1
|
Li Z, Kim E, Ko K, Liu A, Lee Y, Zhang G. Integrating microbiome and metabolome analyses to unravel the role of inulin in enhancing the meat quality and bone health of ducks. Sci Rep 2025; 15:15194. [PMID: 40307492 PMCID: PMC12044026 DOI: 10.1038/s41598-025-99693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Inulin, a natural dietary fiber, has various health-promoting bioactivities. However, the impacts of dietary inulin on duck productivity and overall health remain unclear. This study investigated the effects of inulin supplementation on systemic health and its underlying mechanisms by integrating the microbiota and metabolome analyses. One hundred twenty 16-day-old male Cherry Valley ducks with similar initial body weight (BW) were randomly assigned to 20 cages, with two treatments (6 ducks/cage and 10 cages/treatment): a basal diet (CON group) or a basal diet supplemented with 25 g inulin/kg (INU group). The 18-d feeding trials demonstrated that ducks fed the inulin-supplemented diet presented significantly improved growth performance, bone health, and meat quality compared with those in the control group (P < 0.05). Additionally, inulin supplementation reshaped the intestinal microbiota, increasing diversity and the abundance of Alistipes, Ligilactobacillus, and Streptococcus (P < 0.05). Metabolome analysis revealed that inulin feeding significantly modulated 13 metabolites (P < 0.05), which were enriched primarily in health-related metabolic pathways such as taurine and hypotaurine metabolism, steroid hormone biosynthesis, and histidine metabolism. Correlation analysis revealed a positive relationship among the modulated microbes and metabolites and improved healthy parameters. Overall, inulin supplementation improved the bone and muscle health of ducks by specifically modulating key gut microbes, metabolites, and associated metabolic pathways. These findings suggest that inulin supplementation represents a feasible nutritional strategy for improving the meat quality and bone health of intensively raised ducks.
Collapse
Affiliation(s)
- Zemin Li
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China
| | - Eunyoung Kim
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Kayeon Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
| | - Anxin Liu
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea.
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China.
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea.
| | - Guiguo Zhang
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China.
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China.
| |
Collapse
|
2
|
Boyner M, Ivarsson E, Hansen A, Lundén A, Ibrahim O, Söderlund R, Cervin G, Pavia H, Wattrang E. Effects of a laminarin-rich algal extract on caecal microbiota composition, leukocyte counts, parasite specific immune responses and growth rate during Eimeria tenella infection of broiler chickens. Vet Parasitol 2025; 334:110377. [PMID: 39709943 DOI: 10.1016/j.vetpar.2024.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Coccidiosis, infection with protozoan parasites of genus Eimeria, is a major problem in poultry husbandry world-wide. The disease is currently managed by coccidiostats and live vaccines, but these approaches are not sustainable. Hence, it is important to identify new means to control the infection and/or ameliorate its detrimental effects on gut health. Laminarin, a β-glucan found in marine brown algae, has prebiotic and bioactive properties that could be beneficial in coccidiosis control. The present study aimed to examine the potential of laminarin as an immunostimulatory and microbiota-regulatory compound in broiler chickens infected with E. tenella. Chickens were continuously fed a diet supplemented with a laminarin-rich algal extract (AE) from first feed and subsequently infected with E. tenella at 19 days old. The outcome of infection including caecal microbiota and some immune parameters were monitored during the experiment. Results showed that AE supplementation affected some lymphocyte subpopulations, with increased numbers of TCRγ/δ+CD8-, B-cells and CD4-CD8αβ+ cells and lower numbers of CD4+CD8αα+ cells in blood and increased proportions of CD4-CD8αβ+ spleen cells compared to those in control chickens. The AE diet did not affect parasite excretion, lesion scores or E. tenella specific T-cell responses. However, reductions of E. tenella induced contraction of Bifidobacteriaceae and expansion of Clostridiaceae in caecal microbiota were observed for AE fed chickens compared to chickens fed the control diet. Thus, AE feed supplementation induced some immunostimulatory activity in chickens and affected some of the alterations in caecal microbiota evoked by E. tenella infection.
