1
|
Meng T, Wen Z, Cheng X, Li C, Zhang P, Xiao D, Xu Y. Unlocking Gut Health: The Potent Role of Stilbenoids in Intestinal Homeostasis. Animals (Basel) 2025; 15:417. [PMID: 39943187 PMCID: PMC11816141 DOI: 10.3390/ani15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Stilbenoids are a class of naturally occurring phenolic compounds found in various plant species, characterized by a stilbene backbone with diverse substituents that confer a range of biological activities. These compounds exhibit antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for improving intestinal health. The intestinal tract plays a critical role in nutrient digestion, absorption, and immune defense, and maintaining its integrity is vital for animal growth. Stilbenoids contribute to gut health by enhancing intestinal morphology, supporting mucosal immune responses, regulating gut microbiota composition, modulating metabolic pathways, and maintaining mitochondrial health. This review provides a comprehensive analysis of key stilbenoids, including resveratrol, pterostilbene, piceatannol, and oxyresveratrol, focusing on their biological effects and regulatory mechanisms. By highlighting their roles in mitigating intestinal inflammation and promoting gut function, this review provides a basis for the practical application of stilbenoids in animal health and husbandry.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Ziwei Wen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Dingfu Xiao
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| |
Collapse
|
2
|
Wang Q, Li J, Li G, Zang Y, Fan Q, Ye J, Wang Y, Jiang S. Protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota in yellow-feathered broilers under lipopolysaccharide challenge. Poult Sci 2025; 104:104688. [PMID: 39721279 PMCID: PMC11732448 DOI: 10.1016/j.psj.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
This research was performed to investigate protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota of lipopolysaccharide-challenged broilers. Three hundred 1-day-old yellow-feathered broilers (male) were allocated randomly into 5 treatments, with 6 replicates per treatment, and 10 birds per replicate cage. Birds in both the control group (CON) and the lipopolysaccharide-challenged group were provided with a basal diet, while others were fed a basal diet supplemented with 20, 40, and 60 mg/kg carnosic acid (CA20, CA40, CA60), respectively. At 17, 19, and 21 days of age, birds were injected intraperitoneally with lipopolysaccharide (500 μg/kg body weight), except those in CON, which were injected with saline. Compared with challenged birds, the CA20, CA40, and CA60 increased (P < 0.05) the final body weight, average daily gain, and average daily feed intake, and the CA40 and CA60 also decreased diarrhea rate. Compared with challenged birds, carnosic acid reduced (P < 0.05) plasmal levels of D-lactic acid and endotoxin, increased (P < 0.05) the villus height to crypt depth ratio, and the number of goblet cells in duodenum. The CA40 and CA60 elevated (P < 0.05) relative expression of cell junction proteins (Claudin-1/-2 and ZO-1/-2/-3) and MUC-2 in duodenum, while decreased (P < 0.05) relative expression of TLR2, TLR4, and the concentrations of IL-6, IL-10, TNF-α, TGF-β1 in duodenum. CA40 also increased (P < 0.05) the α-diversity of the cecal microbiota and boosted (P < 0.05) the relative abundance of beneficial phyla and genera, particularly Firmicutes, Anaerofilum, and Papilibacter. In conclusion, dietary supplementation with carnosic acid showed protective effects on the growth performance and intestinal health in challenged broilers by down-regulating the expression of TLRs (TLR2/4) and inhibiting the production of inflammatory cytokines, strengthening the tight junction in intestinal epithelial cells, and enhancing the diversity of microbiota and the relative abundance of beneficial bacteria. When supplemented to diet of broilers, 40 mg/kg carnosic acid was recommended.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China; College of Veterinary Medicine, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, 430072, China
| | - Jiawei Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Guanhuo Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yingan Zang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qiuli Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jingling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Yibing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| | - Shouqun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Cheng K, Yao J, Song Z, Huang J, Zhao H, Yang R, Meng Y, Wang J, Zhang Y. Effects of Resveratrol on Redox Status, Jejunal Injury, and Mitochondrial Function in Intrauterine Growth-Retarded Weaned Piglets. Animals (Basel) 2025; 15:290. [PMID: 39943059 PMCID: PMC11815716 DOI: 10.3390/ani15030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the effects of resveratrol (RSV) on redox status, jejunal injury, and mitochondrial function in intrauterine growth-retarded (IUGR) weaned piglets. In total, 12 male normal birth weight (NBW) newborn piglets and 24 male IUGR newborn piglets were selected. They were weaned at 26 days of age and then divided into three treatments in a three-week trial: (1) NBW piglets fed a basal diet; (2) IUGR piglets fed a basal diet; (3) IUGR piglets fed a basal diet supplemented with 300 mg/kg RSV. Compared with NBW piglets, IUGR piglets showed decreased growth performance, altered redox status, impaired jejunal morphology, tight junction protein expression, energy production, and mitochondrial oxidative phosphorylation. RSV enhanced antioxidant defense capacity and improved jejunal morphology, ATP generation, and mitochondrial complex I content in IUGR weaned piglets. Dietary RSV supplementation alleviated the IUGR-induced jejunal injury in weaned piglets probably by improving redox status and mitochondrial function, suggesting that RSV has the potential to be a dietary intervention in the regulation of intestinal injury in IUGR piglets.
