1
|
Abdelnaim MA, Lang-Hambauer V, Hebel T, Schoisswohl S, Schecklmann M, Deuter D, Schlaier J, Langguth B. Deep brain stimulation for treatment resistant obsessive compulsive disorder; an observational study with ten patients under real-life conditions. Front Psychiatry 2023; 14:1242566. [PMID: 37779611 PMCID: PMC10533930 DOI: 10.3389/fpsyt.2023.1242566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) affects 2-3% of the global population, causing distress in many functioning levels. Standard treatments only lead to a partial recovery, and about 10% of the patients remain treatment-resistant. Deep brain stimulation offers a treatment option for severe, therapy-refractory OCD, with a reported response of about 60%. We report a comprehensive clinical, demographic, and treatment data for patients who were treated with DBS in our institution. Methods We offered DBS to patients with severe chronic treatment resistant OCD. Severity was defined as marked impairment in functioning and treatment resistance was defined as non-response to adequate trials of medications and psychotherapy. Between 2020 and 2022, 11 patients were implanted bilaterally in the bed nucleus of stria terminalis (BNST). Patients were evaluated with YBOCS, MADRS, GAF, CGI, and WHOQOL-BREF. We performed the ratings at baseline (before surgery), after implantation before the start of the stimulation, after reaching satisfactory stimulation parameters, and at follow-up visits 3, 6, 9, and 12 months after optimized stimulation. Results One patient has retracted his consent to publish the results of his treatment, thus we are reporting the results of 10 patients (5 males, 5 females, mean age: 37 years). Out of our 10 patients, 6 have shown a clear response indicated by a YBOCS-reduction between 42 and 100 percent at last follow-up. One further patient experienced a subjectively dramatic effect on OCD symptoms, but opted afterwards to stop the stimulation. The other 3 patients showed a slight, non-significant improvement of YBOCS between 8.8 and 21.9%. The overall mean YBOCS decreased from 28.3 at baseline to 13.3 (53% reduction) at the last follow-up. The improvement of the OCD symptoms was also accompanied by an improvement of depressive symptoms, global functioning, and quality of life. Conclusion Our results suggest that BNST-DBS can be effective for treatment-resistant OCD patients, as indicated by a reduction in symptoms and an overall improvement in functioning. Despite the need for additional research to define the patients' selection criteria, the most appropriate anatomical target, and the most effective stimulation parameters, improved patient access for this therapy should be established.
Collapse
Affiliation(s)
- Mohamed A. Abdelnaim
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| | - Verena Lang-Hambauer
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Daniel Deuter
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
- Department of Neurosurgery, University Regensburg, Regensburg, Germany
| | - Juergen Schlaier
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
- Department of Neurosurgery, University Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Cruz S, Gutiérrez-Rojas L, González-Domenech P, Díaz-Atienza F, Martínez-Ortega JM, Jiménez-Fernández S. Deep brain stimulation in obsessive-compulsive disorder: Results from meta-analysis. Psychiatry Res 2022; 317:114869. [PMID: 36240634 DOI: 10.1016/j.psychres.2022.114869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023]
Abstract
The aim of this work is to investigate the effectiveness of Deep Brain Stimulation (DBS) in patients with severe Obsessive Compulsive Disorder (OCD) who are resistant to pharmacological treatments, focusing on obsessive compulsive, depressive and anxiety symptoms as well as global function. A systematic review and meta-analysis including 25 studies (without language restrictions) from between 2003 and 2020 was performed. A total of 303 patients were evaluated twice (before and after DBS). After DBS treatment OCD patients with resistance to pharmacological treatments showed a significant improvement of obsessive-compulsive symptoms (25 studies; SMD=2.39; 95% CI, 1.91 to 2.87; P<0.0001), depression (9 studies; SMD= 1.19; 95%CI, 0.84 to 1.54; P<0.0001), anxiety (5 studies; SMD=1.00; 95%CI, 0.32 to 1.69; P=0.004) and functionality (7 studies; SMD=-3.51; 95%CI, -5.00 to -2.02; P=0.005) measured by the standardized scales: Yale Brown Obsessive Compulsive Scale (YBOCS), Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A) and Global Assessment of Function (GAF). Publication bias were discarded by using funnel plot. The main conclusions of this meta-analysis highlight the statistically significant effectiveness of DBS in patients with severe OCD who are resistant to conventional pharmacological treatments, underlying its role in global functioning apart from obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Sheila Cruz
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain
| | - Luis Gutiérrez-Rojas
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Psychiatry Service, Hospital San Cecilio, Granada, Spain.
| | | | - Francisco Díaz-Atienza
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Child and Adolescent Mental Health Service, Granada Virgen de las Nieves University Hospital, Granada, Spain
| | - José M Martínez-Ortega
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | - Sara Jiménez-Fernández
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Gadot R, Najera R, Hirani S, Anand A, Storch E, Goodman WK, Shofty B, Sheth SA. Efficacy of deep brain stimulation for treatment-resistant obsessive-compulsive disorder: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328738. [PMID: 36127157 DOI: 10.1136/jnnp-2021-328738] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/22/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) is an established and growing intervention for treatment-resistant obsessive-compulsive disorder (TROCD). We assessed current evidence on the efficacy of DBS in alleviating OCD and comorbid depressive symptoms including newly available evidence from recent trials and a deeper risk of bias analysis than previously available. PubMed and EMBASE databases were systematically queried using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. We included studies reporting primary data on multiple patients who received DBS therapy with outcomes reported through the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Primary effect measures included Y-BOCS mean difference and per cent reduction as well as responder rate (≥35% Y-BOCS reduction) at last follow-up. Secondary effect measures included standardised depression scale reduction. Risk of bias assessments were performed on randomised controlled (RCTs) and non-randomised trials. Thirty-four studies from 2005 to 2021, 9 RCTs (n=97) and 25 non-RCTs (n=255), were included in systematic review and meta-analysis based on available outcome data. A random-effects model indicated a meta-analytical average 14.3 point or 47% reduction (p<0.01) in Y-BOCS scores without significant difference between RCTs and non-RCTs. At last follow-up, 66% of patients were full responders to DBS therapy. Sensitivity analyses indicated a low likelihood of small study effect bias in reported outcomes. Secondary analysis revealed a 1 standardised effect size (Hedges' g) reduction in depressive scale symptoms. Both RCTs and non-RCTs were determined to have a predominantly low risk of bias. A strong evidence base supports DBS for TROCD in relieving both OCD and comorbid depression symptoms in appropriately selected patients.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Samad Hirani
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric Storch
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Wayne K Goodman
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
6
|
Elias GJB, Loh A, Gwun D, Pancholi A, Boutet A, Neudorfer C, Germann J, Namasivayam A, Gramer R, Paff M, Lozano AM. Deep brain stimulation of the brainstem. Brain 2021; 144:712-723. [PMID: 33313788 DOI: 10.1093/brain/awaa374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus, pallidum, and thalamus is an established therapy for various movement disorders. Limbic targets have also been increasingly explored for their application to neuropsychiatric and cognitive disorders. The brainstem constitutes another DBS substrate, although the existing literature on the indications for and the effects of brainstem stimulation remains comparatively sparse. The objective of this review was to provide a comprehensive overview of the pertinent anatomy, indications, and reported stimulation-induced acute and long-term effects of existing white and grey matter brainstem DBS targets. We systematically searched the published literature, reviewing clinical trial articles pertaining to DBS brainstem targets. Overall, 164 studies describing brainstem DBS were identified. These studies encompassed 10 discrete structures: periaqueductal/periventricular grey (n = 63), pedunculopontine nucleus (n = 48), ventral tegmental area (n = 22), substantia nigra (n = 9), mesencephalic reticular formation (n = 7), medial forebrain bundle (n = 8), superior cerebellar peduncles (n = 3), red nucleus (n = 3), parabrachial complex (n = 2), and locus coeruleus (n = 1). Indications for brainstem DBS varied widely and included central neuropathic pain, axial symptoms of movement disorders, headache, depression, and vegetative state. The most promising results for brainstem DBS have come from targeting the pedunculopontine nucleus for relief of axial motor deficits, periaqueductal/periventricular grey for the management of central neuropathic pain, and ventral tegmental area for treatment of cluster headaches. Brainstem DBS has also acutely elicited numerous motor, limbic, and autonomic effects. Further work involving larger, controlled trials is necessary to better establish the therapeutic potential of DBS in this complex area.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andrew Namasivayam
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Robert Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Elias GJB, Germann J, Boutet A, Pancholi A, Beyn ME, Bhatia K, Neudorfer C, Loh A, Rizvi SJ, Bhat V, Giacobbe P, Woodside DB, Kennedy SH, Lozano AM. Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain 2021; 145:362-377. [PMID: 34324658 DOI: 10.1093/brain/awab284] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