Collapse
Affiliation(s)
- Malin Boyner
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. 7024, Uppsala SE 750 07, Sweden
| | - Emma Ivarsson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. 7024, Uppsala SE 750 07, Sweden.
| | - Alma Hansen
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. 7024, Uppsala SE 750 07, Sweden
| | - Anna Lundén
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden
| | - Osama Ibrahim
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden
| | - Robert Söderlund
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden; Department of Clinical Sciences, Veterinary Epidemiology Unit, Swedish University of Agricultural Sciences, P.O. 7054, Uppsala SE 750 07, Sweden
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad SE 452 96, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad SE 452 96, Sweden
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden
| |
Collapse
|
3
|
Goel A, Ncho CM, Jeong CM, Gupta V, Jung JY, Ha SY, Yang JK, Choi YH. Alleviation of Acute Heat Stress in Broiler Chickens by Dietary Supplementation of Polyphenols from Shredded, Steam-Exploded Pine Particles. Microorganisms 2025; 13:235. [PMID: 40005601 PMCID: PMC11858311 DOI: 10.3390/microorganisms13020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Reducing the detrimental effects of heat stress (HS) in poultry is essential to minimize production losses. The present study evaluates the effects of dietary polyphenols prepared from underutilized wood byproducts on the growth, gut health, and cecal microbiota in broilers subjected to acute heat stress (AHS). One hundred eight one-day-old Indian River broilers were fed with 0%, 0.5%, or 1% polyphenols from shredded, steam-exploded pine particles (PSPP) in their diet. On the 37th day, forty birds were equally distributed among four groups containing either a control diet at thermoneutral temperatures (NT0%) or AHS temperatures with 0% (AHS0%), 0.5% (AHS0.5%), and 1% (AHS1%) PSPP-supplemented diets. The temperature in the NT room was maintained at 21.0 °C, while, in the AHS room, it was increased to 31 °C. AHS negatively influenced performance parameters and increased rectal temperature (RT) in broilers. The AHS0% group showed a higher expression of NOX4, HSP-70, and HSP-90 genes, while the expression was lower in PSPP-supplemented birds. In the jejunum, mRNA expression of SOD was increased in all the birds under AHS compared to NT. The expression of the CLDN1 and ZO2 genes was increased in AHS0%, while that of the ZO1 and MUC2 genes was increased in PSPP-supplemented birds. HS tends to increase TLR2 and TLR4 gene expression in chickens. The significantly modified genera were Bariatricus, Sporobacter, Sporanaerobacter, and Natranaerovirga. Concludingly, AHS negatively influences the performance parameters, RT, stress, gut-health-related genes, and pathogenic penetration, but PSPP supplementation reduces its bad impact by overcoming the stress and gut-health-related genes, increasing favorable bacterial abundance and reducing pathogenic penetration in chickens.
Collapse
Affiliation(s)
- Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
| | - Chris-Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
5
|
Mokhtari R, Fard MK, Rezaei M, Dirandeh E. Effect of casein bioactive peptides on performance, nutrient digestibility, enzyme activity and intestinal microbial population in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2024; 108:1798-1806. [PMID: 39004910 DOI: 10.1111/jpn.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
This experiment was carried out to investigate the effect of bioactive peptides derived from casein on performance, nutrient digestibility, enzyme activity and intestinal microbial population in broiler chickens. In this study, 350 1-day-old male Ross 308 broiler chicks were distributed among 35 pens in a completely randomized design with seven treatments, five replicates and 10 chicks in each replicate. The experimental treatments included: basal diet without any additives (control), basal diet + Avilamycin antibiotic, basal diet + 200, 400, 600, 800 and 1000 mg of peptides per kg of diet. Results showed no significant effects of the experimental treatments on weight gain and feed conversion ratio during the starter period, but there was a significant improvement in weight gain in grower, finisher and whole periods in chicks fed with diet containing 1000 mg/kg peptides (p < 0.05). Adding peptides improved intestinal morphology (in duodenum and ileum) (p < 0.05). Supplementation of casein peptides significantly reduced thiobarbituric acid reactive substances concentration in breast and thigh meat. The activity of amylase, lipase and protease enzymes improved in treatments containing 800 and 1000 mg peptides in comparison to the control treatment. The use of casein-peptides increased intestinal Lactobacillus and decreased Coliform populations.
