1
|
Laghari F, Chang Q, Zhang H, Zhang J, Pan L, Pu Z, Bao J, Zhang R. Potential mechanisms and therapeutic effect of dietary resveratrol supplementation on the spleen organ of chicken in chronic unpredictable mild stress transcriptomic analysis. Poult Sci 2025; 104:104940. [PMID: 40031383 PMCID: PMC11919410 DOI: 10.1016/j.psj.2025.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic unpredictable mild stress (CUMS) affects chicken immune system and welfare, causing huge losses of growth performance and welfare. Resveratrol (RSV), an antioxidant and anti-inflammatory natural plant polyphenol, is widely used for the prevention of stress related disease. The aim of this study is to explore the therapeutic effect of RSV on spleen damage in CUMS. We successfully constructed a CUMS model. A total of 288 healthy one-day-old chicks were used in this study and were divided in 3 groups, control, CUMS and CUMS+RSV group. During 42 days of age, spleen tissue samples were collected and analyzed. Transmission electron microscope (TEM), Hematoxylin and eosin (H&E) staining, immunofluorescence, qRT- PCR, Western blots, immunohistochemical staining and RNA- sequencing (RNA-seq) technology was used to determine any changes and analyzed the mRNA and enrichment pathways. Histopathology and ultrastructure showed there was a severe damage of tissues. The results of RNA-seq showed that a total of 206, 267 and 211 DEGs were identified (log2 Fold Change| >1, P < 0.05) in control -vs- CUMS group, CUMS -vs- CUMS+RSV group and control -vs- CUMS+RSV group, respectively. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the SDEGs, two immune/stress- related pathways including PPAR signaling pathway and neuroactive ligand receptor interaction were selected. The genes related to PPAR signaling pathway identified were PLIN1, MMP1, ANGPTL4 and FABP4 and Neuroactive ligand-receptor interaction genes were GRPR, NTSR1, KNG1 and AGT. The PLIN1, MMP1, ANGPTL4, FABP4, GRPR, KNG1 and AGT were up regulated and NTSR1 was down regulated in CUMS group. When compared to CUMS -vs- CUMS+RSV group, PLIN1, FABP4, KNG1 and AGT were down regulated genes and NTSR1 was up regulated gene. Taken together, KEGG pathway analyses of DEGs, verified by qRT-PCR and Western blots, the current study suggested that these data reveal the promising role of RSV in the prevention and therapy of a wide variety of tissue damage and PPAR signaling pathway, neuroactive ligand-receptor interaction in chronic unpredictable mild stress.
Collapse
Affiliation(s)
- Farooque Laghari
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Qingqing Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Liying Pan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhaohong Pu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, PR China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
2
|
Li X, Cai X, Wang X, Zhu L, Yan H, Yao J, Yang C. Understanding the Causes of Keel Bone Damage and Its Effects on the Welfare of Laying Hens. Animals (Basel) 2024; 14:3655. [PMID: 39765559 PMCID: PMC11672575 DOI: 10.3390/ani14243655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Keel bone damage (KBD) is a prominent concern within the realm of the egg-laying industry, exerting substantial impacts on the welfare and productivity of laying hens. This comprehensive review undertakes a detailed exploration of the diverse factors contributing to KBD, such as inadequate calcium sources in the medullary bone, genetic factors, nutritional deficiencies, and physical stressors. The consequences of KBD on production performance, stress and inflammation levels, and the physical and chemical properties of the keel are meticulously examined. Additionally, the review evaluates the existing methods for assessing KBD, including keel curvature scoring, imaging techniques, palpation, biomechanical testing, behavioral observations, and biochemical markers. Finally, management strategies, including nutritional adjustments, genetic selection, and environmental modifications, are proposed to potentially mitigate the prevalence and severity of KBD, thereby aiming to enhance the welfare and productivity of laying hens.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Xia Cai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Xiaoliang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Huaxiang Yan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Junfeng Yao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| |
Collapse
|
3
|
Li S, Cao X, Zou T, Wang Z, Chen X, Chen J, You J. Integrated transcriptomics and untargeted metabolomics reveal bone development and metabolism of newly weaned mice in response to dietary calcium and boron levels. Food Funct 2024; 15:10853-10869. [PMID: 39405052 DOI: 10.1039/d4fo03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological and animal studies have indicated that calcium and boron are essential for bone development and metabolism. However, limited information is available regarding the effects of boron supplementation on bone development and metabolism in newly weaned infants with either calcium deficiency or calcium sufficiency. This study assessed the effects of dietary boron supplementation (0 and 3 mg kg-1) on bone development and metabolism, in a newly weaned mouse model, under both calcium deficiency and sufficiency feeding conditions. The results show that mice fed a calcium sufficient diet exhibited lower fat percentage and final body weight than those fed a calcium deficient diet. Boron supplementation reduced the serum high-density lipoprotein cholesterol level and up-regulated the mRNA levels of FABP3, PPAR-γ, and CaMK in the intestinal mucosa. Importantly, boron supplementation increased the tibial weight in mice on a calcium-sufficient diet and enhanced the tibial volume in those on a calcium-deficient diet. Metabolomic analysis highlighted calcium and boron's impact on metabolites like carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, benzene and substituted derivatives, organonitrogen compounds, organooxygen compounds, and phenols, and were related to lipid metabolism and the neural signaling pathway. Transcriptomic analysis corroborated the role of calcium and boron in modulating bone metabolism via the JAK-STAT, calcium signaling, lipid metabolism, and inflammatory pathways. Multi-omics analysis indicated a strong correlation between calcium signaling pathways, lipid metabolism signaling, and dietary calcium and boron contents. This research provides insights into these complex mechanisms, potentially paving the way for novel interventions against calcium and boron deficiencies and bone metabolism abnormalities in clinical settings.