1
|
Kahiel M, Wang K, Xu H, Du J, Li S, Shen D, Li C. Effect of Supplemental Essential Oils Blend on Broiler Meat Quality, Fatty Acid Profile, and Lipid Quality. Animals (Basel) 2025; 15:929. [PMID: 40218323 PMCID: PMC11987973 DOI: 10.3390/ani15070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
This investigation evaluates the impact of the EOB on chicken growth performance, meat quality, and lipid metabolism. Two hundred and fifty-six one-day-old, white-feathered broilers were randomly allocated to four groups. Each group was subdivided into eight replicates, each with eight unsexed chicks, including the control group (CON), EOB150, EOB250, and EOB350, with 0, 150, 250, and 350 mg/L of the EOB added to the drinking water, respectively. The expression levels of genes associated with antioxidants and lipid metabolism were analyzed using real-time polymerase chain reaction (RT-PCR). Additionally, the FA profile of the breast muscle was determined using gas chromatography. The data displayed that those birds in the EOB250 group had a higher breast muscle index compared to the CON group. The breast meat in the EOB groups showed that there is increased yellowness, water holding capacity (WHC), and polyunsaturated fatty acids (PUFAs), while cooking losses, drip losses, and saturated fatty acids (SFAs) were reduced compared to the CON. The application of supplements for the EOB250 and EOB350 groups increased antioxidant indices as well as the expression of antioxidant-related genes in the liver and muscles. However, these groups decreased the concentrations of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL-C) in serum and liver compared to the EOB150 and CON groups. These EOB groups downregulated expression of some genes linked to liver FA synthesis and elevated the expressions of lipid β-oxidation-related genes compared to the CON. It can be concluded that the supplementation with 250 mg/L of the EOB has the potential as an alternative water additive in the broiler industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.K.); (K.W.); (H.X.); (J.D.); (S.L.)
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.K.); (K.W.); (H.X.); (J.D.); (S.L.)
| |
Collapse
|
2
|
Shi Y, Zhou Q, Wu C, Liu J, Yang C, Yang T, Zhang R. Effects of rhamnolipid replacement of chlortetracycline on growth performance, slaughtering traits, meat quality and antioxidant function in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:858-865. [PMID: 39243159 DOI: 10.1002/jsfa.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Rhamnolipids (RLS) are surfactants that improve the growth performance of poultry by improving the absorption of nutrients. This study aims to investigate the effects of RLS replacement of chlortetracycline (CTC) on growth performance, slaughtering traits, meat quality, antioxidant function and nuclear-factor-E2-related factor 2 (Nrf2) signaling pathway in broilers. A total of 600 one-day-old Arbor Acres chicks were randomly assigned to five groups with eight replicates in each group, raised for 42 days. Broilers were respectively fed a basal diet with no CTC or RLS, 75 mg kg-1 CTC, and 250, 500, 1000 mg kg-1 RLS. RESULTS Dietary supplementation with RLS linearly increased the average daily gain, average daily feed intake, carcass yield, eviscerated yield, ether extract, enhanced total superoxide and glutathione peroxidase (GPx) activities, overexpressed the relative expressions of Nrf2, heme oxygenase 1, Copper/zinc superoxide dismutase, Manganese superoxide dismutase, GPx and catalase and decreased the lightness value at 24 h, drip loss and malondialdehyde contents of broilers (P < 0.05). Compared with the control group, broilers fed 1000 mg kg-1 RLS reduced the drip loss and broilers fed 500 mg kg-1 RLS increased muscle crude fat content (P < 0.05). Compared with the CTC group, dietary supplementation with 1000 mg kg-1 RLS increased eviscerated yield (P < 0.05). CONCLUSION RLS could improve growth performance, crude fat content, meat quality and antioxidant capacity and activate relative expression of genes in the Nrf2 signaling pathway in broilers. It could be used as an antibiotic substitute in diets and the recommended supplemental dose of RLS in feed of broilers is 1000 mg kg-1. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yonghao Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Qilu Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Chao Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Vegamax Green Animal Health Products Key agricultural Enterprise Research Institute, Zhejiang Vegamax Biotechnology Co. Ltd, Anji, China
| | - Caimei Yang