Collapse
Affiliation(s)
- Raziyeh Mokhtari
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Mohammad Kazemi Fard
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Mansour Rezaei
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Essa Dirandeh
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
6
|
Eliasson E, Sun L, Cervin G, Pavia H, Tällberg G, Ellström P, Ivarsson E. No colonization resistance to Campylobacter jejuni in broilers fed brown algal extract-supplemented diets. Front Microbiol 2024; 15:1396949. [PMID: 38993493 PMCID: PMC11236747 DOI: 10.3389/fmicb.2024.1396949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Campylobacter jejuni gastroenteritis is the most commonly reported zoonosis within the EU, with poultry products regarded as the primary source of transmission to humans. Therefore, finding strategies to reduce Campylobacter colonization in broilers holds importance for public health. Recent studies suggest that supplementation of broiler feed with brown algal extracts, particularly laminarin, can provide beneficial effects on broiler gut health, growth performance, and gut microbiota. However, its effect on gut microbiota development and subsequent reduction of Campylobacter loads in broiler caeca during the later stages of the birds' lives remains unclear. Methods Experimental colonization of Ross 308 broilers with two different strains of C. jejuni was conducted, with groups fed either a basal diet or the same basal diet supplemented with 725 ppm algal extract from Saccharina latissima to provide 290 ppm laminarin. Fecal samples were collected for bacterial enumeration, and caecal samples were obtained before and after the C. jejuni challenge for the determination of microbiota development. Results and discussion No significant differences in fecal C. jejuni concentrations between the groups fed different diets or exposed to different C. jejuni strains were observed. This suggests that both strains colonized the birds equally well and that the laminarin rich algal extract did not have any inhibitory effect on C. jejuni colonization. Notably, 16S rRNA amplicon sequencing revealed detailed data on the caecal microbiota development, likely influenced by both bird age and C. jejuni colonization, which can be valuable for further development of broiler feed formulations aimed at promoting gut health.
Collapse
Affiliation(s)
- Eliška Eliasson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Gustav Tällberg
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Emma Ivarsson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Wu Z, Zhao J, An H, Wang Y, Shao J, Weng H, Chen X, Zhang W. Effects of laminarin on growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109271. [PMID: 38065295 DOI: 10.1016/j.fsi.2023.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
Laminarin (LAM) is widely used as an immunopotentiator in aquaculture, but its protective mechanism is still unclear. In this study, the effects of LAM on the growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker were studied in vitro and in vivo. The 42 d-feeding trial in large yellow croaker showed that dietary LAM could obviously promote the fish growth by improving the weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR). Dietary LAM could also improve the survival rate of large yellow croakers subjected to P. plecoglossicida infection, and 500 mg/kg LAM produced the highest relative percent survival (RPS) of 35.00 %. LAM improved fish antioxidant level by enhancing serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity, and reducing malondialdehyde (MDA) content. In addition, LAM also improved fish innate immunity by increasing serum acid phosphatase (ACP) and alkaline phosphatase (AKP) activities and complement 3 (C3) content under P. plecoglossicida infection. What is more, on 9 d post P. plecoglossicida challenge, LAM could significantly decrease the bacteria load in head kidneys, spleens and livers of fish, and the lowest bacterial load was found in 500 mg/kg LAM group. In vitro, LAM exerted a protective role against inactivated P. plecoglossicida-triggered inflammatory injury in primary head kidney macrophages (PKM) of large yellow croaker by recovering cell viability, suppressing NO production, and reversing pro-inflammatory cytokine expression (IL-1β, IL-6, and IL-8). All these findings therefore will provide insights into the protection mechanism of LAM in fish, facilitating its application in prevention and control of fish bacteriosis.