Subcallosal cingulate deep brain stimulation (SCC-DBS) produces long-term clinical improvement in approximately half of patients with severe treatment-resistant depression (TRD). We hypothesized that both structural and functional brain attributes may be important in determining responsiveness to this therapy. In a TRD SCC-DBS cohort, we retrospectively examined baseline and longitudinal differences in MRI-derived brain volume (n = 65) and 18F-fluorodeoxyglucose-PET glucose metabolism (n = 21) between responders and non-responders. Support-vector machines (SVMs) were subsequently trained to classify patients' response status based on extracted baseline imaging features. A machine learning model incorporating pre-operative frontopolar, precentral/frontal opercular, and orbitofrontal local volume values classified binary response status (12 months) with 83% accuracy (leave-one-out cross-validation (LOOCV): 80% accuracy) and explained 32% of the variance in continuous clinical improvement. It was also predictive in an out-of-sample SCC-DBS cohort (n = 21) with differing primary indications (bipolar disorder/anorexia nervosa) (76% accuracy). Adding pre-operative glucose metabolism information from rostral anterior cingulate cortex and temporal pole improved model performance, enabling it to predict response status in the TRD cohort with 86% accuracy (LOOCV: 81% accuracy) and explain 67% of clinical variance. Response-related patterns of metabolic and structural post-DBS change were also observed, especially in anterior cingulate cortex and neighbouring white matter. Areas where responders differed from non-responders - both at baseline and longitudinally - largely overlapped with depression-implicated white matter tracts, namely uncinate fasciculus, cingulum bundle, and forceps minor/rostrum of corpus callosum. The extent of patient-specific engagement of these same tracts (according to electrode location and stimulation parameters) also served as a predictor of TRD response status (72% accuracy; LOOCV: 70% accuracy) and augmented performance of the volume-based (88% accuracy; LOOCV: 82% accuracy) and combined volume/metabolism-based SVMs (100% accuracy; LOOCV: 94% accuracy). Taken together, these results indicate that responders and non-responders to SCC-DBS exhibit differences in brain volume and metabolism, both pre- and post-surgery. Baseline imaging features moreover predict response to treatment (particularly when combined with information about local tract engagement) and could inform future patient selection and other clinical decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Kartik Bhatia
- Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Sakina J Rizvi
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Venkat Bhat
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - D Blake Woodside
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| |
Collapse
|
8
|
Rezai AR, Ranjan M, Figee M, Kopell BH. Commentary: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines for Deep Brain Stimulations for Obsessive-Compulsive Disorder: Update of the 2014 Guidelines. Neurosurgery 2021; 88:E554-E555. [PMID: 33733275 DOI: 10.1093/neuros/nyab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ali R Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Martijn Figee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Center for Neuromodulation/Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian Harris Kopell
- Center for Neuromodulation/Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
10
|
Ashkan K, Mirza AB, Tambirajoo K, Furlanetti L. Deep brain stimulation in the management of paediatric neuropsychiatric conditions: Current evidence and future directions. Eur J Paediatr Neurol 2021; 33:146-158. [PMID: 33092983 DOI: 10.1016/j.ejpn.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Neurosurgery has provided an alternative option for patients with refractory psychiatric indications. Lesion procedures were the initial techniques used, but deep brain stimulation (DBS) has the advantage of relative reversibility and adjustability. This review sets out to delineate the current evidence for DBS use in psychiatric conditions, with an emphasis on the paediatric population, highlighting pitfalls and opportunities. METHODS A systematic review of the literature was conducted on studies reporting the use of DBS in the management of psychiatric disorders. The PRISMA guidelines were employed to structure the review of the literature. Data was discussed focusing on the indications for DBS management of psychiatric conditions in the paediatric age group. RESULTS A total of seventy-three full-text papers reported the use of DBS surgery for the management of psychiatric conditions matching the inclusion criteria. The main indications were Tourette Syndrome (GTS) (15 studies), Obsessive Compulsive Disorder (OCD) (20), Treatment Resistant Depression (TRD) (27), Eating Disorders (ED) (7) and Aggressive Behaviour and self-harm (AB) (4). Out of these, only 11 studies included patients in the paediatric age group (≤18 years-old). Among the paediatric patients, the indications for surgery included GTS, AB and ED. CONCLUSIONS The application of deep brain stimulation for psychiatric indications has progressed at a steady pace in the adult population and at a much slower pace in the paediatric population. Future studies in children should be done in a trial setting with strict and robust criteria. A move towards personalising DBS therapy with new stimulation paradigms will provide new frontiers and possibilities in this growing field.
Collapse
Affiliation(s)
- Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Kantharuby Tambirajoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK.
| |
Collapse
|
11
|
Hageman SB, van Rooijen G, Bergfeld IO, Schirmbeck F, de Koning P, Schuurman PR, Denys D. Deep brain stimulation versus ablative surgery for treatment-refractory obsessive-compulsive disorder: A meta-analysis. Acta Psychiatr Scand 2021; 143:307-318. [PMID: 33492682 DOI: 10.1111/acps.13276] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ablative surgery (ABL) and deep brain stimulation (DBS) are last-resort treatment options for patients suffering from treatment-refractory obsessive-compulsive disorder (OCD). The aim of this study was to conduct an updated meta-analysis comparing the clinical outcomes of the ablative procedures capsulotomy and cingulotomy and deep brain stimulation. METHODS We conducted a PubMed search to identify all clinical trials on capsulotomy, cingulotomy, and DBS. Random effects meta-analyses were performed on 38 articles with a primary focus on efficacy in reducing OCD symptoms as measured by a reduction in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score and the responder rate (≥35% reduction in Y-BOCS score). RESULTS With responder rates of 48% and 53% after 12-16 months and 56% and 57% at last follow-up for ABL and DBS, respectively, and large effect sizes in the reduction in Y-BOCS scores, both surgical modalities show effectiveness in treating refractory OCD. Meta-regression did not show a statistically significant difference between ABL and DBS regarding these outcomes. Regarding adverse events, a statistically significant higher rate of impulsivity is reported in studies on DBS. CONCLUSION This meta-analysis shows equal efficacy of ABL and DBS in the treatment of refractory OCD. For now, the choice of intervention should, therefore, rely on factors such as risk of developing impulsivity, patient preferences, and experiences of psychiatrist and neurosurgeon. Future research should provide more insight regarding differences between ABL and DBS and response prediction following direct comparisons between the surgical modalities, to enable personalized and legitimate choices between ABL and DBS.
Collapse
Affiliation(s)
- Sarah Babette Hageman
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Geeske van Rooijen
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Isidoor O Bergfeld
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike Schirmbeck
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Arkin Institute for Mental Health, Amsterdam, the Netherlands
| | - Pelle de Koning
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - P Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.,The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Pinckard-Dover H, Ward H, Foote KD. The Decline of Deep Brain Stimulation for Obsessive-Compulsive Disorder Following FDA Humanitarian Device Exemption Approval. Front Surg 2021; 8:642503. [PMID: 33777998 PMCID: PMC7994854 DOI: 10.3389/fsurg.2021.642503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: In February 2009, the US Food and Drug Administration (FDA) granted Humanitarian Device Exemption (HDE) for deep brain stimulation (DBS) in the anterior limb of the internal capsule (ALIC) for the treatment of severely debilitating, treatment refractory obsessive–compulsive disorder (OCD). Despite its promise as a life altering treatment for patients with otherwise refractory, severely debilitating OCD, the use of DBS for the treatment of OCD has diminished since the FDA HDE endorsement and is now rarely performed even at busy referral centers. We sought to identify factors hindering OCD patients from receiving DBS therapy. Materials and Methods: University of Florida (UF) clinical research databases were queried to identify patients evaluated as potential candidates for OCD DBS from January 1, 2002 to July 30, 2020. A retrospective review of these patients' medical records was performed to obtain demographic information, data related to their OCD, and details relevant to payment such as third-party payer, study participation, evaluation prior to or after HDE approval, and any stated factors prohibiting surgical intervention. Results: Out of 25 patients with severe OCD identified as candidates for DBS surgery during the past 18 years, 15 underwent surgery. Prior to FDA HDE approval, 6 out of 7 identified candidates were treated. After the HDE, only 9 out of 18 identified candidates were treated. Seven of the 9 were funded by Medicare, 1 paid out of pocket, and 1 had “pre-authorization” from her private insurer who ultimately refused to pay after the procedure. Among the 10 identified OCD DBS candidates who were ultimately not treated, 7 patients—all with private health insurance—were approved for surgery by the interdisciplinary team but were unable to proceed with surgery due to lack of insurance coverage, 1 decided against surgical intervention, 1 was excluded due to medical comorbidities and excessive perceived surgical risk, and no clear reason was identified for 1 patient evaluated in 2004 during our initial NIH OCD DBS trial. Conclusion: Based on compelling evidence that DBS provides substantial improvement of OCD symptoms and markedly improved functional capacity in 2 out of 3 patients with severely debilitating, treatment refractory OCD, the FDA approved this procedure under a Humanitarian Device Exemption in 2009, offering new hope to this unfortunate patient population. A careful review of our experience with OCD DBS at the University of Florida shows that since the HDE approval, only 50% of the severe OCD patients (9 of 18) identified as candidates for this potentially life altering treatment have been able to access the therapy. We found the most common limiting factor to be failure of private insurance policies to cover DBS for OCD, despite readily covering DBS for Parkinson's disease, essential tremor, and even dystonia—another HDE approved indication for DBS. We have identified an inherent discrimination in the US healthcare system against patients with medication-refractory OCD who are economically challenged and do not qualify for Medicare. We urge policy makers, insurance companies, and hospital administrations to recognize this health care disparity and seek to rectify it.
