1
|
Truong AD, Tran HTT, Chu NT, Phan L, Phan HT, Dang TH, Dang HV, Nguyen LA. Identification of immune-associated genes with altered expression in the spleen of mice enriched with probiotic Lactobacillus species using RNA-seq profiling. Anim Biosci 2025; 38:336-349. [PMID: 39210803 PMCID: PMC11725755 DOI: 10.5713/ab.24.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Probiotics are living microorganisms that can provide health benefits when consumed. Here, we investigated the effects of probiotics on gene expression in the spleen of mice using RNA-sequencing analysis between negative control and probiotic groups (including 4 Lactobacillus strains: Lactobacillus fermentum, L. casei, L. plantarum, and L. brevis). METHODS Mice exposed with probiotic in 4 weeks by intragastric administration. Then, spleen tissues of the control and probiotics groups were collected on days 14 and 28 for RNA sequencing. RESULTS In total, 665, 186, and 81 differentially expressed genes (DEGs) were significantly expressed on day 14 vs control, day 28 vs control groups, and probiotics day 28 vs day 14 groups, respectively. On the other hand, 12 toll-like receptor genes underwent additional validation through quantitative real-time polymerase chain reaction (qRT-PCR), affirming the increased alignment between qRT-PCR and RNA-Seq findings. In addition, the Kyoto encyclopedia of genes and genomes and gene ontology analyses revealed that the DEGs were predominantly enriched in defense responses to pathogens, including inflammatory bowel diseases, malaria, leukaemia virus 1, and herpes virus, as well as immune processes related to immune response and signal transduction. This study represents the first investigation into mice's gene expression in the spleen exposed to probiotics using Lactobacillus spp. isolated from a field strain in Vietnam. CONCLUSION Our results provide valuable insights into the impacts and functions of probiotics on mammalian development, offering crucial information for the potential therapeutic use of probiotics in defending against pathogens in Vietnam. The findings from this study highlight the potential of probiotics in modulating gene expression in the spleen, which may have implications for immune function and overall health in mice.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Lanh Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Hoai Thi Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Thu Huong Dang
- Department of Microbial Biotechnology, Food Industries Research Institute, Thanh Xuan Distr., Hanoi 100000,
Vietnam
| | - Hoang Vu Dang
- Department of Microbial Biotechnology, Food Industries Research Institute, Thanh Xuan Distr., Hanoi 100000,
Vietnam
| | - La Anh Nguyen
- Department of Microbial Biotechnology, Food Industries Research Institute, Thanh Xuan Distr., Hanoi 100000,
Vietnam
| |
Collapse
|
2
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
3
|
Hashemitabar SH, Hosseinian SA. The comparative effects of probiotics on growth, antioxidant indices and intestinal histomorphology of broilers under heat stress condition. Sci Rep 2024; 14:23471. [PMID: 39379397 PMCID: PMC11461668 DOI: 10.1038/s41598-024-66301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 10/10/2024] Open
Abstract
Heat stress adversely affects both the productivity and well-being of chickens. Probiotics offer beneficial impacts on the health and growth performance of broilers. The current study investigates the influence of administering of Bacillus (including B. subtilis, B. licheniformis, B. coagulans, and B. indicus) and Lactobacillus (consisting of L. acidophilus, L. plantarum, L. buchneri, and L. rhamnosus) probiotics via drinking water, either singular or combined, on various aspects including growth performance, oxidative stress markers, carcass characteristics, fecal microbial composition, intestinal structure, and intestinal pH in broilers exposed to chronic heat stress. A total of 150 one-day-old broiler chicks were divided into 5 groups: (1) NC, negative control; (2) HS, birds exposed to chronic heat stress; (3) HSpBacil, exposed to chronic heat stress and received Bacillus probiotic; (4) HSpLAB, subjected to chronic heat stress and provided with Lactobacillus probiotic; (5) HSpMix, subjected to chronic heat stress and administered a combined probiotic from Bacillus and Lactobacillus. The HS group exhibited significantly reduced levels of growth performance, carcass traits, and notably affected oxidative stress indices, as well as intestinal pH and histomorphology in the birds. Additionally, the administered probiotics led to increased weight of lymphoid organs, enhanced body weight gain, and improved intestinal histomorphology. Furthermore, the probiotics decreased malondialdehyde and increased total antioxidant capacity in broilers. In conclusion, Bacillus and Lactobacillus probiotics, as single or multi-species, particularly Lactobacillus and combined probiotic, demonstrated potential in alleviating the adverse effects of heat stress in broiler chickens. They could serve as beneficial feed additives and growth enhancers.
Collapse
Affiliation(s)
- Seyed Hamidreza Hashemitabar
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Seyedeh Alemeh Hosseinian
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran.
| |
Collapse
|
4
|
Yao G, Zhao Z, Yang C, Zuo B, Sun Z, Wang J, Zhang H. Evaluating the probiotic effects of spraying lactiplantibacillus plantarum P-8 in neonatal piglets. BMC Microbiol 2024; 24:253. [PMID: 38982403 PMCID: PMC11232343 DOI: 10.1186/s12866-024-03332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.
