms11030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Replacing antibiotics with probiotics has become an important way to safely and effectively prevent and treat some gastrointestinal diseases. This study was conducted to investigate whether Lactobacillus salivarius WZ1 (L.S) could reduce the inflammatory injury to the mouse jejunum induced by Escherichia coli (ETEC) K88. Forty Kunming mice were randomly divided into four groups with 10 mice in each group. From day 1 to day 14, the control group and the E. coli group were administered with normal saline each day, while the L.S group and the L.S + E. coli group were gavaged with Lactobacillus salivarius WZ1 1 × 108 CFU/mL each day. On the 15th day, the E. coli group and the L.S + E. coli group were intragastrically administered ETEC K88 1 × 109 CFU/mL and sacrificed 24 h later. Our results show that pretreatment with Lactobacillus salivarius WZ1 can dramatically protect the jejunum morphological structure from the changes caused by ETEC K88 and relieve the morphological lesions of the jejunum, inhibiting changes in the mRNA expressions of TNF-α, IL-1β and IL-6 and the protein expressions of TLR4, NF-κB and MyD88 in the intestinal tissue of mice caused by ETEC K88. Moreover, pretreatment with Lactobacillus salivarius WZ1 also increased the relative abundance of beneficial genera such as Lactobacillus and Bifidobacterium and decreased the abundance of harmful genera such as Ralstonia and Helicobacter in the gut. These results demonstrate that Lactobacillus salivarius WZ1 can inhibit the inflammatory damage caused by ETEC K88 in mouse jejunum by regulating the TLR4/NF-κB/MyD88 inflammatory pathway and gut microbiota.
Collapse
|
13
|
Tannic Acid Induces Intestinal Dysfunction and Intestinal Microbial Dysregulation in Brandt's Voles ( Lasiopodomys brandtii). Animals (Basel) 2023; 13:ani13040586. [PMID: 36830373 PMCID: PMC9951651 DOI: 10.3390/ani13040586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Brandt's vole (Lasiopodomys brandtii) is a small herbivorous mammal that feeds on plants rich in secondary metabolites (PSMs), including tannins. However, plant defense mechanisms against herbivory by Brandt's voles are not clearly established. This study aimed to investigate the effects of dietary tannic acid (TA) on the growth performance, intestinal morphology, digestive enzyme activities, cecal fermentation, intestinal barrier function, and gut microbiota in Brandt's voles. The results showed that TA significantly hindered body weight gain, reduced daily food intake, changed the intestinal morphology, reduced digestive enzyme activity, and increased the serum zonulin levels (p < 0.05). The number of intestinal goblet and mast cells and the levels of serum cytokines and immunoglobulins (IgA, IgG, TNF-α, IL-6, and duodenal SlgA) were all reduced by TA (p < 0.05). Moreover, TA altered β-diversity in the colonic microbial community (p < 0.05). In conclusion, the results indicate that TA could damage the intestinal function of Brandt's voles by altering their intestinal morphology, decreasing digestive ability and intestinal barrier function, and altering microbiota composition. Our study investigated the effects of natural PSMs on the intestinal function of wildlife and improved our general understanding of plant-herbivore interactions and the ecological role of PSMs.
Collapse
|
14
|
Progress of Studies on Plant-Derived Polysaccharides Affecting Intestinal Barrier Function in Poultry. Animals (Basel) 2022; 12:ani12223205. [PMID: 36428432 PMCID: PMC9686483 DOI: 10.3390/ani12223205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
As natural bioactive components, plant-derived polysaccharides have many biological functions, such as anti-inflammatory, antioxidant, anticoccidial, and immunity regulation, and have been widely used in poultry production. In this review paper, firstly, the sources and structures of plant-derived polysaccharides are reviewed; secondly, the effects of plant-derived polysaccharides on the intestinal microbiome, permeability, morphology and immune function of poultry are summarized; thirdly, the potential molecular regulation mechanism of plant-derived polysaccharides on the intestinal barrier function of poultry was preliminarily analyzed. The review paper will bring a basis for the scientific utilization of plant-derived polysaccharides in the poultry industry.