Collapse
Affiliation(s)
- Heather Pinckard-Dover
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Herbert Ward
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
13
|
Abstract
It becomes increasingly clear that (non-)invasive neurostimulation is an effective treatment for obsessive-compulsive disorder (OCD). In this chapter we review the available evidence on techniques and targets, clinical results including a meta-analysis, mechanisms of action, and animal research. We focus on deep brain stimulation (DBS), but also cover non-invasive neurostimulation including transcranial magnetic stimulation (TMS). Data shows that most DBS studies target the ventral capsule/ventral striatum (VC/VS), with an overall 76% response rate in treatment-refractory OCD. Also TMS holds clinical promise. Increased insight in the normalizing effects of neurostimulation on cortico-striatal-thalamic-cortical (CSTC) loops - through neuroimaging and animal research - provides novel opportunities to further optimize treatment strategies. Advancing clinical implementation of neurostimulation techniques is essential to ameliorate the lives of the many treatment-refractory OCD patients.
Collapse
|
14
|
Raviv N, Staudt MD, Rock AK, MacDonell J, Slyer J, Pilitsis JG. A Systematic Review of Deep Brain Stimulation Targets for Obsessive Compulsive Disorder. Neurosurgery 2020; 87:1098-1110. [PMID: 32615588 DOI: 10.1093/neuros/nyaa249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a complex neuropsychiatric disease characterized by obsessions and compulsions. Deep brain stimulation (DBS) has demonstrated efficacy in improving symptoms in medically refractory patients. Multiple targets have been investigated. OBJECTIVE To systematically review the current level and quality of evidence supporting OCD-DBS by target region with the goal of establishing a common nomenclature. METHODS A systematic literature review was performed using the PubMed database and a patient/problem, intervention, comparison, outcome search with the terms "DBS" and "OCD." Of 86 eligible articles that underwent full-text review, 28 were included for review. Articles were excluded if the target was not specified, the focus on nonclinical outcomes, the follow-up period shorter than 3 mo, or the sample size smaller than 3 subjects. Level of evidence was assigned according to the American Association of Neurological Surgeons/Congress of Neurological Surgeons joint guideline committee recommendations. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Selected publications included 9 randomized controlled trials, 1 cohort study, 1 case-control study, 1 cross-sectional study, and 16 case series. Striatal region targets such as the anterior limb of the internal capsule, ventral capsule/ventral striatum, and nucleus accumbens were identified, but stereotactic coordinates were similar despite differing structural names. Only 15 of 28 articles included coordinates. CONCLUSION The striatal area is the most commonly targeted region for OCD-DBS. We recommend a common nomenclature based on this review. To move the field forward to individualized therapy, active contact location relative to stereotactic coordinates and patient specific anatomical and clinical variances need to be reported.
Collapse
Affiliation(s)
- Nataly Raviv
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Andrew K Rock
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Jacquelyn MacDonell
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julia Slyer
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York.,Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
15
|
Mithani K, Davison B, Meng Y, Lipsman N. The anterior limb of the internal capsule: Anatomy, function, and dysfunction. Behav Brain Res 2020; 387:112588. [PMID: 32179062 DOI: 10.1016/j.bbr.2020.112588] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/22/2019] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
The last two decades have seen a re-emergence of neurosurgery for severe, refractory psychiatric diseases, largely due to the advent of more precise and safe operative techniques. Nevertheless, the optimal targets for these surgeries remain a matter of debate, and are often grandfathered from experiences in the late 20th century. To better explore the rationale for one target in particular - the anterior limb of the internal capsule (ALIC) - we comprehensively reviewed all available literature on its role in the pathophysiology and treatment of mental illness. We first provide an overview of its functional anatomy, followed by a discussion on its role in several prevalent psychiatric diseases. Given its structural integration into the limbic system and involvement in a number of cognitive and emotional processes, the ALIC is a robust target for surgical treatment of refractory psychiatric diseases. The advent of novel neuroimaging techniques, coupled with image-guided therapeutics and neuromodulatory treatments, will continue to enable study on the ALIC in mental illness.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Rapinesi C, Kotzalidis GD, Ferracuti S, Sani G, Girardi P, Del Casale A. Brain Stimulation in Obsessive-Compulsive Disorder (OCD): A Systematic Review. Curr Neuropharmacol 2020; 17:787-807. [PMID: 30963971 PMCID: PMC7059162 DOI: 10.2174/1570159x17666190409142555] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a highly prevalent, severe, and chronic disease. There is a need for alternative strategies for treatment-resistant OCD. Objective This review aims to assess the effect of brain stimulation techniques in OCD. Method We included papers published in peer-reviewed journals dealing with brain stimulation techniques in OCD. We conducted treatment-specific searches for OCD (Technique AND ((randomized OR randomised) AND control* AND trial) AND (magnetic AND stimulation OR (rTMS OR dTMS)) AND (obsess* OR compuls* OR OCD)) on six databases, i.e., PubMed, Cochrane, Scopus, CINAHL, PsycINFO, and Web of Science to identify randomised controlled trials and ClinicalTrials.gov for possible additional results. Results Different add-on stimulation techniques could be effective for severely ill OCD patients unresponsive to drugs and/or behavioural therapy. Most evidence regarded deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS), while there is less evidence regarding transcranial direct current stimulation (tDCS), electroconvulsive therapy, and vagus nerve stimulation (for these last two there are no sham-controlled studies). Low-frequency TMS may be more effective over the supplementary motor area or the orbitofrontal cortex. DBS showed best results when targeting the crossroad between the nucleus accumbens and the ventral capsule or the subthalamic nucleus. Cathodal tDCS may be better than anodal in treating OCD. Limitations. We had to include methodologically inconsistent underpowered studies. Conclusion Different brain stimulation techniques are promising as an add-on treatment of
refractory OCD, although studies frequently reported inconsistent results. TMS, DBS, and tDCS could possibly find some use with adequate testing, but their standard methodology still needs to be established.
Collapse
Affiliation(s)
- Chiara Rapinesi
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy
| | - Georgios D Kotzalidis
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Sapienza University; Risk Management Unit, "Sant'Andrea" University Hospital, Rome, Italy
| | - Gabriele Sani
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy.,"Lucio Bini" Center, "Aretaeus Onlus", Rome, Italy
| | - Paolo Girardi
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy.,"Lucio Bini" Center, "Aretaeus Onlus", Rome, Italy
| | - Antonio Del Casale
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy
| |
Collapse
|
17
|
Holland MT, Trapp NT, McCormick LM, Jareczek FJ, Zanaty M, Close LN, Beeghly J, Greenlee JDW. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Long Term Naturalistic Follow Up Study in a Single Institution. Front Psychiatry 2020; 11:55. [PMID: 32184741 PMCID: PMC7058594 DOI: 10.3389/fpsyt.2020.00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a proven, effective tool in the treatment of movement disorders. Expansion of indications for DBS into the realm of neuropsychiatric disorders, especially obsessive-compulsive disorder (OCD), has gained fervent interest, although data on appropriate clinical utilization remains limited. METHODS A retrospective, naturalistic study followed nine severely affected OCD patients (average YBOCs score before implantation 34.2 ± 2.5) treated with DBS of ventral capsule/ventral striatum, with average follow up of 54.8 months. RESULTS With chronic stimulation (years), a majority of the patients achieved significant benefits in obsessive-compulsive and depressive symptoms. Six patients experienced periods of OCD remission following implantation. Four of the six responders required more than 12 months to achieve response. Relief of major depressive symptoms occurred in four out of six patients with documented co-morbid depression. Settings required to achieve efficacy were higher than those typically utilized for movement disorders, necessitating increased impulse generator (IPG) battery demand. We found patients benefited from conversion to a rechargeable IPG to prevent serial operations for IPG replacement. For patients with rechargeable IPGs, the repetitive habit of recharging did not appear to aggravate or trigger new obsessive-compulsive behaviors or anxiety symptoms. CONCLUSIONS Our study supports and builds upon other research suggesting that DBS for OCD in a real-world setting can be implemented successfully and provide long-term benefit for severely affected OCD patients. Optimal patient selection and DBS programming criteria are discussed. The use of rechargeable IPGs appears to be both cost effective and well-tolerated in this population.