Collapse
Affiliation(s)
- Ziliang Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jinpeng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Huimin An
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yongyang Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Huasong Weng
- Ningde Fufa Fisheries Co. Ltd, Ningde, 352100, PR China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
8
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
9
|
Liu A, Kim E, Cui J, Li J, Lee Y, Zhang G. Laminaria Japonica Polysaccharide Improved the Productivities and Systemic Health of Ducks by Mediating the Gut Microbiota and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7382-7395. [PMID: 37150978 PMCID: PMC10197123 DOI: 10.1021/acs.jafc.2c08731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
This study investigated the beneficial effects of a Laminaria japonica polysaccharide (LJPS) on the systemic health of ducks by modulating the gut microbiome and metabolome. Our findings demonstrated that the LJPS supplementation enhanced the overall growth performance and physiological immune and antioxidant index of ducks. In addition, the LJPS-fed group significantly increased abundances of intestinal Bacteroides and Prevotellaceae with decreased α-diversity than that in the control group. Among the total of 1840 intestinal metabolites, 186 metabolites were identified to be differentially regulated by LJPS feeding (upregulated 143 metabolites and downregulated 43 metabolites), which is closely associated with some of the growth-related metabolic pathways. Lastly, the correlation analysis recapitulates that the beneficial effects of LJPS underlie the alterations in intestinal microbiota and metabolites. Taken together, LJPS supplementation improved the physiological parameters and richness of some beneficial microbes and upregulated certain metabolic pathways, which facilitated better productivities and systemic health of ducks.
Collapse
Affiliation(s)
- Anxin Liu
- Department
of Nutrition, China−Korea Joint R&D Center on Plant-Derived
Functional Polysaccharide, Key Laboratory of Efficient Utilization
of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Eunyoung Kim
- Department
of Food Science and Nutrition, and Korea−China Joint R&D
Center on Plant-Derived Functional Polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Jiamei Cui
- Department
of Food Science and Nutrition, and Korea−China Joint R&D
Center on Plant-Derived Functional Polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Jing Li
- Department
of Nutrition, China−Korea Joint R&D Center on Plant-Derived
Functional Polysaccharide, Key Laboratory of Efficient Utilization
of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Yunkyoung Lee
- Department
of Food Science and Nutrition, and Korea−China Joint R&D
Center on Plant-Derived Functional Polysaccharide, Jeju National University, Jeju 63243, South Korea
- Interdisciplinary
Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea
| | - Guiguo Zhang
- Department
of Nutrition, China−Korea Joint R&D Center on Plant-Derived
Functional Polysaccharide, Key Laboratory of Efficient Utilization
of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| |
Collapse
|
10
|
Goel A, Ncho CM, Jeong CM, Gupta V, Jung JY, Ha SY, Yang JK, Choi YH. Dietary supplementation of solubles from shredded, steam-exploded pine particles modifies gut length and cecum microbiota in cyclic heat-stressed broilers. Poult Sci 2023; 102:102498. [PMID: 36739799 PMCID: PMC9932117 DOI: 10.1016/j.psj.2023.102498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
This study was conducted to investigate the effect of supplementing solubles from steam-exploded pine particles (SSPP) on mitigating the adverse effects of cyclic heat stress (CHS) in broilers which were distributed into 3 dietary treatment groups and 2 temperature conditions. Heat stress (HS) exposure for 6 h daily for 7 d adversely affected performance parameters and rectal temperature of chickens. The absolute and relative weights of the liver and bursa of Fabricius decreased in the CHS group while the relative lengths of the jejunum and ileum increased, which was rescued by dietary supplementation with SSPP. The expression of mucin2 (MUC2) and occludin (OCLN) genes was decreased in CHS birds. The expression of heat shock protein -70 and -90 increased in 0% HS compared to that in 0% NT. Birds supplemented with 0.4% SSPP had higher NADPH oxidase -1 expression than birds in the 0% and 0.1% SSPP treatments. Beta diversity of gut microbiota evaluated through unweighted UniFrac distances was significantly different among treatments. Bacteroidetes was among the 2 most abundant phyla in the cecum, which decreased with 0.1% NT and increased with 0.1% HS in comparison to 0% NT. A total of 13 genera were modified by HS, 5 were altered by dose, and nine showed an interaction effect. In conclusion, CHS adversely affects performance and gut health which can be mitigated with dietary SSPP supplementation that modifies the cecal microbiota in broilers.