- Vegamax Green Animal Health Products Key agricultural Enterprise Research Institute, Zhejiang Vegamax Biotechnology Co. Ltd, Anji, China
| | - Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
3
|
Shi X, Qian W, Wei X, Qin X, Han J, Su C, Bao L. Mulberry Branch Extracts Enhance the Antioxidant Capacity of Broiler Breast Muscle by Activating the Nrf2 and Cytochrome P450 Signaling Pathway. Animals (Basel) 2024; 14:3702. [PMID: 39765606 PMCID: PMC11672785 DOI: 10.3390/ani14243702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Mulberry branch extracts (MBEs) have garnered significant attention as natural feed additives and antioxidants; however, their antioxidant properties in meat post-slaughter and their influence on muscle-related metabolic processes remain largely unexplored. Herein, we evaluated the effects of MBEs on the antioxidant capacity and metabolic processes of breast muscle in yellow-feather broilers by adding 0 g/kg, 1.5 g/kg, 3.0 g/kg, and 4.5 g/kg of MBEs to their diets. The results demonstrate that MBEs enhanced the activity of antioxidant enzymes in muscle tissue. Specifically, a real-time quantitative PCR analysis revealed that MBEs increased the expression of antioxidant enzyme genes in a dose-dependent manner, activated the Nrf2 signaling pathway, and upregulated the expression of the Nrf2 gene and its downstream targets at doses of up to 3.0 g/kg. Furthermore, the results of widely targeted metabolomics indicate that the dietary supplementation of MBEs changed the amino acid profile of the muscle, increasing the levels of amino acids and small peptides that contribute to antioxidant properties while reducing the contents of oxidized lipids and carnitine (C5:1) and partially reducing the content of lysophosphatidylcholine (LPC). Notably, at doses of up to 3 g/kg, the levels of five signature bile acids increased in correlation with the added dose. A KEGG analysis indicated that the differential metabolites were predominantly enriched in the metabolism of xenobiotics by cytochrome P450, suggesting that the function of MBEs may be associated with the expression of P450 enzymes. In summary, this study demonstrates that MBEs are effective, safe, and natural antioxidants, offering a viable solution to mitigating oxidative stress in the yellow-feather broiler farming industry and even in livestock farming.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.S.); (W.Q.); (X.W.); (X.Q.); (J.H.)
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.S.); (W.Q.); (X.W.); (X.Q.); (J.H.)
| |
Collapse
|
4
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Deng C, Zou H, Wu Y, Lou A, Liu Y, Luo J, Quan W, Shen Q. Dietary supplementation with quercetin: an ideal approach for improving meat quality and oxidative stability of broiler chickens. Poult Sci 2024; 103:103789. [PMID: 38833740 PMCID: PMC11190705 DOI: 10.1016/j.psj.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
This study aimed to improve the eating quality of yellow-feathered broiler chicks by feeding them corn-soybean meal diets supplemented with 250, 500, and 1,000 mg/kg quercetin. we examined the impact of varying doses of dietary quercetin on the sensory quality of chicken breast meat as well as on the antioxidant enzymes, antioxidant-related signaling molecules, structure and thermal stability of myofibrillar protein (MPs), and microstructure of myogenic fibers in the meat during 24 h of postslaughter aging. Additionally, we investigated the potential correlations among antioxidant capacity, MP structure, and meat quality parameters. The results indicated that dietary supplementations with 500 and 1,000 mg/kg quercetin improved the physicochemical properties and eating quality of yellow-feathered broiler chicken breast meat during 12 to 24 h postslaughter. Additionally, quercetin improved the postslaughter oxidative stress status and reduced protein and lipid oxidation levels. It also increased hydrogen bonding interactions and α-helix content during 6 to 12 h postslaughter and decreased β-sheet content during 12 to 24 h postslaughter in chicken breast MP. This resulted in improved postslaughter MP structure and thermal stability. The correlation results indicated that the enhancement of antioxidant capacity and MP structure enhanced the physicochemical and edible qualities of yellow-feathered broiler chicken breast meat. In conclusion, the current findings suggest that dietary supplementation with quercetin is an ideal approach for improving the eating quality of chicken meat, thereby broadening our understanding of theoretical and technological applications for improving the quality of chicken.