Collapse
Affiliation(s)
- Marshall T Holland
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Nicholas T Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Laurie M McCormick
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Rein Center: Emotional Health and Well-Being, Iowa City, IA, United States
| | | | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Liesl N Close
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - James Beeghly
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Jeremy D W Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
18
|
Sang DE, Shi LJ, Yue KC, He CY, Zhao HZ, Wang CH, Hu XZ. Clinical remission of a treatment-refractory individual with severe repetitive rituals and rumination. Asian J Psychiatr 2020; 47:101878. [PMID: 31756555 DOI: 10.1016/j.ajp.2019.101878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a severe chronic mental disorder and tends to be refractory to pharmacotherapy or psychotherapy. For treatment-refractory patients, neurosurgical interventions are options. 64 % of OCD patients who undergo neurosurgery still have greater than 16 in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) after a long-term follow-up. Here, we reported a patient living with long-term OCD (20 years) who was refractory to pharmacotherapy, mindfulness-based psychotherapy, and neurosurgery that injured his bilateral anterior cingulates (AC) and caudate nucleus. METHODS The patient accepted a novel psychotherapy named cognitive-coping therapy (CCT) and completed Y-BOCS, Hamilton depression rating scale, the Hamilton anxiety rating scale, social and occupational function assessment, and resting-state function magnetic resonance imaging scans (rs-fMRI) before and after 4-week CCT. RESULTS His Y-BOCS score was reduced from 25 to 4. His depression score and anxiety score were reduced from 19 to 3 and from 12 to 3, respectively. The global assessment of functioning score increased from 32 to 88. CONCLUSIONS The remission of the patient suggested that CCT could be an alternative intervention for treatment-refractory OCD and those with severe OCD could be cured in short-term.
Collapse
Affiliation(s)
- De-En Sang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China
| | - Li-Jing Shi
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China
| | - Kai-Chen Yue
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China
| | - Chen-Yang He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China
| | - Hong-Zeng Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China
| | - Chang-Hong Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China
| | - Xian-Zhang Hu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, PR China; Workstation of Henan Province for Psychiatry Experts, Kaifeng City, 475003, Henan Province, PR China.
| |
Collapse
|
19
|
Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg 2019; 126:1-10. [PMID: 30790738 DOI: 10.1016/j.wneu.2019.01.254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Disturbances in the reward network of the brain underlie addiction, depression, and obsessive-compulsive disorder. The ventral capsule/ventral striatum and nucleus accumbens (NAc) region is a clinically approved target for deep brain stimulation for obsessive-compulsive disorder. METHODS We performed a comprehensive literature review to define clinically relevant anatomy and connectivity of the ventral capsule/ventral striatum and NAc region to guide target selection for deep brain stimulation. RESULTS Architecturally and functionally, the NAc is divided into the core and the shell, with each area having different connections. The shell primarily receives limbic information, and the core typically receives information from the motor system. In general, afferents from the prefrontal cortex, hippocampus, and amygdala are excitatory. The dopaminergic projections to the NAc from the ventral tegmental area modulate the balance of these excitatory inputs. Several important inputs to the NAc converge at the junction of the internal capsule (IC) and the anterior commissure (AC): the ventral amygdalofugal pathways that run parallel to and underneath the AC, the precommissural fornical fibers that run anterior to the AC, axons from the ventral prefrontal cortex and medial orbitofrontal cortex that occupy the most ventral part of the IC and embedding within the NAc and AC, and the superolateral branch of the medial forebrain bundle located parallel to the anterior thalamic radiation in the IC. CONCLUSIONS The caudal part of the NAc passing through the IC-AC junction may be an effective target for deep brain stimulation to improve behavioral symptoms associated with obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Yong-Sook Park
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | | | - Nicole A Young
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - John Corrigan
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA.
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University Hospital, Morgantown, West Virginia, USA
| |
Collapse
|
20
|
Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 2019; 10:905. [PMID: 31920754 PMCID: PMC6923766 DOI: 10.3389/fpsyt.2019.00905] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.
Collapse
Affiliation(s)
- Suhan Senova
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Anne-Hélène Clair
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Jérôme Yelnik
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Philippe Domenech
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Luc Mallet
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Tastevin M, Spatola G, Régis J, Lançon C, Richieri R. Deep brain stimulation in the treatment of obsessive-compulsive disorder: current perspectives. Neuropsychiatr Dis Treat 2019; 15:1259-1272. [PMID: 31190832 PMCID: PMC6526924 DOI: 10.2147/ndt.s178207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Deep brain stimulation (DBS) is a neuro-psychosurgical technique widely accepted in movement disorders, such as Parkinson's disease. Since 1999, DBS has been explored for severe, chronic and treatment-refractory psychiatric diseases. Our review focuses on DBS in obsessive-compulsive disorder (OCD), considered as a last treatment resort by most of learned societies in psychiatry. Two main stimulation areas have been studied: the striatal region and the subthalamic nucleus. But, most of the trials are open-labeled, and the rare controlled ones have failed to highlight the most efficient target. The recent perspectives are otherwise encouraging. Indeed, clinicians are currently considering other promising targets. A case series of 2 patients reported a decrease in OCD symptoms after DBS in the medial forebrain bundle and an open-label study is exploring bilateral habenula stimulation. New response criteria are also investigating such as quality of life, or subjective and lived-experience. Moreover, first papers about cost-effectiveness which is an important criterion in decision making, have been published. The effectiveness of tractography-assisted DBS or micro-assisted DBS is studying with the aim to improve targeting precision. In addition, a trial involving rechargeable pacemakers is undergoing because this mechanism could be efficient and have a positive impact on cost-effectiveness. A recent trial has discussed the possibility of using combined cognitive behavioral therapy (CBT) and DBS as an augmentation strategy. Finally, based on RDoc Research, the latest hypotheses about the understanding of cortico-striato-thalamo-cortical circuits could offer new directions including clinical predictors and biomarkers to perform adaptive closed-loop systems in the next future.
Collapse
Affiliation(s)
- Maud Tastevin
- Department of Psychiatry, Addictions and Psychiatry for Children, Public Assistance Marseille Hospitals, 13005 Marseille, France
| | - Giorgio Spatola
- Department of Functional and Stereotactic Neurosurgery, Public Assistance Marseille Hospitals, 13005 Marseille, France.,Institut de Neurosciences des Systèmes, Aix Marseille University, Inserm UMR1106, France
| | - Jean Régis
- Department of Functional and Stereotactic Neurosurgery, Public Assistance Marseille Hospitals, 13005 Marseille, France.,Institut de Neurosciences des Systèmes, Aix Marseille University, Inserm UMR1106, France
| | - Christophe Lançon
- Department of Psychiatry, Addictions and Psychiatry for Children, Public Assistance Marseille Hospitals, 13005 Marseille, France
| | - Raphaëlle Richieri
- Department of Psychiatry, Addictions and Psychiatry for Children, Public Assistance Marseille Hospitals, 13005 Marseille, France.,Faculté des Sciences de Saint Jérôme, Aix Marseille University, Institut Fresnel - UMR 7249, Marseille, France
| |
Collapse
|
22
|
Kohl S, Baldermann JC. Progress and challenges in deep brain stimulation for obsessive-compulsive disorder. Pharmacol Ther 2018; 186:168-175. [PMID: 29406245 DOI: 10.1016/j.pharmthera.2018.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Lee DJ, Elias GJB, Lozano AM. Neuromodulation for the treatment of eating disorders and obesity. Ther Adv Psychopharmacol 2018; 8:73-92. [PMID: 29399320 PMCID: PMC5788100 DOI: 10.1177/2045125317743435] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
Eating disorders and obesity adversely affect individuals both medically and psychologically, leading to reduced life expectancy and poor quality of life. While there exist a number of treatments for anorexia, morbid obesity and bulimia, many patients do not respond favorably to current behavioral, medical or bariatric surgical management. Neuromodulation has been postulated as a potential treatment for eating disorders and obesity. In particular, deep brain stimulation and transcranial non-invasive brain stimulation have been studied for these indications across a variety of brain targets. Here, we review the neurobiology behind eating and eating disorders as well as the current status of preclinical and clinical neuromodulation trials for eating disorders and obesity.