Collapse
|
15
|
Effects of Compound Chinese Herbal Medicine Additive on Growth Performance and Gut Microbiota Diversity of Zi Goose. Animals (Basel) 2022; 12:ani12212942. [PMID: 36359068 PMCID: PMC9655946 DOI: 10.3390/ani12212942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of CCHMA on growth performance, slaughter performance, serum biochemical indicators, intestinal morphology and microbiota of Zi goose. Initially, it was determined the optimal addition concentration of CCHMA to be 3 g/kg by the first feeding experiment. Then, 78 Zi geese were divided into control and CCHMA supplemented groups. The results showed that the body weight (BW) and average daily gain (ADG) of the CCHMA supplemented group was significantly increased (p < 0.05), and the feed/gain (F/G) of the CCHMA supplemented group was significantly decreased (p < 0.05) compared with the control group. The dressed yield percentage in the CCHMA supplemented group significantly increased by 0.78% (p < 0.05). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly lower in the CCHMA fed birds than in the control group (p < 0.05). Further, 16S rDNA gene sequencing conducted for cecal flora composition found that 3 g/kg CCHMA significantly increased the abundance of beneficial bacteria (CHKCI001, Colidextribacter and Subdoligranulum) (p < 0.05; p < 0.01) and suppressing harmful bacteria (Bacteroidetes and Methanobrevibacter) (p < 0.05) in the cecum of Zi goose. In conclusion, adding 3 g/kg of CCHMA in the diet can improve the growth performance, slaughter performance of Zi goose, and optimize the cecum microflora.
Collapse
|
16
|
Shi M, Chang Y, Cao M, Zhang J, Zhang L, Xie H, Miao Z. Effects of dietary yam polysaccharide on growth performance and
intestinal microflora in growing Huoyan geese. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/151561/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Liu C, Wang S, Xiang Z, Xu T, He M, Xue Q, Song H, Gao P, Cong Z. The chemistry and efficacy benefits of polysaccharides from Atractylodes macrocephala Koidz. Front Pharmacol 2022; 13:952061. [PMID: 36091757 PMCID: PMC9452894 DOI: 10.3389/fphar.2022.952061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.
Collapse
Affiliation(s)
- Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| |
Collapse
|
18
|
Liu H, Qi L, Tang X, Tan S, Gou Z, Qi J, Lu X, Li D, Chen C. Astragalus Polysaccharides Affect Glioblastoma Cells Through Targeting miR-34a-5p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study discussed Astragalus Polysaccharides (APS)’s effect on the cytobiology of glioma. U87 glioma cells were assigned into control group (U87 cells), miR-34a-5p mimic group (transfected with miR-34a-5p mimic), and APS group (treated with 10 μM APS) followed by
analysis of miR-34a-5p level, cell proliferation and invasion, Caspase3 and SOD activity as well as E-cadherin, Vimentin and survivn expression. APS treatment significantly upregulated miR-34a-5p expression, inhibits cell proliferation and invasion, and promoted cell apoptosis. In addition,
APS also significantly upregulated E-cadherin, downregulated Vimentin and survivn level in glioma cells as well as inhibited ROS generation and increased SOD activity. In conclusion, the level of miR-34a-5a in glioma cells is up-regulated by APS so as to restrain the biological behaviors of
glioma cells, indicating that it might be used as novel agent for the treatment of glioma.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lingjun Qi
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shasha Tan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhangyang Gou
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jian Qi
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xingyu Lu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Dong Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Chunbao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
19
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
20
|
Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poult Sci 2022; 101:101905. [PMID: 35576745 PMCID: PMC9117935 DOI: 10.1016/j.psj.2022.101905] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation of polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis on growth performance, intestinal health, and gut microbiota composition in broilers. A total of 480 one-day-old male Arbor Acres broilers were randomly divided into 4 treatments with 6 replicates comprising 20 broilers each. Treatments included: basal diet without antibiotics (CON); basal diet supplemented with 500 mg/kg terramycin calcium (ANT); basal diet supplemented with 300 mg/kg Astragalus membranaceus polysaccharides (APS); and basal diet supplemented with 150 mg/kg Glycyrrhiza uralensis polysaccharides (GPS). The results showed that ANT, AP,S and GPS supplementation significantly increased average daily gain (ADG) and decreased feed conversion ratio (FCR) of broilers from 1 to 42 d of age. At 42 d, serum immunoglobulin A (IgA), immunoglobulin M (IgM) and immunoglobulin G (IgG) levels of the APS and GPS group were notably higher than those of the CON group, while serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) as well as diamine oxidase (DAO) activity in the APS and GPS group were obviously decreased. Moreover, diets supplemented with APS and GPS could significantly increase villus height (VH) and the ratio of villus height to crypt depth (VH/CD) and remarkably upregulated occludin, claudin-1 and mucin-2 (MUC2) mRNA expression in duodenum, jejunum, and ileum of broilers. In addition, 16S rRNA gene sequencing revealed that APS and GPS supplementation altered cecal microbial diversity and composition in broilers. Higher Shannon index was observed in the APS and GPS group compared with the CON group, while GPS supplementation could also increase Chao1 index and Observed species. The result of Principal coordinate analysis (PCoA) showed that microbial community in the CON, ANT, APS, and GPS group clustered separately. Notably, both APS and GPS supplementation significantly decreased the abundance of Bacteroidetes, Bacteroides, Faecalibacterium, Desulfovibrio, and Butyricicoccus, while increased the abundance of Firmicutes, Prevotella, Parabacteroides, Ruminococcus, and Alistipes. The correlation analysis showed that the changes in cecal microbial composition induced by dietary APS and GPS supplementation were closely associated with the alteration of the phenotype of broilers including ADG, FCR, TNF-α, IL-1β, IL-6, IgA, IgG, DAO, Occludin, Claudin-1, ZO-1, and MUC2. In conclusion, polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis could improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota.
Collapse
|
21
|
Wang L, Wang A, Fu Q, Shi Z, Chen X, Wang Y, Xu W, Wang T, Zhang S, Hu S. Ferroptosis plays an important role in promoting ionizing radiation-induced intestinal injuries. Biochem Biophys Res Commun 2022; 595:7-13. [PMID: 35091109 DOI: 10.1016/j.bbrc.2022.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
Abstract
The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-β mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.
Collapse
MESH Headings
- 1-Acylglycerophosphocholine O-Acyltransferase/genetics
- 1-Acylglycerophosphocholine O-Acyltransferase/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Ferroptosis/drug effects
- Ferroptosis/physiology
- Ferroptosis/radiation effects
- Gene Expression/drug effects
- Gene Expression/radiation effects
- Glutathione/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/radiation effects
- Intestines/drug effects
- Intestines/pathology
- Intestines/radiation effects
- Male
- Malondialdehyde/metabolism
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Mitochondria/drug effects
- Mitochondria/radiation effects
- Mitochondria/ultrastructure
- Quinoxalines/pharmacology
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/physiopathology
- Radiation Injuries, Experimental/prevention & control
- Radiation, Ionizing
- Reverse Transcriptase Polymerase Chain Reaction
- Spiro Compounds/pharmacology
- Superoxide Dismutase/metabolism
- Mice
Collapse
Affiliation(s)
- Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
22
|
Liu J, Zhang P, Wang B, Lu Y, Li L, Li Y, Liu S. Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109249. [PMID: 34822998 DOI: 10.1016/j.cbpc.2021.109249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