Collapse
Affiliation(s)
- Chuangye Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huiyu Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
6
|
Su Y, Huang P, Wu Z, Dai W, Zhang Y, Zeng J. Effect of dietary supplementation with sanguinarine on meat quality and lipid metabolism of broilers. Poult Sci 2024; 103:103925. [PMID: 38943809 PMCID: PMC11261466 DOI: 10.1016/j.psj.2024.103925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024] Open
Abstract
Dietary Macleaya cordata extract (MCE) can improve the meat quality of poultry. However, the specific mechanism by which MCE regulates the meat quality has not been clarified yet. Sanguinarine (SAN) is one of the important natural active components in MCE. Our study aims to explore the regulatory mechanism of dietary SAN supplementation on meat quality through transcriptomic and gut microbiome analysis, thereby providing a basis for regularing meat quality with MCE. 240 1-day-old broilers were divided into 4 groups according to different doses of SAN (0, 0.225, 0.75, and 2.25 mg/kg). The results indicated that SAN significantly improve the physicochemical quality indicators of breast and thigh muscle in broilers, improved the serum biochemical indexes. Through transcriptome sequencing analysis of the liver and ileum tissues of broilers, we found that the differentially expressed genes induced by SAN were mainly enriched in lipid metabolism, which were related to the peroxisome proliferator-activated receptor (PPAR) pathway. It reconfirmed that SAN can regulate lipid metabolism in the body by promoting the expression of genes related to cholesterol metabolism, fatty acid transport and oxidation by RT-PCR, this ultimately affects the physicochemical quality of muscle. Additionally, through 16S rRNA sequencing analysis, we found that dietary addition of SAN increased the relative abundance of Bacteroides, Lactobacillus and unclassified_f_Lachnospiraceae, while decreased the relative abundance of Alistipes in ceca. To further investigate the impact of gut microbiota on lipid metabolism, we conducted a correlation analysis of PPAR pathway factor expression in cecum tissue and microflora structure. The results showed that Bacteroides exhibited a positive correlation with the expression of most genes in the PPAR signaling pathway. Unclassified_f__Lachnospiraceae is positively correlated with PPARγ, Cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and Acyl-CoA synthetase long-chain family member 5 (ACSL5). In conclusion, dietary addition of SAN can promote the genes expression of the PPAR pathway, target the regulation of intestinal microflora structure and abundance and regulate lipid metabolism, thereby improving meat quality of broilers.
Collapse
Affiliation(s)
- Yue Su
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhiyong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wanwan Dai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yan Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; College of Veterinary, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
7
|
Torghabeh FD, Javadi B, Sahebkar A. Dietary anethole: a systematic review of its protective effects against metabolic syndrome. J Diabetes Metab Disord 2024; 23:619-631. [PMID: 38932801 PMCID: PMC11196516 DOI: 10.1007/s40200-023-01322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 06/28/2024]
Abstract
Background Metabolic syndrome (MetS) is a cluster of physiological, biochemical, clinical, and metabolic conditions that aggravate the risk of severe diseases such as cardiovascular disease, type 2 diabetes mellitus, and fatty liver. Several dietary molecules have been considered preventive compounds for MetS. Anethole, a natural phenylpropanoid, has been found to protect against MetS and its associated components. Aim This systematic review aims to provide an overview of the preclinical evidence supporting the protective effects of dietary anethole against MetS and the associated diseases. Methods A literature search was performed using Web of Sciences, PubMed, Scopus, and Google Scholar to identify studies reporting the protective effects of dietary anethole against MetS, without any time restrictions. Review articles, letters to editors, editorials, unpublished results, and non-English papers were excluded from the study. Results The results showed that anethole has the potential to effectively protect against the key features of MetS via various mechanisms, including antioxidant and anti-inflammatory effects, stimulating insulin secretion from β-cells, mediating oxidative stress, modulation of the mTOR/PPARγ axis, arterial remodeling, and improvement of vascular relaxation. Conclusion Anethole modulates several molecular pathways that are implicated in the pathogenesis of MetS. Future in vitro and animal investigations should be conducted to explore other anti-MetS signaling pathways of anethole. Additionally, well-designed clinical studies are warranted to determine the optimal human dose, bioavailability, and pharmacokinetic characteristics of this dietary compound.