Collapse
Affiliation(s)
- Darrin J Lee
- Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto, 399 Bathurst St., West Wing 4-431, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
24
|
Nanda P, Banks GP, Pathak YJ, Sheth SA. Connectivity-based parcellation of the anterior limb of the internal capsule. Hum Brain Mapp 2017; 38:6107-6117. [PMID: 28913860 PMCID: PMC6206867 DOI: 10.1002/hbm.23815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023] Open
Abstract
The anterior limb of the internal capsule (ALIC) is an important locus of frontal-subcortical fiber tracts involved in cognitive and limbic feedback loops. However, the structural organization of its component fiber tracts remains unclear. Therefore, although the ALIC is a promising target for various neurosurgical procedures for psychiatric disorders, more precise understanding of its organization is required to optimize target localization. Using diffusion tensor imaging (DTI) collected on healthy subjects by the Human Connectome Project (HCP), we generated parcellations of the ALIC by dividing it according to structural connectivity to various frontal regions. We then compared individuals' parcellations to evaluate the ALIC's structural consistency. All 40 included subjects demonstrated a posterior-superior to anterior-inferior axis of tract organization in the ALIC. Nonetheless, subdivisions of the ALIC were found to vary substantially, as voxels in the average parcellation were accurately assigned for a mean of only 66.2% of subjects. There were, however, some loci of consistency, most notably in the region maximally connected to orbitofrontal cortex. These findings clarify the highly variable organization of the ALIC and may represent a tool for patient-specific targeting of neuromodulation. Hum Brain Mapp 38:6107-6117, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pranav Nanda
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| | - Garrett P. Banks
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| | - Yagna J. Pathak
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| | - Sameer A. Sheth
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
25
|
Saleh C, Hasler G. Deep brain stimulation for psychiatric disorders: Is there an impact on social functioning? Surg Neurol Int 2017; 8:134. [PMID: 28781911 PMCID: PMC5523473 DOI: 10.4103/sni.sni_15_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/06/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) for refractory psychiatric disorders shows promising effects on symptom-reduction, however, little is known regarding the effects of DBS on social outcome. METHODS A PubMed search based on original studies of DBS for psychiatric disorders [treatment resistant depression (TRD), Gilles de la Tourette's syndrome (GTS), and obsessive compulsive disorder (OCD)] was conducted. Data on social outcome following surgery were extracted and analyzed. RESULTS Social functioning was not a primary outcome measure in the reviewed article. The literature is incomplete and inconclusive on this variable, however from the reported data, there is some evidence that DBS has the potential to improve social functioning. CONCLUSIONS More systematic and detailed data gathering and reporting on social outcome with longer follow-ups are needed to evaluate more exhaustively the role of DBS in refractory psychiatric disorders.
Collapse
Affiliation(s)
- Christian Saleh
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2017; 12:37-51. [PMID: 28676437 DOI: 10.1016/j.rpsm.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 04/05/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. METHOD We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. RESULTS The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. CONCLUSIONS The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit.
Collapse
|
27
|
Neumaier F, Paterno M, Alpdogan S, Tevoufouet EE, Schneider T, Hescheler J, Albanna W. Surgical Approaches in Psychiatry: A Survey of the World Literature on Psychosurgery. World Neurosurg 2017; 97:603-634.e8. [DOI: 10.1016/j.wneu.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
|
28
|
Luyten L, Hendrickx S, Raymaekers S, Gabriëls L, Nuttin B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol Psychiatry 2016; 21:1272-80. [PMID: 26303665 DOI: 10.1038/mp.2015.124] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022]
Abstract
In 1998, we proposed deep brain stimulation as a last-resort treatment option for patients suffering from severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, 24 OCD patients were included in a long-term follow-up study to evaluate the effects of electrical stimulation in the anterior limbs of the internal capsule (ALIC) and bed nucleus of the stria terminalis (BST). We find that electrical stimulation in the ALIC/BST area is safe and significantly decreases obsessions, compulsions, and associated anxiety and depressive symptoms, and improves global functioning in a blinded crossover trial (n=17), after 4 years (n=18), and at last follow-up (up to 171 months, n=24). Moreover, our data indicate that BST may be a better stimulation target compared with ALIC to alleviate OCD symptoms. We conclude that electrical stimulation in BST is a promising therapeutic option for otherwise treatment-resistant OCD patients.
Collapse
Affiliation(s)
- L Luyten
- KU Leuven Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium.,KU Leuven Research Group Psychology of Learning and Experimental Psychopathology, Leuven, Belgium
| | - S Hendrickx
- KU Leuven Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium
| | - S Raymaekers
- KU Leuven Research Group Psychiatry, Leuven, Belgium
| | - L Gabriëls
- UPC-KU Leuven University Center for OCD, Leuven, Belgium
| | - B Nuttin
- KU Leuven Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium.,UZ Leuven Department of Neurosurgery, Leuven, Belgium
| |
Collapse
|
29
|
Fitzgerald PB, Segrave RA. Deep brain stimulation in mental health: Review of evidence for clinical efficacy. Aust N Z J Psychiatry 2015; 49:979-93. [PMID: 26246408 DOI: 10.1177/0004867415598011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is increasing interest in the use of deep brain stimulation as a treatment for psychiatric disorders. In this review, we consider the evidence for the effectiveness of deep brain stimulation for psychiatric indications, with a primary focus on obsessive compulsive disorder and major depressive disorder. METHODS Case reports, case series and clinical trials where deep brain stimulation was primarily utilised in the treatment of a psychiatric disorder, including obsessive compulsive disorder, major depressive disorder, anorexia nervosa or an addictive disorder were identified. The evidence for the effectiveness of deep brain stimulation in the treatment of obsessive compulsive disorder and major depressive disorder was reviewed with studies clustered by the site of implantation. RESULTS The majority of identified manuscripts report small case series or single cases. A limited number of studies have reported some form of randomised or blinded stimulation comparison. All of these comparative reports have included small samples of subjects (less than 20 per study in total) compromising the feasibility of making statistical comparison between outcomes in the comparison phases. The two exceptions to this have been industry-sponsored studies conducted in the treatment of major depressive disorder. However, both were stopped prematurely due to concerns about poor efficacy. CONCLUSIONS There is insufficient evidence at this point in time to support the use of deep brain stimulation as a clinical treatment for any psychiatric disorder outside of research and programmes where formal outcome data are being systematically collated. While some promising initial data exist to support its potential efficacy for a number of psychiatric conditions, further research is required to establish optimal implantation targets, patient characteristics associated with positive therapeutic outcomes and optimal deep brain stimulation parameters and parameter-programming methods.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Alfred Psychiatry Research Centre, Monash University Central Clinical School and Alfred Health, Melbourne, VIC, Australia
| | - Rebecca A Segrave
- Monash Alfred Psychiatry Research Centre, Alfred Psychiatry Research Centre, Monash University Central Clinical School and Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, Kim CH, Chang JW. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry 2015; 20:1205-11. [PMID: 25421403 DOI: 10.1038/mp.2014.154] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 11/09/2022]
Abstract
Despite optimal pharmacotherapy and cognitive-behavioral treatments, a proportion of patients with obsessive-compulsive disorder (OCD) remain refractory to treatment. Neurosurgical ablative or nondestructive stimulation procedures to treat these refractory patients have been investigated. However, despite the potential benefits of these surgical procedures, patients show significant surgery-related complications. This preliminary study investigated the use of bilateral thermal capsulotomy for patients with treatment-refractory OCD using magnetic resonance-guided focused ultrasound (MRgFUS) as a novel, minimally invasive, non-cranium-opening surgical technique. Between February and May 2013, four patients with medically refractory OCD were treated with MRgFUS to ablate the anterior limb of the internal capsule. Patients underwent comprehensive neuropsychological evaluations and imaging at baseline, 1 week, 1 month and 6 months following treatment. Outcomes were measured with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), the Hamilton Rating Scale for Depression (HAM-D) and the Hamilton Rating Scale for Anxiety (HAM-A), and treatment-related adverse events were evaluated. The results showed gradual improvements in Y-BOCS scores (a mean improvement of 33%) over the 6-month follow-up period, and all patients showed almost immediate and sustained improvements in depression (a mean reduction of 61.1%) and anxiety (a mean reduction of 69.4%). No patients demonstrated any side effects (physical or neuropsychological) in relation to the procedure. In addition, there were no significant differences found in the comprehensive neuropsychological test scores between the baseline and 6-month time points. This study demonstrates that bilateral thermal capsulotomy with MRgFUS can be used without inducing side effects to treat patients with medically refractory OCD. If larger trials validate the safety, effectiveness and long-term durability of this new approach, this procedure could considerably change the clinical management of treatment-refractory OCD.