This experiment was conducted to evaluate the immunomodulatory effect and antiviral activity of Astragalus polysaccharides (APS) in crucian carp and epithelioma papulosum cyprinid (EPC) cells. Two diets containing 0 and 2 g/kg, APS were fed crucian carp for 56 days. The results showed that supplementation with APS significantly upregulated the immune-related indices including the levels of IgM, the activities of LZM, AKP and ACP, and the contents of C3 and C4. At the same time, compared with the CK group, adding APS to the feed significantly upregulated the expression of IL-8, IL-10, IL-1β, IFN-α, IFN-γ, MyD88, TGF-β and TNF-α in the spleen, kidney, liver and intestine of crucian carp. In addition, when the crucian carp were injected with SVCV, the survival rates of fish in the APS group and the control group were 48.87% and 13.76%, respectively. These results indicated that dietary APS could improve the resistance of crucian carp against SVCV infection. APS also significantly decreased viral titer and inhibited apoptosis induced by SVCV in EPC cells. These results indicated that APS could stimulate the immune response of crucian carp and improve the abilities of crucian carp and EPC cells to resist SVCV infection.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Yuting Lu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
23
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
24
|
Liu Y, Jiang G, Huang X, Li C, Huang X, Zhang X, Lin Q, Liu S, Dai Q. Evaluation of serum antioxidative status, immune status and intestinal condition of Linwu duck challenged by lipopolysaccharide with various dosages and replications. Poult Sci 2021; 100:101199. [PMID: 34116351 PMCID: PMC8193623 DOI: 10.1016/j.psj.2021.101199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
The present study investigated the dosage and replication effects of lipopolysaccharide challenges on the serum oxidative and immune status, and the intestinal morphology and permeability of Linwu ducks at the growing stage. A total of 500 54-day-old Linwu ducks were randomly assigned into 10 treatments, which included a factorial arrangement of 2 levels of LPS challenge replications (1 and 2 times) × 5 levels of lipopolysaccharide challenging dosages (0, 0.1, 0.2, 0.4, and 0.8 mg/kg). Each treatment consisted of 5 cages and 10 ducks per cage. The results showed significant replication effects of LPS on the body weight gain of ducks, that 2 replicates of LPS challenges significantly decreased the body weight gain than one challenge (P = 0.036). Regarding to the serum oxidative and immune status, dosage effects of lipopolysaccharide were found on the serum levels of superoxide dismutase (P = 0.034) and immunoglobulin A (P = 0.007), that 0.4 mg/kg lipopolysaccharides significantly increased the levels of these 2 parameters. Additionally, replication effects were found in the serum levels of interlukin 1β, that 2 replicates of LPS challenges significantly increased the interlukin 1β levels comparing to one challenge (P = 0.010). Regarding to the intestinal conditions, dosage effects of lipopolysaccharides were found on the ratio of villus height and crypt depth (P = 0.005) in duodenum, and the wall thickness of duodenum (P = 0.010) and jejunum (P = 0.001), that lipopolysaccharides at 0.1, 0.2, and 0.8 mg/kg significantly deteriorated the intestinal morphologies, especially in the duodenum and jejunum. Moreover, the dosage effects of lipopolysaccharides and the interactions of dosages and replications significantly influenced the permeabilities of the intestinal segments (P < 0.05). It appeared that 2 replicates of lipopolysaccharides at the dosage at 0.4 mg/kg could trigger oxidative and immunological stress, and damage the intestinal morphology and permeability of Linwu ducks at the growing stage.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guitao Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Chuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Xuan Huang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Xu Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi 276000, China
| | - Qiuzhong Dai
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China.
| |
Collapse
|
25
|
Qader M, Xu J, Yang Y, Wu X, Liu Y, Cao S. Chemistry Behind the Immunomodulatory Activity of Astragalus membranaceus. CHINESE MEDICINE AND CULTURE 2021. [DOI: 10.4103/cmac.cmac_40_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|