Collapse
Affiliation(s)
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Saragih HT, Fauziah IN, Saputri DA, Chasani AR. Dietary macroalgae Chaetomorpha linum supplementation improves morphology of small intestine and pectoral muscle, growth performance, and meat quality of broilers. Vet World 2024; 17:470-479. [PMID: 38595672 PMCID: PMC11000464 DOI: 10.14202/vetworld.2024.470-479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Over the last decades, the poultry industry has experienced steady growth. Although the industry is gradually expanding in Indonesia, poultry feed production has always been expensive. There is a need to study alternative ingredients to obtain affordable feed from natural resources. Chaetomorpha linum (CL) is an abundant macroalgae available throughout the year in Indonesia. This study aimed to determine the effect of CL on the histological structure of the small intestine, pectoralis muscle, growth performance, and meat quality of broilers. Materials and Methods This study used 300-day-old chick (DOC) male broilers that were reared until they were 21 days old. This study used a completely randomized design with four treatment groups and five replications, and each replication group contained 15 DOC individuals. The treatment groups consisted of Control (CON), CON basal feed (BF), CL1 (0.75%/kg BF), CL2 (1.5%/kg BF), and CL3 (3%/kg BF) groups. The histological structure of the small intestine, pectoralis muscle, growth performance, and meat quality of the broiler was examined. Results Small intestine and pectoral muscle histomorphology, growth performance, and meat quality were significantly improved in the CL2 (1.5%) and CL3 (3%) groups compared with the CL1 (0.75%) and CON groups. Conclusion Dietary CL supplementation ameliorates small intestine and pectoral muscle histomorphology, growth performance, and meat quality of broilers.
Collapse
Affiliation(s)
- H. T. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - I. N. Fauziah
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - D. A. Saputri
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - A. R. Chasani
- Laboratory of Plant Systematics, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Iwiński H, Chodkowska KA, Drabik K, Batkowska J, Karwowska M, Kuropka P, Szumowski A, Szumny A, Różański H. The Impact of a Phytobiotic Mixture on Broiler Chicken Health and Meat Safety. Animals (Basel) 2023; 13:2155. [PMID: 37443953 DOI: 10.3390/ani13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of the study was to assess the effects of different doses of a phytobiotic mixture on selected production parameters and meat quality and to assess the residue of the preparation in tissues and the possible toxic effects in broiler chickens. Broiler chicks aged 160 days, divided into four equal groups, were supplemented with the phytobiotic mixture at different doses, D1-0.5 mL/L, D2-1 mL/L, and D3-2 mL/L, four times during a 42-day trial. There were no statistically significant differences in weight gain per week of life and mortality in the birds. The study also demonstrated that the use of the mixture of phytobiotics had no significant effect on colour, pH, WHC, and natural leakage. However, a beneficial effect of the additive was found in the group treated with a dose of 1 mL/L, where less thermal leakage from the meat was demonstrated. Furthermore, significant differences in the change in thigh muscle tenderness were also observed. In the histopathological analysis of the liver no significant differences were observed. In addition, no residues of the mixture or its metabolites were found in the tissues analysed. In conclusion, the proposed scheme of administration of the phytobiotic additive, regardless of the dose, does not cause pathological changes in organs and does not carry the risk of residues of the product in tissues intended for human consumption.