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chris Major Ncho
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
11
|
Zhao Y, Li C, Wang X, Wang Z, Wang J, Zhen W, Huang S, Li T, Fan H, Ma Y, Zhang C. Effects of Glycyrrhiza polysaccharide on growth performance, appetite, and hypothalamic inflammation in broilers. J Anim Sci 2023; 101:6991303. [PMID: 36652259 PMCID: PMC9940736 DOI: 10.1093/jas/skad027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
We analyzed the effects of Glycyrrhiza polysaccharide (GCP) on growth performance, appetite, and hypothalamic inflammation-related indexes in broilers. One-day-old male AA broilers were randomly divided into four groups: Control, L-GCP, M-GCP, and H-GCP (0, 300, 600, and 900 mg GCP/kg feed), with six repetition cages for each treatment and 12 broilers in each repeat for a period of 42 days. From day 1 to day 21, the addition of GCP to the diet significantly improved the ADFI and the ADG of broilers, and the mRNA levels of NPY and AgRP were significantly increased while POMC and CART were decreased in the hypothalamus of broilers; GCP also significantly decreased the mRNA levels of IL-1β, IL-6, TNF-α, TLR-4, MyD88, and NF-κB, and increased the IL-4 and IL-10 in the hypothalamus from day 1 to day 42. The concentrations of appetite-related factors and inflammatory factors in serum were changed in the same fashion. Supplementation with 600 mg/kg GCP had the optimal effect in broilers, and GCP has the potential to be used as a feed additive in the poultry production industry.
Collapse
Affiliation(s)
| | | | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Zhaojun Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Jicang Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Wenrui Zhen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Tianshuai Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Hengyu Fan
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | | |
Collapse
|
12
|
Effects of the Antimicrobial Peptide Mastoparan X on the Performance, Permeability and Microbiota Populations of Broiler Chickens. Animals (Basel) 2022; 12:ani12243462. [PMID: 36552382 PMCID: PMC9774892 DOI: 10.3390/ani12243462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Restrictions on antibiotics are driving the search for alternative feed additives to promote gastrointestinal health and development in broiler chicken production. Proteins including antimicrobial peptides can potentially be applied as alternatives to antibiotics and are one of the most promising alternatives. We investigated whether the addition of MPX to the diet affects the production performance, immune function and the intestinal flora of the caecal contents of broiler chickens. One hundred one-day-old chickens were randomly divided into two groups: control (basal diet) and MPX (20 mg/kg) added to the basal diet. The results indicated that dietary supplementation with MPX improved the performance and immune organ index, decreased the feed conversion ratio, increased the villus length, maintained the normal intestinal morphology and reduced the IL-6 and LITNF mRNA expression levels of inflammation-related genes. In addition, MPX increased the mRNA expression of the digestive enzymes FABP2 and SLC2A5/GLUT5 and the tight junction proteins ZO-1, Claudin-1, Occludin, JAM-2 and MUC2, maintained the intestinal permeability and regulated the intestinal morphology. Moreover, MPX increased the CAT, HMOX1 and SOD1 mRNA expression levels of the antioxidant genes. Furthermore, a 16S rRNA microflora analysis indicated that the abundance of Lactobacillus and Lactococcus in the cecum was increased after addition of MPX at 14 d and 28 d. This study explored the feasibility of using antimicrobial peptides as novel feed additives for broiler chickens and provides a theoretical basis for their application in livestock.