Collapse
Affiliation(s)
- H H Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - S J Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - D Roh
- Department of Psychiatry, Chunchon Sacred Heart Hospital, Hallym University College of Medicine, Chunchon, Korea
| | - J G Chang
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - W S Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - E J Kweon
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C-H Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - J W Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Alonso P, Cuadras D, Gabriëls L, Denys D, Goodman W, Greenberg BD, Jimenez-Ponce F, Kuhn J, Lenartz D, Mallet L, Nuttin B, Real E, Segalas C, Schuurman R, Tezenas du Montcel S, Menchon JM. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. PLoS One 2015. [PMID: 26208305 PMCID: PMC4514753 DOI: 10.1371/journal.pone.0133591] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as an alternative to ablative neurosurgery for severe treatment-resistant Obsessive-Compulsive Disorder (OCD), although with partially discrepant results probably related to differences in anatomical targetting and stimulation conditions. We sought to determine the efficacy and tolerability of DBS in OCD and the existence of clinical predictors of response using meta-analysis. Methods We searched the literature on DBS for OCD from 1999 through January 2014 using PubMed/MEDLINE and PsycINFO. We performed fixed and random-effect meta-analysis with score changes (pre-post DBS) on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) as the primary-outcome measure, and the number of responders to treatment, quality of life and acceptability as secondary measures. Findings Thirty-one studies involving 116 subjects were identified. Eighty-three subjects were implanted in striatal areas—anterior limb of the internal capsule, ventral capsule and ventral striatum, nucleus accumbens and ventral caudate—27 in the subthalamic nucleus and six in the inferior thalamic peduncle. Global percentage of Y-BOCS reduction was estimated at 45.1% and global percentage of responders at 60.0%. Better response was associated with older age at OCD onset and presence of sexual/religious obsessions and compulsions. No significant differences were detected in efficacy between targets. Five patients dropped out, but adverse effects were generally reported as mild, transient and reversible. Conclusions Our analysis confirms that DBS constitutes a valid alternative to lesional surgery for severe, therapy-refractory OCD patients. Well-controlled, randomized studies with larger samples are needed to establish the optimal targeting and stimulation conditions and to extend the analysis of clinical predictors of outcome.
Collapse
Affiliation(s)
- Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
- Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
- * E-mail:
| | - Daniel Cuadras
- Methodological and Statistical Assessment Unit, Parc Sanitari Sant Joan de Déu—Fundació Sant Joan de Déu, Barcelona, Spain
| | - Loes Gabriëls
- University Centre for OCD, Department of Psychiatry, UPC-KULeuven, Leuven, Belgium
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Brain Imaging Center, Academic Medical Center, University of Amsterdam, and the Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Wayne Goodman
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ben D. Greenberg
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Butler Hospital, Providence, Rhode Island, United States of America
| | - Fiacro Jimenez-Ponce
- Unit of Stereotactic, Functional Neurosurgery and Radiosurgery, General Hospital of Mexico, Mexico City, Mexico
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Doris Lenartz
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Luc Mallet
- UPMC-Inserm U1127-CNRS UMR7225, ICM–Brain & Spine Institute, Paris, France
| | - Bart Nuttin
- Department of Neurosurgery, UZ Leuven, KU Leuven, Belgium
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
| | - Cinto Segalas
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
| | - Rick Schuurman
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie Tezenas du Montcel
- UPMC Univ Paris 06, ER4, Modelling in Clinical Research, Paris, France
- AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Department of Biostatistics and Medical Informatics, Paris, France
| | - Jose M. Menchon
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
- Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Hamani C, Pilitsis J, Rughani AI, Rosenow JM, Patil PG, Slavin KS, Abosch A, Eskandar E, Mitchell LS, Kalkanis S. Deep brain stimulation for obsessive-compulsive disorder: systematic review and evidence-based guideline sponsored by the American Society for Stereotactic and Functional Neurosurgery and the Congress of Neurological Surgeons (CNS) and endorsed by the CNS and American Association of Neurological Surgeons. Neurosurgery 2015; 75:327-33; quiz 333. [PMID: 25050579 DOI: 10.1227/neu.0000000000000499] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is estimated that 40% to 60% of patients with obsessive-compulsive disorder (OCD) continue to experience symptoms despite adequate medical management. For this population of treatment-refractory patients, promising results have been reported with the use of deep brain stimulation (DBS). OBJECTIVE To conduct a systematic review of the literature and develop evidence-based guidelines on DBS for OCD. METHODS A systematic literature search was undertaken using the PubMed database for articles published between 1966 and October 2012 combining the following words: "deep brain stimulation and obsessive-compulsive disorder" or "electrical stimulation and obsessive-compulsive disorder." Of 353 articles, 7 were retrieved for full-text review and analysis. The quality of the articles was assigned to each study and the strength of recommendation graded according to the guidelines development methodology of the American Association of Neurological Surgeons/Congress of Neurological Surgeons Joint Guidelines Committee. RESULTS Of the 7 studies, 1 class I and 2 class II double-blind, randomized, controlled trials reported that bilateral DBS is more effective in improving OCD symptoms than sham treatment. CONCLUSION Based on the data published in the literature, the following recommendations can be made: (1) There is Level I evidence, based on a single class I study, for the use of bilateral subthalamic nucleus DBS for the treatment of medically refractory OCD. (2) There is Level II evidence, based on a single class II study, for the use of bilateral nucleus accumbens DBS for the treatment of medically refractory OCD. (3) There is insufficient evidence to make a recommendation for the use of unilateral DBS for the treatment of medically refractory OCD.
Collapse
Affiliation(s)
- Clement Hamani
- *Division of Neurosurgery, Toronto Western Hospital, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; ‡Department of Neurosurgery and Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York; §Neuroscience Institute, Maine Medical Center, Portland, Maine; ¶Department of Neurosurgery, Northwestern University, Chicago, Illinois; ‖Departments of Neurosurgery, Neurology, Anesthesiology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; #Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois; **Department of Neurosurgery, University of Colorado, Denver, Colorado; ‡‡Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts; §§Congress of Neurological Surgeons, Guidelines Department, Schaumburg, Illinois; ¶¶Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cleary DR, Ozpinar A, Raslan AM, Ko AL. Deep brain stimulation for psychiatric disorders: where we are now. Neurosurg Focus 2015; 38:E2. [DOI: 10.3171/2015.3.focus1546] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned.
Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry.
This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.
Collapse
Affiliation(s)
- Daniel R. Cleary
- 1Department of Neurology, Yale Medical School, New Haven, Connecticut
| | - Alp Ozpinar
- 2Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon; and
| | - Ahmed M. Raslan
- 2Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon; and
| | - Andrew L. Ko
- 3Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Abstract
Despite the application of deep brain stimulation (DBS) as an efficient treatment modality for psychiatric disorders, such as obsessive-compulsive disorder (OCD), Gilles de la Tourette Syndrome (GTS), and treatment refractory major depression (TRD), few patients are operated or included in clinical trials, often for fear of the potential risks of an approach deemed too dangerous. To assess the surgical risks, we conducted an analysis of publications on DBS for psychiatric disorders. A PubMed search was conducted on reports on DBS for OCD, GTS, and TRD. Forty-nine articles were included. Only reports on complications related to DBS were selected and analyzed. Two hundred seventy-two patients with a mean follow-up of 22 months were included in our analysis. Surgical mortality was nil. The overall mortality was 1.1 %: two suicides were unrelated to DBS and one death was reported to be unlikely due to DBS. The majority of complications were transient and related to stimulation. Long-term morbidity occurred in 16.5 % of cases. Three patients had permanent neurological complications due to intracerebral hemorrhage (2.2 %). Complications reported in DBS for psychiatric diseases appear to be similar to those reported for DBS in movement disorders. But class I evidence is lacking. Our analysis was based mainly on small non-randomized studies. A significant number of patients (approximately 150 patients) who were treated with DBS for psychiatric diseases had to be excluded from our analysis as no data on complications was available. The exact prevalence of complications of DBS in psychiatric diseases could not be established. DBS for psychiatric diseases is promising, but remains an experimental technique in need of further evaluation. A close surveillance of patients undergoing DBS for psychiatric diseases is mandatory.
Collapse
|
35
|
Pepper J, Hariz M, Zrinzo L. Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature. J Neurosurg 2015; 122:1028-37. [DOI: 10.3171/2014.11.jns132618] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric condition. Traditionally, anterior capsulotomy (AC) was an established procedure for treatment of patients with refractory OCD. Over recent decades, deep brain stimulation (DBS) has gained popularity. In this paper the authors review the published literature and compare the outcome of AC and DBS targeting of the area of the ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (NAcc).