Collapse
Affiliation(s)
- Hubert Iwiński
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Karolina A Chodkowska
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Krzyżanowski Partners Spółka z o.o., Zakładowa 7, 26-670 Pionki, Poland
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
| | - Justyna Batkowska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
| | - Małgorzata Karwowska
- Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland
| | - Piotr Kuropka
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Adam Szumowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Henryk Różański
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, Rynek 1, 38-400 Krosno, Poland
| |
Collapse
|
10
|
Haščík P, Čech M, Kačániová M, Herc P, Jurčaga L, Bučko O. Effect of dietary Alibernet red grape pomace application into Ross 308 broiler chickens diet on amino and fatty acids profile of breast and thigh meat. Biologia (Bratisl) 2023; 78:1-11. [PMID: 37363643 PMCID: PMC9975858 DOI: 10.1007/s11756-023-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
The aim of this study was to determine the effects of Alibernet red grape pomace (ARGP) variety Alibernet addition into broiler chickens Ross 308 diet on the essential amino acid (AA) and fatty acid (FA) composition of their breast and thigh meat. At the beginning, 200 one-day Ross 308 broiler chickens of mixed gender were randomly divided into 4 groups (n = 50). The control group (C) did not receive any additional supplementation. The feed of experimental groups was enriched with 1% ARGP per 1 kg of feed mixture (FM) (E1), with 2% ARGP per 1 kg of FM (E2) and with 3% ARGP per 1 kg of FM (E3). The FMs were produced without any antibiotics and coccidiostatics and the fattening period lasted for 42 days. Samples from breast and thigh muscle were obtained and analyzed for the content of AAs and FAs content and results were presented as g 100 g-1 of dry matter. Results revealed that AA profile of breast muscle was not significantly affected, with the most present AAs Lys and Leu. In the thigh muscle we observed significant differences in the content of Thr, Val, Met, Cys and His, namely in males. From the results of FAs profile, we can state that ARGP influenced namely monounsaturated oleic acid in breast muscle (without gender difference), which had significantly highest content (p ≤ 0.05) in all experimental groups (E1-36.05, E2-35.60 and E3-36.79 g 100 g-1) compared with the control group (31.88 g 100 g-1). Overall, it seems that selected feed supplement did not negatively influence AAs and FAs profile of chicken meat.
Collapse
Affiliation(s)
- Peter Haščík
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Matej Čech
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
- Faculty of Biotechnology and Food Science, Institute of Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Peter Herc
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Lukáš Jurčaga
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ondřej Bučko
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
11
|
Wang Z, An X, Yang Y, Zhang L, Jiao T, Zhao S. Comprehensive Analysis of the Longissimus Dorsi Transcriptome and Metabolome Reveals the Regulatory Mechanism of Different Varieties of Meat Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1234-1245. [PMID: 36601774 DOI: 10.1021/acs.jafc.2c07043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The beef quality significantly varies between breeds. Pingliang Red Cattle resembles Wagyu in fat deposition and flavor. To screen key factors affecting beef quality, we performed meat quality trait testing, RNA-seq, and metabolomics on the longissimus dorsi of Pingliang Red Cattle, Wagyu cross F1 generation, and Simmental cattle. The gene and metabolite expression profiles were similar between Pingliang Red Cattle and Wagyu cross F1 generation. Genes such as FASN, ACACA, PLIN1, and FABP4 were significantly upregulated in the Pingliang Red Cattle and Wagyu cross F1 generation (P < 0.05). Similarly, numerous metabolites, such as 3-iodo-l-tyrosine, arachidonic acid, and cis-aconitate, which may improve the beef quality such as fat deposition and tenderness, were found in higher levels in the Pingliang Red Cattle and Wagyu cross F1 generation. This study revealed differences in the transcriptional and metabolic levels between Pingliang Red Cattle and premium beef breeds, suggesting that Pingliang Red Cattle harbors the genetic potential for breeding high-grade beef cattle.