Collapse
|
13
|
Akinyemi F, Adewole D. Effects of brown seaweed products on growth performance, plasma biochemistry, immune response, and antioxidant capacity of broiler chickens challenged with heat stress. Poult Sci 2022; 101:102215. [PMID: 36288626 PMCID: PMC9593180 DOI: 10.1016/j.psj.2022.102215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Brown seaweed (Ascophyllum nodosum) is an exceptional bioactive substance known for its excellent antioxidant ability. Given the potential benefits of brown seaweed, the current study was conducted to determine its efficacy on growth performance, blood biochemistry, immunoglobulins (IgG and IgM), and the antioxidant capacity of broiler chickens challenged with heat stress (HS). A total of 336 mixed-sex Ross 308 broiler chicks (one-day-old) were randomly assigned into two groups; The thermoneutral group (TN, broilers were raised at 24 ± 1°C); and the heat stress group (HS; broilers were exposed to 32°C to 34°C, 8 h/d from day 21 to 27; the temperature in the remaining time was same as TN group). All birds in each group were randomly allotted to 4 dietary treatments—Negative control (NC) (without seaweed), NC + 1 mL seaweed extract (SWE) in drinking water, NC + 2 mL SWE in drinking water, and NC + 2% seaweed meal (SWM) in feed. Each treatment was assigned to six replicates with 7 broilers/replicate. Average body weight gain (ABWG), average feed intake (AFI), average water intake (AWI), feed conversion ratio (FCR), and mortality were determined weekly. On day 28, two male birds/cage were euthanized to collect blood and immune organs for subsequent biochemical, antioxidant, and immune status analysis. Data were analyzed as a 4 × 2 factorial analysis of variance using the GLM procedure of Minitab software. Overall, 2% SWM inclusion significantly increased (P < 0.05) the AFI, ABWG, and AWI of broiler chickens irrespective of HS. HS significantly reduced (P < 0.05) AFI and increased (P < 0.05) the bird's rectal temperature, plasma concentrations of sodium, chloride, glucose, amylase, and uric acid compared to TN birds. HS increased (P < 0.05) serum IgM and IgG and decreased plasma glutathione reductase and glutathione peroxidase compared to TN birds, while the activity of superoxide dismutase was not affected by HS and dietary treatments. 1 mL SWE in water and 2% SWM in feed significantly reduced (P < 0.05) the plasma activity of alanine aminotransferase and gamma-glutamyl transferase of heat-stressed broilers, respectively compared to other treatments. Conclusively, dietary supplementation of brown seaweed improved the growth performance of birds irrespective of HS and may help to reduce the negative effects of HS by improving the plasma enzyme activities of heat-stressed birds.