Collapse
Affiliation(s)
- Kang Cheng
- Guangzhou Tanke Bio-Tech Co., Ltd., Guangzhou 510896, China
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.Y.); (J.H.); (R.Y.); (J.W.)
| | - Jinxiu Yao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.Y.); (J.H.); (R.Y.); (J.W.)
| | - Zhihua Song
- School of International Education, Henan University of Technology, Zhengzhou 450001, China; (Z.S.); (H.Z.); (Y.M.)
| | - Jin Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.Y.); (J.H.); (R.Y.); (J.W.)
| | - Hongyue Zhao
- School of International Education, Henan University of Technology, Zhengzhou 450001, China; (Z.S.); (H.Z.); (Y.M.)
| | - Ranya Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.Y.); (J.H.); (R.Y.); (J.W.)
| | - Yao Meng
- School of International Education, Henan University of Technology, Zhengzhou 450001, China; (Z.S.); (H.Z.); (Y.M.)
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.Y.); (J.H.); (R.Y.); (J.W.)
| | - Yong Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.Y.); (J.H.); (R.Y.); (J.W.)
| |
Collapse
|
4
|
Xiong T, Chen Z, Hassan M, Zhu C, Wang J, Tan S, Ding F, Cheng Z, Ye J, Fan Q, Xu D, Jiang S, Ruan D. Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide. Animals (Basel) 2024; 14:3670. [PMID: 39765574 PMCID: PMC11727612 DOI: 10.3390/ani14243670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450). On days 14, 17, and 20, chickens in the LPS, GA150, GA300, and GA450 groups received intramuscular injections of LPS, while chickens in the CON group received saline. The results showed that the addition of GA to the diet could effectively increase the average daily gain (ADG) of broilers from 1 to 50 days of age, and had a trend (p = 0.078) of increasing the average daily feed intake (ADFI). Adding 450 mg/kg GA to the diet significantly reduced (p < 0.05) the drip loss and pH value of pectoral muscles 45 min after slaughter, and significantly increased (p < 0.05) the lightness value of pectoral muscles 45 min post-slaughter. With an increase in GA level, the content of total volatile basic nitrogen (TVB-N) in pectoral muscles decreased linearly (p < 0.05), and the concentration of C22:6n-3 increased linearly (p < 0.05). GA effectively improved (p < 0.05) the antioxidant capacity of muscles and significantly increased (p < 0.05) the activity of total superoxide dismutase (T-SOD) in pectoral muscles after LPS stimulation, exhibiting linear and quadratic changes (p < 0.05). It also significantly increased (p < 0.05) the activity of hydrogen peroxide and decreased the activity of glutathione peroxidase (GSH-Px), while it linearly decreased (p < 0.05) the content of malondialdehyde (MDA). In addition, the dietary supplementation of GA significantly increased (p < 0.05) the expression levels of myosin heavy chain (MyHC) I and MyHC IIa in pectoral muscles and significantly decreased (p < 0.05) the expression level of MyHC IIx. In summary, the dietary addition of GA can alleviate the effect of the stress response on the growth performance of broiler chickens and improve antioxidant capacity and meat quality. The appropriate amount of dietary GA at each stage was 300 mg/kg.