Patients in published cases were grouped according to whether they received AC or DBS and according to their preoperative scores on the Yale-Brown Obsessive-Compulsive Scale (YBOCS), and then separated according to outcome measures: remission (YBOCS score < 8); response (≥ 35% improvement in YBOCS score); nonresponse (< 35% improvement in YBOCS score); and unfavorable (i.e., worsening of the baseline YBOCS score).
Twenty studies were identified reporting on 170 patients; 62 patients underwent DBS of the VC/VS or the NAcc (mean age 38 years, follow-up 19 months, baseline YBOCS score of 33), and 108 patients underwent AC (mean age 36 years, follow-up 61 months, baseline YBOCS score of 30). In patients treated with DBS there was a 40% decrease in YBOCS score, compared with a 51% decrease for those who underwent AC (p = 0.004). Patients who underwent AC were 9% more likely to go into remission than patients treated with DBS (p = 0.02). No difference in complication rates was noted.
Anterior capsulotomy is an efficient procedure for refractory OCD. Deep brain stimulation in the VC/VS and NAcc area is an emerging and promising therapy. The current popularity of DBS over ablative surgery for OCD is not due to nonefficacy of AC, but possibly because DBS is perceived as more acceptable by clinicians and patients.
Collapse
Affiliation(s)
- Joshua Pepper
- 1Unit of Functional Neurosurgery, University College London Institute of Neurology, Queen Square
| | - Marwan Hariz
- 1Unit of Functional Neurosurgery, University College London Institute of Neurology, Queen Square
- 2Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Ludvic Zrinzo
- 1Unit of Functional Neurosurgery, University College London Institute of Neurology, Queen Square
- 3Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom; and
| |
Collapse
|
36
|
van Westen M, Rietveld E, Figee M, Denys D. Clinical Outcome and Mechanisms of Deep Brain Stimulation for Obsessive-Compulsive Disorder. Curr Behav Neurosci Rep 2015; 2:41-48. [PMID: 26317062 PMCID: PMC4544542 DOI: 10.1007/s40473-015-0036-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcome of deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) shows robust effects in terms of a mean Yale-Brown Obsessive-Compulsive Scale (YBOCS) reduction of 47.7 % and a mean response percentage (minimum 35 % YBOCS reduction) of 58.2 %. It appears that most patients regain a normal quality of life (QoL) after DBS. Reviewing the literature of the last 4 years, we argue that the mechanisms of action of DBS are a combination of excitatory and inhibitory as well as local and distal effects. Evidence from DBS animal models converges with human DBS EEG and imaging findings, in that DBS may be effective for OCD by reduction of hyperconnectivity between frontal and striatal areas. This is achieved through reduction of top-down-directed synchrony and reduction of frontal low-frequency oscillations. DBS appears to counteract striatal dysfunction through an increase in striatal dopamine and through improvement of reward processing. DBS affects anxiety levels through reduction of stress hormones and improvement of fear extinction.
Collapse
Affiliation(s)
- Maarten van Westen
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Erik Rietveld
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Amsterdam Brain and Cognition Center, University of Amsterdam, Nieuwe Achtergracht 129 (Building L), 1018 WS Amsterdam, The Netherlands ; Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands
| | - Martijn Figee
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Amsterdam Brain and Cognition Center, University of Amsterdam, Nieuwe Achtergracht 129 (Building L), 1018 WS Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Amsterdam Brain and Cognition Center, University of Amsterdam, Nieuwe Achtergracht 129 (Building L), 1018 WS Amsterdam, The Netherlands ; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
37
|
Piccoli S, Perini G, Pizzighello S, Vestri A, Ferri G, Toffanin T, Follador H, Martinuzzi A. A Long Term Effects of a New Onset Psychosis after DBS Treated with Quetiapine in a Patient with Parkinson's Disease. Psychiatry Investig 2015; 12:146-9. [PMID: 25670958 PMCID: PMC4310913 DOI: 10.4306/pi.2015.12.1.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 12/27/2013] [Indexed: 12/02/2022] Open
Abstract
Deep Brain Stimulation represents a therapeutic option for PD patients. In this paper, we present and discuss a case of acute delirium and psychosis manifesting after DBS in a 58-years-old man affected by Parkinson's Disease. We highlight the importance of an exhaustive psychiatric evaluation in candidates for DBS and we underline the severity and non-reversibility of some adverse events associated with the implantation, suggesting the use of Quetiapine in the management of these effects. Acute psychosis may be listed as a potential severe adverse event associated with DBS, even in patients without a clear cut previous history of psychiatric disorders.
Collapse
Affiliation(s)
- Sara Piccoli
- Rehabilitation Unit for the Acquired Neuropsychological Disorders, "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| | - Giulia Perini
- Department of Mental Health ULSS 7, Pieve di Soligo, Italy
- Department of Neuroscience, University of Padoua, Padoua, Italy
| | - Silvia Pizzighello
- Rehabilitation Unit for the Acquired Neuropsychological Disorders, "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| | - Alec Vestri
- Rehabilitation Unit for the Acquired Neuropsychological Disorders, "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| | - Giovanni Ferri
- Department of Mental Health ULSS 7, Pieve di Soligo, Italy
| | | | | | - Andrea Martinuzzi
- Rehabilitation Unit for the Acquired Neuropsychological Disorders, "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| |
Collapse
|
38
|
Koek RJ, Langevin JP, Krahl SE, Kosoyan HJ, Schwartz HN, Chen JWY, Melrose R, Mandelkern MJ, Sultzer D. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials 2014; 15:356. [PMID: 25208824 PMCID: PMC4168122 DOI: 10.1186/1745-6215-15-356] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. METHODS/DESIGN We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. DISCUSSION While the rationale for studying DBS for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD. TRIAL REGISTRATION PCC121657, 19 March 2014.
Collapse
Affiliation(s)
- Ralph J Koek
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />16111 Plummer St. (116A-11), North Hills, CA 91343 USA
| | - Jean-Philippe Langevin
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Neurosurgery Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, C 90073 USA
| | - Scott E Krahl
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Research and Development Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Hovsep J Kosoyan
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Research and Development Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Holly N Schwartz
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - James WY Chen
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Neurology Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Rebecca Melrose
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Brain, Behavior, and Aging Research Center, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Mark J Mandelkern
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Imaging Department, Radiology Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />Physics Department, UC Irvine, Irvine, CA 92697 USA
| | - David Sultzer
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
39
|
Abstract
Neuromodulation techniques in obsessive-compulsive disorder (OCD) involve electroconvulsive therapy (ECT), transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and deep brain stimulation (DBS). This article reviews the available literature on the efficacy and applicability of these techniques in OCD. ECT is used for the treatment of comorbid depression or psychosis. One case report on tDCS showed no effects in OCD. Low-frequency TMS provides significant but mostly transient improvement of obsessive-compulsive symptoms. DBS shows a response rate of 60% in open and sham-controlled studies. In OCD, it can be concluded that DBS, although more invasive, is the most efficacious technique.
Collapse
Affiliation(s)
- Melisse Bais
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Figee
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands; Neuromodulation & Behavior group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam 1105 BA, The Netherlands.
| |
Collapse
|
40
|
Yampolsky C, Bendersky D. [Surgery for behavioral disorders: the state of the art]. Surg Neurol Int 2014; 5:S211-31. [PMID: 25165612 PMCID: PMC4138826 DOI: 10.4103/2152-7806.137936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Surgery for behavioral disorders (SBD) is becoming a more common treatment since the development of neuromodulation techniques. METHODS This article is a non-systematic review of the history, current indications, techniques and surgical targets of SBD. We divide its history into 3 eras: the first era starts in the beginning of psychosurgery and finishes with the development of stereotactic techniques, when the second one starts. It is characterized by the realization of stereotactic lesions. We are traveling through the third era, which begins when deep brain stimulation (DBS) starts to be used for SBD. RESULTS In spite of the serious mistakes committed in the past, nowadays, SBD is reawakening. The psychiatric disorders which are most frequently treated by surgery are: treatment-resistant depression, obsessive-compulsive disorder and Tourette syndrome. Furthermore, some patients with abnormal aggression were surgically treated. There are several stereotactic targets described for these disorders. Vagus nerve stimulation may be also used for depression. CONCLUSION The results of DBS in these disorders seem to be encouraging. However, more randomized trials are needed in order to establish the effectiveness of SBD. It must be taken in mind that a proper patient selection will help us to perform a safer procedure as well as to achieve better surgical results, leading SBD to be more accepted by psychiatrists, patients and their families. Further research is needed in several topics such as: physiopathology of behavioral disorders, indications of SBD and new surgical targets.