Collapse
Affiliation(s)
- Fisayo Akinyemi
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
14
|
Jia L, Hsu CY, Zhang X, Li X, Schilling MW, Peebles ED, Kiess AS, Zhang L. Effects of dietary bacitracin or Bacillus subtilis on the woody breast myopathy-associated gut microbiome of Eimeria spp. challenged and unchallenged broilers. Poult Sci 2022; 101:101960. [PMID: 35690000 PMCID: PMC9192972 DOI: 10.1016/j.psj.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Study suggested that dysbiosis of the gut microbiota may affect the etiology of woody breast (WB). In the current study, the cecal microbiota and WB in chickens fed three different diets were investigated. A total of 504 male chicks were used in a randomized complete block design with a 3 (Diet) × 2 (Challenge) factorial arrangement of treatments with 6 replicates per treatment, 6 treatments per block, and 14 birds per treatment. The experimental diets were a control diet (corn-soybean meal basal diet), an antibiotic diet (basal diet + 6.075 mg bacitracin/kg feed), and a probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6/kg feed). On d 14, birds that were assigned to the challenge treatment received a 20 × live cocci vaccine. On d 41, breast muscle hardness in live birds was palpated and grouped into normal (NB) and WB phenotypes. Cecal contents were collected and their bacterial compositions were analyzed and compared. The genomic DNA of the cecal contents was extracted and the V3 and V4 regions of 16S rRNA gene were amplified and sequenced via an Illumina MiSeq platform. There were no differences (P > 0.05) in Shannon and Chao 1 indexes between the challenges, diets, and phenotypes (NB vs. WB). However, there was a difference (P = 0.001) in the beta diversity of the samples between the challenged and nonchallenged groups. Relative bacterial abundance differed (false discovery rate, FDR < 0.05) between the challenge treatments, but there were no significant differences (FDR > 0.05) among the three diets or two phenotypes. Predicted energy metabolism, nucleotide metabolism, and amino acid and coenzyme biosynthesis activities only differed (q-value < 0.05) between challenged and nonchallenged groups. The cocci challenge altered the gut microbial composition on Butyricicoccus pullicaecorum, Sporobacter termitidis, and Subdoligranulum variabile, but the dietary antibiotic and probiotic treatments did not impact gut microbial composition. No strong association was found between WB myopathy and gut microbial composition in this study.
Collapse
|
15
|
Effect of Dietary Laminaria digitata with Carbohydrases on Broiler Production Performance and Meat Quality, Lipid Profile, and Mineral Composition. Animals (Basel) 2022; 12:ani12081007. [PMID: 35454252 PMCID: PMC9025196 DOI: 10.3390/ani12081007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Seaweeds represent promising alternatives to unsustainable conventional feed sources, such as cereals, incorporated in poultry diets. Brown macroalgae (e.g., Laminaria digitata) correspond to the largest cultured algal biomass worldwide and are rich in bioactive polysaccharides, minerals, and antioxidant pigments. However, their utilization as feed ingredients is limited due to the presence of an intricate gel-forming cell wall composed of indigestible carbohydrates, mainly alginate and fucose-containing sulfated polysaccharides. Therefore, supplementation with carbohydrate-active enzymes is required to disrupt the cell wall and allow seaweed nutrients to be digested and absorbed in poultry gut. The present study aimed to evaluate if the dietary inclusion of 15% L. digitata, supplemented or not with carbohydrases, could improve the nutritional value of poultry meat without impairing growth performance of broiler chickens. The results show that L. digitata increases antioxidant pigments and n-3 long-chain polyunsaturated fatty acids in meat, thus improving meat nutritional and health values. On the other hand, feeding algae at a high incorporation level impaired growth performance. Feed enzymatic supplementation had only residual effects, although alginate lyase decreased intestinal viscosity caused by dietary L. digitata with potential benefits for broiler digestibility. Abstract We hypothesized that dietary inclusion of 15% Laminaria digitata, supplemented or not with carbohydrases, could improve the nutritional value of poultry meat without impairing animal growth performance. A total of 120 22-day old broilers were fed the following dietary treatments (n = 10) for 14 days: cereal-based diet (control); control diet with 15% L. digitata (LA); LA diet with 0.005% Rovabio® Excel AP (LAR); LA diet with 0.01% alginate lyase (LAE). Final body weight was lower and feed conversion ratio higher with LA diet than with the control. The ileal viscosity increased with LA and LAR diets relative to control but without differences between LAE and control. The pH of thigh meat was higher, and the redness value of breast was lower with LA diet than with control. Meat overall acceptability was positively scored for all treatments. The γ-tocopherol decreased, whereas total chlorophylls and carotenoids increased in meat with alga diets relative to control. The percentage of n-3 polyunsaturated fatty acids (PUFA) and accumulation of bromine and iodine in meat increased with alga diets compared with control. Feeding 15% of L. digitata to broilers impaired growth performance but enhanced meat quality by increasing antioxidant pigments, with beneficial effects on n-3 PUFA and iodine.