Collapse
Affiliation(s)
- Taidi Xiong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China;
| | - Zhilong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Mubashar Hassan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Cui Zhu
- School of Animal Science and Technology, Foshan University, Foshan 528225, China;
| | - Junyan Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
- Binhai Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China
| | - Shujun Tan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Fayuan Ding
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Zhonggang Cheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Jinling Ye
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Danlei Xu
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| |
Collapse
|
5
|
Song R, Jiang Y, Zhang B, Jiao Z, Yang X, Zhang N. Effects of Hypericum attenuatum Choisy extract on the immunologic function and intestinal microflora of broilers under oxidative stress. Poult Sci 2024; 103:104189. [PMID: 39191003 PMCID: PMC11395763 DOI: 10.1016/j.psj.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated the impact of Hypericum attenuatum Choisy extract (HYG) on immunological function and the cecum microflora in broilers. A total of 240 one-day-old AA broilers were randomly divided into 5 groups with 6 replicates of 8 broilers each: 1) the CN group, in which broilers were injected with saline and fed a basal diet; 2) the PC group, in which broilers were injected with lipolyaccharide (LPS) and fed a basal diet; 3) the HYG1 group, in which broilers were injected with LPS and fed a 400 mg/kg HYG-supplemented diet; 4) the HYG2 group, in which broilers were injected with LPS and fed a 800 mg/kg HYG-supplemented diet; 5) the HYG3 group, in which broilers were injected with LPS and fed a 1,200 mg/kg HYG-supplemented diet. Broilers were injected with 1 mg/kg LPS or the same amount saline 12 hours before sampling on d 21 and 42. The results revealed that dietary 400 mg/kg HYG supplementation alleviated spleen index and thymus index abnormalities, balanced the disturbance of serum immunoglobulin (Ig)M and IgA levels, and regulated the cytokine balance in the serum, liver, spleen and jejunum tissues included induced by LPS. Dietary supplementation with 400 mg/kg HYG also downregulated the relative expression of the inhibitor of kappa B kinase alpha (IKKα) and interleukin (IL)-6 mRNAs in the liver and upregulated the relative expression of the inhibitor kappa B alpha (IκBα) and IL-10 mRNAs in the spleen. Dietary HYG improved the cecal microflora balance at 42 d by increasing the relative abundance of beneficial bacteria, such as Alistipes and Phascolarctobacterium, while reducing the relative abundance of harmful bacteria, such as Helicobacter and Colidextribacter. Spearman correlation analysis revealed a negative correlation between activation of the NF-κB inhibitory pathway in the liver and the presence of Phascolarctobacterium, Erysipelatoclostridium, Subdoligranulum and Parabacteroides. Conclusions: The incorporation of 400 mg/kg HYG into the diet was optimal in improving broiler immunological function.
Collapse
Affiliation(s)
- Rui Song
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China; Agricultural Technology Extension Center, Shuyang County Agriculture and Rural Affairs Bureau, Shuyang 223600, China
| | - Yanzhen Jiang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zimeng Jiao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Xing Yang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Li X, Sha Y, Li S, Wang Z, Yang Y, Jiao T, Zhao S. Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages. Front Immunol 2024; 15:1462805. [PMID: 39464877 PMCID: PMC11502325 DOI: 10.3389/fimmu.2024.1462805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Resveratrol (Res), a natural plant antitoxin polyphenol, is widely used in animal husbandry due to its antioxidant and anti-inflammatory properties, and current research has focused on humans, sows, and female mice. This study aimed to analyze the effects of dietary Res supplementation in ewes on antioxidant activity, immune responses, hormone levels, rumen microbiota and metabolites across various reproductive stages (estrus, pregnancy, and lactation). Methods Twenty-four healthy ewe lambs (Hu sheep, 2 months old) with a similar body weight (BW) (mean: 21.79 ± 2.09 kg) were selected and randomly divided into two groups: the control group (Con) and the Res group (Res). The Res group received 10 mg/kg Res (based on BW) in addition to their basal diet. Results Res increased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in ewes at sexual maturity (p < 0.05). Additionally, Res supplementation induced significant increases in serum glutathione peroxidase (GSH-Px), IgG, FSH, and LH levels during estrus (p < 0.05); serum IgA, IgG and IgM during pregnancy and lactation (p < 0.05); and serum LH, glucose, GSH-Px, and catalase (CAT) levels during lactation (p < 0.05). Meanwhile, serum interleukin 1β (IL-1β) (p =0.005) and cholesterol levels (p = 0.041) during the lactation stage decreased following Res supplementation. Notably, colostrum IgA, IgG, and fat concentrations were significantly higher in the Res group than in the Con group (p < 0.05). Moreover, Res altered the rumen microbiota in ewes. Specifically, the relative abundance of Prevotella (p < 0.05) during pregnancy and Rikenellaceae_RC9_gut_group (p < 0.001) during lactation were significantly increased in ewes under Res treatment. The abundance of Rikenellaceae_RC9_gut_group was positively correlated with the levels of Ig A, Ig M, E2, FSH, LH, GSH-PX, and CAT. Additionally, Res altered the activity of metabolic pathways such as progesterone-mediated oocyte maturation, the estrogen signaling pathway, ovarian steroidogenesis, and the AMPK signaling pathway, and the levels of AICAR and 2-hydroxyestradiol metabolites, both during pregnancy and lactation. Discussion There findings show that Res can improve health, antioxidant status, and immune activity throughout the reproductive cycle in ewes by regulating rumen microorganisms and metabolites.