Collapse
Affiliation(s)
- Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejiao An
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China
| | - Yonghui Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lingyun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Xie Z, Yu G, Yun Y, Zhang X, Shen M, Jia M, Li A, Zhang H, Wang T, Zhang J, Zhang L. Effects of bamboo leaf extract on energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. J Anim Sci 2023; 101:skac391. [PMID: 36440554 PMCID: PMC9833010 DOI: 10.1093/jas/skac391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The present study was carried out to investigate the effects of bamboo leaf extract (BLE) on energy metabolism, antioxidant capacity, and biogenesis of broilers' small intestine mitochondria. A total of 384 one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with six replicates each for 42 d. The control group was fed a basal diet, whereas the BLE1, BLE2, and BLE3 groups consumed basal diets with 1.0, 2.0, and 4.0 g/kg of BLE, respectively. Some markers of mitochondrial energy metabolism including isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase and some markers of redox system including total superoxide dismutase, malondialdehyde, and glutathione were measured by commercial colorimetric kits. Mitochondrial and cellular antioxidant genes, mitochondrial biogenesis-related genes, and mitochondrial DNA copy number were measured by quantitative real-time-polymerase chain reaction (qRT-PCR). Data were analyzed using the SPSS 19.0, and differences were considered as significant at P < 0.05. BLE supplementation linearly increased jejunal mitochondrial isocitrate dehydrogenase (P < 0.05) and total superoxide dismutase (P < 0.05) activity. The ileal manganese superoxide dismutase mRNA expression was linearly affected by increased dietary BLE supplementation (P < 0.05). Increasing BLE supplementation linearly increased jejunal sirtuin 1 (P < 0.05) and nuclear respiratory factor 1 (P < 0.05) mRNA expression. Linear (P < 0.05) and quadratic (P < 0.05) responses of the ileal nuclear respiratory factor 2 mRNA expression occurred with increased dietary BLE levels. In conclusion, BLE supplementation was beneficial to the energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. The dose of 4.0 g/kg BLE demonstrated the best effects.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Minghui Jia
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Anqi Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
13
|
Mukherjee S, Choi M, Yun JW. Trans-anethole Induces Thermogenesis via Activating SERCA/SLN Axis in C2C12 Muscle Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Wang Y, Zhou X, Liu M, Zang H, Zhang R, Yang H, Jin S, Qi X, Shan A, Feng X. Quality of chicken breast meat improved by dietary pterostilbene referring to up-regulated antioxidant capacity and enhanced protein structure. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Zhang X, Deng Y, Hu S, Hu X, Ma J, Hu J, Hu B, He H, Li L, Liu H, Wang J. Comparative analysis of amino acid content and protein synthesis-related genes expression levels in breast muscle among different duck breeds/strains. Poult Sci 2022; 102:102277. [PMID: 36410066 PMCID: PMC9678761 DOI: 10.1016/j.psj.2022.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
Evidences have found important effects of breeds/strains on the content of amino acids (AAs) which is an important substrate for protein synthesis and contributes greatly to meat quality. Therefore, the objective of the present study was to compare the AAs content and protein synthesis-related genes expression levels in breast muscle of native breed (Jianchang duck (J)), hybrid strains (BH1, BH2, and MC♂ × (BGF2♂ × GF2♀)♀ (MC)), and commercial breed (Cherry Verry duck). Results showed that a total of 17 AAs (TAAs) was detected from breast muscle among 5 duck breeds/strains including 11 essential AAs (EAAs). Among these AAs, the contents of Proline, Threonine, Glutamine, Serine, Methionine, Phenylalanine, Histidine, and Cysteine were significant difference among 5 duck breeds/strains. The contents of EAAs, TAAs, and flavor AAs were higher in breast muscle of J and BH2 than those in other duck breeds/strains, and the ratio of EAAs/TAAs was higher in breast muscle of BH2. Furthermore, the expression levels of eukaryotic translation initiation factor 4E-binding protein 1, mammalian target of rapamycin, and proton-coupled amino acid transporter 1 were the highest in breast muscle of BH2, and that of solute carrier family 38 member 2 was the highest in breast muscle of J. Meanwhile, principal component analysis results showed that principal component 1 of BH1, principal component 3 of BH2, and principal component 2 of MC were positively corelated with EAAs/TAAs, and principal component 1 was positively correlated with flavor AAs and EAAs. In conclusion, compared to BH1, MC, and Cherry Verry duck, AA content was higher in breast muscle of BH2 and J, which might be associated with the higher expression levels of mammalian target of rapamycin, eukaryotic translation initiation factor 4E-binding protein 1, and proton-coupled amino acid transporter 1 in breast muscle of BH2 and solute carrier family 38 member 2 in breast muscle of J. The comparative analysis of AA content in breast muscle among different duck breeds/strains could provide an important basis for improving the nutritional value of duck meat in the breeding process.
Collapse
Affiliation(s)
- Xin Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xinyue Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jiaming Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Zheng YY, Shi YF, Zhu HZ, Ding SJ, Zhou GH. Quality evaluation of cultured meat with plant protein scaffold. Food Res Int 2022; 161:111818. [DOI: 10.1016/j.foodres.2022.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
|