Collapse
|
16
|
Liu J, Luo Y, Zhang X, Gao Y, Zhang W. Effects of bioactive peptides derived from cottonseed meal solid‐state fermentation on the growth, metabolism, and immunity of yellow‐feathered broilers. Anim Sci J 2022; 93:e13781. [PMID: 36437240 DOI: 10.1111/asj.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/27/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022]
Abstract
This study investigated the effects of bioactive peptides derived from solid-state fermentation of cottonseed meal on the growth performance, apparent dietary digestibility, serum biochemical parameters, protein metabolism, antioxidant activity, and immunity in yellow-feathered broilers. A total of two hundred forty 21-days-old male broilers were randomly divided into four groups with six replicates per group. The control group received a basal diet and three experimental groups were fed diets with 1%, 2%, and 3% cottonseed meal bioactive peptides (CSBP) replacing equivalent protein of cottonseed meal in basic diet. Dietary supplementation of 2% and 3% CSBP increased the average daily weight gain, crude protein digestibility, total serum protein, and immunoglobulin (Ig) G contents in serum (P < 0.05). The 3% CSBP increased albumin, total antioxidant capacity, spleen weight/bodyweight, interleukin-6, and IgM, while reducing the feed to gain ratio, total cholesterol, urea nitrogen, total superoxide dismutase, glutathione peroxidase, and malondialdehyde contents in serum (P < 0.05). The 2% CSBP diet increased PepT1 expression in duodenum, jejunum, and ileum (P < 0.05). The 1%, 2%, and 3% CSBP diets increased S6kinase-polypeptide-1 and inositol-3-hydroxylase expression in chest and leg muscles (P < 0.05). The CSBP addition in diets can improve growth performance, nutrient digestibility, protein metabolism, antioxidant, and immune capabilities of yellow-feathered broilers.
Collapse
Affiliation(s)
- Jiancheng Liu
- College of Animal Science Xinjiang Agricultural University Urumqi China
- College of Animal Science and Technology Shihezi University Shihezi China
| | - Yuanqin Luo
- College of Animal Science and Technology Shihezi University Shihezi China
| | - Xiaoyang Zhang
- College of Animal Science and Technology Shihezi University Shihezi China
| | - Yan Gao
- Institute of Applied Microbiology Xinjiang Academy of Agriculture Science, Xinjiang Special Environmental Microbiology Laboratory Urumqi China
| | - Wenju Zhang
- College of Animal Science and Technology Shihezi University Shihezi China
| |
Collapse
|
17
|
Wang J, Chen X, Li J, Ishfaq M. Gut Microbiota Dysbiosis Aggravates Mycoplasma gallisepticum Colonization in the Chicken Lung. Front Vet Sci 2021; 8:788811. [PMID: 34917672 PMCID: PMC8669392 DOI: 10.3389/fvets.2021.788811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the pathogen that causes chronic respiratory diseases in chickens. Gut microbiota plays an important role in maintaining body health and resisting respiratory infection, but the correlation between gut microbiota and MG infection is poorly defined. Therefore, in this study, the correlation between gut microbiota and MG infection was explored by disturbing gut microbiota in chickens with antibiotic cocktail. The results showed that the gut microbiota dysbiosis impairs pulmonary immune response against MG infection. It has been noted that MG colonization in the lung was significantly increased following gut microbiota dysbiosis, and this could be reversed by intranasally administrated toll-like receptor 2 (TLR2) ligand, recombinant chicken IL-17 protein or recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) protein. In addition, the levels of short-chain fatty acids (SCFAs) and vitamin A were significantly reduced in gut microbiota dysbiosis group, however, butyric acid or vitamin A as feed additives promoted MG clearance in the lung of gut microbiota dysbiosis group via increasing TLR2/IL17/GM-CSF and host defense peptides genes expression. The present study revealed an important role of gut microbiota in the defense against MG colonization in the lung of chicken.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xueping Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang, China
| |
Collapse
|