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xuehai Cao
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Tiande Zou
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zirui Wang
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xingping Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jun Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinming You
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Wang H, Chai Y, Xu Y, Wang Y, Li J, Zhang R, Bao J. Long-term music stimulating alleviated the inflammatory responses caused by acute noise stress on the immune organs of broilers by NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116131. [PMID: 38412629 DOI: 10.1016/j.ecoenv.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
As an environmental enrichment, music can positively influence the immune function, while noise has an adverse effect on the physical and mental health of humans and animals. However, whether music-enriched environments mitigate noise-induced acute stress remains unclear. To investigate the anti-inflammatory effects of music on the immune organs of broiler chickens under conditions of early-life acute noise stress, 140 one-day-old white feather broilers (AA) were randomly divided into four groups: control (C), the music stimulation (M) group, the acute noise stimulation (N) group, the acute noise stimulation followed by music (NM) group. At 14 days of age, the N and NM groups received 120 dB noise stimulation for 10 min for one week. After acute noise stimulation, the NM group and M group were subjected to continuous music stimulation for 14 days (6 h per day, 60 dB). At 28 days of age, the body temperature of the chicks, the histopathological changes, quantification of ROS-positive density and apoptosis positivity in tissues of spleen, thymus, and bursa of Fabricius (BF) were measured. The results showed that acute noise stimulation led to an increase in the number and area of splenic microsomes and the cortex/medulla ratio of the detected immune organs. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of immune tissues of broilers in N group were decreased compared to the broilers in C group, while the mRNA levels of malondialdehyde (MDA), TNF-α, IL-1, and IL-1β increased. In addition, the gene and protein expression levels of IKK, NF-κB, and IFN-γ of three immune organs from broilers in the N group were increased. Compared to the C and N group, chickens from the NM group showed a decrease in the number and area of splenic follicles, an increase in the activities of SOD and GSH-Px, and a decrease in the expression levels of MDA, TNF-α, IL-1, and IL-1β. Therefore, a music-enriched environment can attenuate oxidative stress induced by acute noise stimulation, inhibiting the activation of the NF-κB signaling pathway and consequently alleviating the inflammatory response in immune organs.
Collapse
Affiliation(s)
- Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yandong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
5
|
Geng Y, Shao R, Xu T, Zhang L. Identification of a potential signature to predict the risk of postmenopausal osteoporosis. Gene 2024; 894:147942. [PMID: 37935322 DOI: 10.1016/j.gene.2023.147942] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is related to the elevated risk of fracture in postmenopausal women. Thus, to effectively predict the occurrence of PMOP, we explored a novel gene signature for the prediction of PMOP risk. METHODS The WGCNA analysis was conducted to identify the PMOP-related gene modules based on the data from GEO database (GSE56116 and GSE100609). The "limma" R package was applied for screening differentially expressed genes (DEGs) based on the data from GSE100609 dataset. Next, LASSO Cox algorithm were applied to identify valuable PMOP-related risk genes and construct a risk score model. GSEA was then conducted to analyze potential signaling pathways between high-risk (HR) score and low-risk (LR) score groups. RESULTS A novel risk model with five PMOP-related risk genes (SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1) was developed for predicting PMOP risk status. RT-qPCR and western blot assays validated that compared to postmenopausal non-osteoporosis (non-PMOP) patients, SCUBE3, ULBP1, SEPT12 levels were obviously elevated, and TNNC1 and SPON1 levels were reduced in blood samples from PMOP patients. Additionally, PMOP-related pathways such as MAPK signaling pathway, PI3K-Akt signaling pathway and HIF-1 signaling pathway were significantly activated in the HR-score group compared to the LR-score group. The circRNA-gene-miRNA and gene-transcription factor networks showed that 533 miRNAs, 13 circRNAs and 40 TFs might be involved in regulating the expression level of these five PMOP-related genes. CONCLUSION Collectively, we developed a PMOP-related gene signature based on SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1 genes, and higher risk score indicated higher risk suffering from PMOP.