Collapse
Affiliation(s)
- Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuyan Li
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Zhengwen Wang
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Jiao
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Zha P, Liu W, Zhou Y, Chen Y. Protective effects of chlorogenic acid on the intestinal barrier of broiler chickens: an immunological stress model study. Poult Sci 2024; 103:103949. [PMID: 38917604 PMCID: PMC11251075 DOI: 10.1016/j.psj.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3β, as well as the translocation of nuclear β-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
8
|
Qiu H, Huang L, Wang H, Tao C, Ran Z, Xu J, Sun H, Wang P. Effects of Lactobacillus acidophilus AC on the growth, intestinal flora and metabolism of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109570. [PMID: 38643956 DOI: 10.1016/j.fsi.2024.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.
Collapse
Affiliation(s)
- Haoyu Qiu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ling Huang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hanying Wang
- National Marine Facility Aquaculture Engineering and Technology Research Center, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenzhi Tao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhiqiang Ran
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiahang Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Haofeng Sun
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ping Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
9
|
Melaku M, Su D, Zhao H, Zhong R, Ma T, Yi B, Chen L, Zhang H. The New Buffer Salt-Protected Sodium Butyrate Promotes Growth Performance by Improving Intestinal Histomorphology, Barrier Function, Antioxidative Capacity, and Microbiota Community of Broilers. BIOLOGY 2024; 13:317. [PMID: 38785799 PMCID: PMC11117952 DOI: 10.3390/biology13050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
- Department of Animal Science, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Dan Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Huaibao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Teng Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
10
|
Xi M, Hao G, Yao Q, Duan X, Ge W. Galactooligosaccharide Mediates NF-κB Pathway to Improve Intestinal Barrier Function and Intestinal Microbiota. Molecules 2023; 28:7611. [PMID: 38005333 PMCID: PMC10674247 DOI: 10.3390/molecules28227611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The use of antibiotics to treat diarrhea and other diseases early in life can lead to intestinal disorders in infants, which can cause a range of immune-related diseases. Intestinal microbiota diversity is closely related to dietary intake, with many oligosaccharides impacting intestinal microorganism structures and communities. Thus, oligosaccharide type and quantity are important for intestinal microbiota construction. Galactooligosaccharides (GOS) are functional oligosaccharides that can be supplemented with infant formula. Currently, information on GOS and its impact on intestinal microbiota diversity and disorders is lacking. Similarly, GOS is rarely reported within the context of intestinal barrier function. In this study, 16S rRNA sequencing, gas chromatography, and immunohistochemistry were used to investigate the effects of GOS on the intestinal microbiota and barrier pathways in antibiotic-treated mouse models. The results found that GOS promoted Bifidobacterium and Akkermansia proliferation, increased short-chain fatty acid levels, increased tight junction protein expression (occludin and ZO-1), increased secretory immunoglobulin A (SIgA) and albumin levels, significantly downregulated NF-κB expression, and reduced lipopolysaccharide (LPS), interleukin-IL-1β (IL-1β), and IL-6 levels. Also, a high GOS dose in ampicillin-supplemented animals provided resistance to intestinal damage.
Collapse
Affiliation(s)
- Menglu Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Guo Hao
- Shaanxi Sheep Milk Product Quality Supervision and Inspection Center, Xi’an 710000, China;
| | - Qi Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| |
Collapse
|
11
|
Farhan M, Rizvi A. The Pharmacological Properties of Red Grape Polyphenol Resveratrol: Clinical Trials and Obstacles in Drug Development. Nutrients 2023; 15:4486. [PMID: 37892561 PMCID: PMC10610408 DOI: 10.3390/nu15204486] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Resveratrol is a stilbenoid from red grapes that possesses a strong antioxidant activity. Resveratrol has been shown to have anticancer activity, making it a promising drug for the treatment and prevention of numerous cancers. Several in vitro and in vivo investigations have validated resveratrol's anticancer capabilities, demonstrating its ability to block all steps of carcinogenesis (such as initiation, promotion, and progression). Additionally, resveratrol has been found to have auxiliary pharmacological effects such as anti-inflammatory, cardioprotective, and neuroprotective activity. Despite its pharmacological properties, several obstacles, such as resveratrol's poor solubility and bioavailability, as well as its adverse effects, continue to be key obstacles to drug development. This review critically evaluates the clinical trials to date and aims to develop a framework to develop resveratrol into a clinically viable drug.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|