Collapse
Affiliation(s)
- Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China.
| |
Collapse
|
5
|
Truong AD, Tran HTT, Thi Nguyen H, Thi Chu N, Phan L, Thi Phan H, Thi Pham N, Nguyen VH, Nguyen LH, Pham DK, Ho PH, Vu Dang H. Identification of differentially expressed genes and metabolism signaling pathway in the spleen of broilers supplemented with probiotic Bacillus spp. Vet Immunol Immunopathol 2024; 272:110755. [PMID: 38643554 DOI: 10.1016/j.vetimm.2024.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Probiotics are essential in the body's nutrients, improving the ratio of meat to meat, immune response, and preventing diseases. In this study, RNA-sequencing (RNA-seq) was used to identify the differentially expressed genes (DEGs), enriched related pathways, and Gene Ontology (GO) terms among blank negative control (NC), supplemented with Bacillus spp. (BS) and commercial probiotic (PC) groups after a 42-day fed supplementation. The results showed that 2005, 1356, and 2189 DEGs were significantly altered in BS vs. NC, PC vs NC, and BS vs PC groups, respectively. On the other hand, 9 DEGs were further validated by qRT-PCR, indicating that the qRT-PCR and RNA-Seq results were more consistent. Therefore, the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs showed that the DEGs were mainly enriched to metabolism signalling pathways (alpha-linolenic acid metabolism, linoleic acid metabolism, tryptophan metabolism, tyrosine metabolism, ether lipid metabolism, and metabolic pathway, etc) and immune response pathways (cytokine-cytokine receptor interaction, MAPK signalling pathway, and intestinal immune network for IgA production, neuroactive ligand-receptor interaction etc). These results will provide a better understanding of the role of probiotics in chicken development and provide basic information on the genetic development of chickens.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Lanh Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Hoai Thi Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Ngoc Thi Pham
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Van Hai Nguyen
- Department of Food Engineering, School of Chemistry and Life Sciences, Hanoi University of Science and Technology (HUST), Hanoi 100000, Viet Nam
| | - Lan Huong Nguyen
- Department of Bioengineering, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Viet Nam
| | - Dang Kim Pham
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 100000, Viet Nam; Department of Livestock Production, Ministry of Agriculture and Rural Development, 16 Thuy Khue, Tay Ho, Hanoi 100000, Viet Nam
| | - Phu-Ha Ho
- Department of Food Engineering, School of Chemistry and Life Sciences, Hanoi University of Science and Technology (HUST), Hanoi 100000, Viet Nam.
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam.
| |
Collapse
|
6
|
Feng H, Zhang J, Zhang K, Wang X, Guo Z, Wang L, Li J. Synergistic anti-infectious bronchitis virus activity of Phillygenin combined Baicalin by modulating respiratory microbiota and improving metabolic disorders. Poult Sci 2024; 103:103371. [PMID: 38150830 PMCID: PMC10788278 DOI: 10.1016/j.psj.2023.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
Phillygenin (PHI) and Baicalin (Bai) are the major chemical ingredients extracted from Forsythia suspensa and Scutellaria baicalensis, respectively. The mixture of Forsythia suspensa and Scutellaria baicalensis according to the theories of Traditional Chinese Veterinary Medicine, compounded formulation can effectively exert heat-clearing and detoxifying effect, but the synergistic anti-IBV activity of PHI combined with Bai was unclear. Here, the protection of PHI combined with Bai on avian infectious bronchitis virus (IBV) M41 infection and the change of respiratory microbiota and metabolomics profiles in broilers that infected with IBV were investigated. According to the experimental findings, the combination of PHI and Bai effectively alleviated broilers' slowing-growth weight and respiratory symptoms. This was accompanied by a reduction in viral copies and histopathological changes, as well as an increase of antiviral protein (G3BP1) level in tracheas and anti-IBV antibody levels in serum. In addition, 16s RNA sequencing revealed that IBV infection significantly changed respiratory microbiota composition at different taxonomic levels and respiratory metabolism composition in broilers. Interestingly, PHI combined with Bai modulated the composition of respiratory microfloras, especially the abundance of Firmicutes and Lactobacillaceae were upregulated, as well as the abundance of Proteobacteria was downregulated. The metabolomics results indicated that PHI combined with Bai involved in glucose, lipids, amino acids and nucleotide metabolism during IBV infection. In summary, PHI combined with Bai exhibited a synergistic effect on preventing infectious bronchitis (IB), with the protection being closely associated with the composition of respiratory microbiota and metabolites. Therefore, adding the mixture of PHI and Bai to the chicken drinking water is recommended to prevent and control IB in clinical.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China
| | - Jingyan Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Zhiting Guo
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China.
| |
Collapse
|