Collapse
Affiliation(s)
- Yannan Geng
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Rui Shao
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Tiantong Xu
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Lilong Zhang
- Department of the Sixth Spinal Surgery, Tianjin Union Medical Center, Tianjin, 300122, China.
| |
Collapse
|
6
|
Wei H, Zhang Y, Li T, Zhang S, Yin J, Liu Y, Xing L, Bao J, Li J. Intermittent mild cold stimulation alleviates cold stress-induced pulmonary fibrosis by inhibiting the TGF-β1/Smad signaling pathway in broilers. Poult Sci 2024; 103:103246. [PMID: 37980728 PMCID: PMC10685030 DOI: 10.1016/j.psj.2023.103246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
To investigate the potential protective effect of intermittent cold stimulation on lung tissues of broilers exposed to acute cold stress (ACS). A total of 384 one-day-old broilers were assigned to 4 experimental groups with 6 replicates of 16 birds each: control (CON) and ACS groups were reared at normal feeding temperature from d 1 to 42; cold treatment groups (CS3+ACS and CS9+ACS) were reared, respectively, at 3°C or 9°C for 5 h on alternate days below the CON group from d 15 to 35. Animals in CS3+ACS, CS9+ACS, and ACS groups were exposed at 10°C for 24 h on d 43. Subsequently, lung tissues were collected to perform histopathological examination and measurement of relevant indexes. The results showed that lung tissues in CS9+ACS and ACS groups exhibited increased inflammatory cell infiltrates and collagen deposition compared to the CON group, while this pathological phenomenon was less pronounced in the CS3+ACS group. Compared to CON group, H2O2 and MDA contents were increased, and the activities of antioxidant enzymes (CAT, SOD, GPx, T-AOC) were reduced in CS9+ACS and ACS group (P < 0.05); mRNA and protein levels of inhibitor of NF-κB, Smad7, matrix metallopeptidase (MMP)-2, MMP9, and antioxidant-related genes were downregulated, whereas mRNA and protein levels of genes related to NF-κB/NLRP3 pathway-regulated inflammation and TGF-β1/Smad pathway-regulated fibrosis were upregulated in cold-stressed broilers (P < 0.05). mRNA levels of heme oxygenase-1, NAD(P)H quinone oxidoreductase-1, and MMP9 were increased in CS3+ACS group (P < 0.05). Moreover, the expression of most antioxidant-related genes was increased, and that of inflammation- and fibrosis-related genes was reduced in CS3+ACS group (P < 0.05). Therefore, cold stress caused oxidative stress and inflammation, leading to pulmonary fibrosis in broilers, whereas intermittent mild cold stimulation at 3°C below normal rearing temperature alleviated fibrosis by inhibiting the TGF-β1/Smad pathway modulated by the Nrf2/HO-1 and NF-κB/NLRP3 signaling pathway. This study suggests that intermittent mild cold stimulation can be a potential strategy to reduce ACS-induced lung damage in broilers.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jingwen Yin
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China.
| |
Collapse
|
7
|
Wei H, Li T, Zhang Y, Liu X, Gong R, Bao J, Li J. Cold stimulation causes oxidative stress, inflammatory response and apoptosis in broiler heart via regulating Nrf2/HO-1 and NF-κB pathway. J Therm Biol 2023; 116:103658. [PMID: 37463527 DOI: 10.1016/j.jtherbio.2023.103658] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
To investigate the effect of cold stimulation on heart, 300 1-day-old female broilers were divided into control (CON) and two cold stimulation (CS3 and CS9) groups. Birds in CON group were reared in normal ambient temperature during day 1-43; while birds in CS3 and CS9 groups were reared at 3 °C and 9 °C below CON group for 5 h at 1-day intervals from day 15 to day 35, respectively. Heart tissues were collected at day 22, 29, 36, and 43 to determine the indexes related to oxidative stress, inflammation and apoptosis. The H&E staining displayed that inflammatory cell infiltration and myocardial fiber break were obviously observed in CS9 group, and cardiac pathological score in CS9 group was higher than CON and CS3 groups (P < 0.05) at day 22, 36, and 43. Overall, compared to CON group, the concentrations of MDA and H2O2 were elevated, the activities of SOD, CAT, GPx, and T-AOC were reduced, and mRNA expression of CAT, GPx, SOD, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) was downregulated in CS9 group at each time-point (P < 0.05). Compared to CON group, mRNA expression of NF-κBp65, COX-2, iNOS, PTGEs, TNF-α, and IL-1β, and mRNA and protein expression of Bax, Bak, Cyt-c, caspase-3, and caspase-9 were increased, while Bcl-2 and Bcl-2/Bax ratio were decreased in CS9 group (P < 0.05) at the most detected time-points. There were no significant differences in the levels of indexes associated with oxidative stress, Nrf2/HO-1 antioxidant system, inflammation, and apoptosis between CON and CS3 groups at the most detected time-points (P > 0.05). Therefore, this study suggests that severe cold stimulation at 9 °C below normal rearing temperature induces cardiomyocyte inflammation and apoptosis by regulating Nrf2/HO-1 pathway-related oxidative stress in broilers, and mild cold stimulation of CS3 group can improve the adaptability of hearts to cold environment.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030, Harbin, China.
| |
Collapse
|