Collapse
Affiliation(s)
- Claudio Yampolsky
- Servicio de Neurocirugía, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Bendersky
- Servicio de Neurocirugía, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
41
|
Kohl S, Schönherr DM, Luigjes J, Denys D, Mueller UJ, Lenartz D, Visser-Vandewalle V, Kuhn J. Deep brain stimulation for treatment-refractory obsessive compulsive disorder: a systematic review. BMC Psychiatry 2014; 14:214. [PMID: 25085317 PMCID: PMC4149272 DOI: 10.1186/s12888-014-0214-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/18/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder is one of the most disabling of all psychiatric illnesses. Despite available pharmacological and psychotherapeutic treatments about 10% of patients remain severely affected and are considered treatment-refractory. For some of these patients deep brain stimulation offers an appropriate treatment method. The scope of this article is to review the published data and to compare different target structures and their effectiveness. METHODS PubMed search, last update June 2013, was conducted using the terms "deep brain stimulation" and "obsessive compulsive disorder". RESULTS In total 25 studies were found that reported five deep brain stimulation target structures to treat obsessive-compulsive disorder: the anterior limb of the internal capsule (five studies including 14 patients), nucleus accumbens (eight studies including 37 patients), ventral capsule/ventral striatum (four studies including 29 patients), subthalamic nucleus (five studies including 23 patients) and inferior thalamic peduncle (two studies including 6 patients). Despite the anatomical diversity, deep brain stimulation treatment results in similar response rates for the first four target structures. Inferior thalamic peduncle deep brain stimulation results in higher response rates but these results have to be interpreted with caution due to a very small number of cases. Procedure and device related adverse events are relatively low, as well as stimulation or therapy related side effects. Most stimulation related side effects are transient and decline after stimulation parameters have been changed. CONCLUSION Deep brain stimulation in treatment-refractory obsessive-compulsive disorder seems to be a relatively safe and promising treatment option. However, based on these studies no superior target structure could be identified. More research is needed to better understand mechanisms of action and response predictors that may help to develop a more personalized approach for these severely affected obsessive compulsive patients.
Collapse
Affiliation(s)
- Sina Kohl
- />Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Deva M Schönherr
- />Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Judy Luigjes
- />Department of Psychiatry, Academic Medical Center, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Damiaan Denys
- />Department of Psychiatry, Academic Medical Center, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
- />The Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ulf J Mueller
- />Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipzigerstrasse 44, 39120 Magdeburg, Germany
| | - Doris Lenartz
- />Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- />Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Jens Kuhn
- />Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| |
Collapse
|
42
|
Lapidus KAB, Stern ER, Berlin HA, Goodman WK. Neuromodulation for obsessive-compulsive disorder. Neurotherapeutics 2014; 11:485-95. [PMID: 24981434 PMCID: PMC4121444 DOI: 10.1007/s13311-014-0287-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuromodulation shows increasing promise in the treatment of psychiatric disorders, particularly obsessive-compulsive disorder (OCD). Development of tools and techniques including deep brain stimulation, transcranial magnetic stimulation, and electroconvulsive therapy may yield additional options for patients who fail to respond to standard treatments. This article reviews the motivation for and use of these treatments in OCD. We begin with a brief description of the illness followed by discussion of the circuit models thought to underlie the disorder. These circuits provide targets for intervention. Basal ganglia and talamocortical pathophysiology, including cortico-striato-thalamo-cortical loops is a focus of this discussion. Neuroimaging findings and historical treatments that led to the use of neuromodulation for OCD are presented. We then present evidence from neuromodulation studies using deep brain stimulation, electroconvulsive therapy, and transcranial magnetic stimulation, with targets including nucleus accumbens, subthalamic nucleus inferior thalamic peduncle, dorsolateral prefrontal cortex, supplementary motor area, and orbitofrontal cortex. Finally, we explore potential future neuromodulation approaches that may further refine and improve treatment.
Collapse
Affiliation(s)
- Kyle A B Lapidus
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA,
| | | | | | | |
Collapse
|
43
|
O’Rawe JA, Fang H, Rynearson S, Robison R, Kiruluta ES, Higgins G, Eilbeck K, Reese MG, Lyon GJ. Integrating precision medicine in the study and clinical treatment of a severely mentally ill person. PeerJ 2013; 1:e177. [PMID: 24109560 PMCID: PMC3792182 DOI: 10.7717/peerj.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023] Open
Abstract
Background. In recent years, there has been an explosion in the number of technical and medical diagnostic platforms being developed. This has greatly improved our ability to more accurately, and more comprehensively, explore and characterize human biological systems on the individual level. Large quantities of biomedical data are now being generated and archived in many separate research and clinical activities, but there exists a paucity of studies that integrate the areas of clinical neuropsychiatry, personal genomics and brain-machine interfaces. Methods. A single person with severe mental illness was implanted with the Medtronic Reclaim(®) Deep Brain Stimulation (DBS) Therapy device for Obsessive Compulsive Disorder (OCD), targeting his nucleus accumbens/anterior limb of the internal capsule. Programming of the device and psychiatric assessments occurred in an outpatient setting for over two years. His genome was sequenced and variants were detected in the Illumina Whole Genome Sequencing Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. Results. We report here the detailed phenotypic characterization, clinical-grade whole genome sequencing (WGS), and two-year outcome of a man with severe OCD treated with DBS. Since implantation, this man has reported steady improvement, highlighted by a steady decline in his Yale-Brown Obsessive Compulsive Scale (YBOCS) score from ∼38 to a score of ∼25. A rechargeable Activa RC neurostimulator battery has been of major benefit in terms of facilitating a degree of stability and control over the stimulation. His psychiatric symptoms reliably worsen within hours of the battery becoming depleted, thus providing confirmatory evidence for the efficacy of DBS for OCD in this person. WGS revealed that he is a heterozygote for the p.Val66Met variant in BDNF, encoding a member of the nerve growth factor family, and which has been found to predispose carriers to various psychiatric illnesses. He carries the p.Glu429Ala allele in methylenetetrahydrofolate reductase (MTHFR) and the p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase, with both alleles having been shown to confer an elevated susceptibility to psychoses. We have found thousands of other variants in his genome, including pharmacogenetic and copy number variants. This information has been archived and offered to this person alongside the clinical sequencing data, so that he and others can re-analyze his genome for years to come. Conclusions. To our knowledge, this is the first study in the clinical neurosciences that integrates detailed neuropsychiatric phenotyping, deep brain stimulation for OCD and clinical-grade WGS with management of genetic results in the medical treatment of one person with severe mental illness. We offer this as an example of precision medicine in neuropsychiatry including brain-implantable devices and genomics-guided preventive health care.
Collapse
Affiliation(s)
- Jason A. O’Rawe
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA
- Stony Brook University, Stony Brook, NY, USA
| | - Han Fang
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA
- Stony Brook University, Stony Brook, NY, USA
| | - Shawn Rynearson
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Reid Robison
- Utah Foundation for Biomedical Research, Salt Lake City, UT, USA
| | | | | | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | | | - Gholson J. Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA
- Stony Brook University, Stony Brook, NY, USA
- Utah Foundation for Biomedical Research, Salt Lake City, UT, USA
| |
Collapse
|
44
|
Jiménez F, Nicolini H, Lozano AM, Piedimonte F, Salín R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg 2012; 80:S30.e17-25. [PMID: 22824558 DOI: 10.1016/j.wneu.2012.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Stimulation of the inferior thalamic peduncle (ITP) is emerging as a promising new therapeutic target in certain psychiatric disorders. The circuitry that includes the nonspecific thalamic system (NSTS), which projects via the ITP to the orbitofrontal cortex (OFC), is involved in the physiopathology of major depression disorder (MDD) and obsessive compulsive disorder (OCD). The safety and efficacy of chronic ITP stimulation in cases of MDD and OCD refractory to medical treatment is presented. MATERIALS AND METHODS Six patients with OCD and one with MDD were implanted with tetrapolar deep brain stimulation electrodes in the ITP (x = 3.5 mm lateral to the ventricular wall, y = 5 mm behind the anterior commissure, and z = at the intercommissural plane, i.e., anterior commissure-posterior commissure [AC-PC] level). The effect of chronic stimulation at 130 Hz, 450 μs, and 5.0 V on OCD was evaluated before and 3, 6, and 12 months after initiation of electrical stimulation through the Yale-Brown Obsessive Compulsive Scale, Hamilton Depression Rating Scale, and Global Assessment of Function scale. RESULTS Chronic ITP electrical stimulation in OCD patients decreased the mean Yale-Brown Obsessive Compulsive Scale score to around 51% for the group at the 12-month follow-up, and increased the mean Global Assessment of Function scale score to 68% for a significant improvement (P = 0.026). Three of 6 patients returned to work. The Hamilton Depression Rating Scale score of the only patient with MDD treated to date went from 42 to 6. This condition of the patient, who had been incapacitated for 5 years prior to surgery, has not relapsed for 9 years. Three OCD patients with drug addiction continued to consume drugs in spite of their improvement in OCD. CONCLUSION Deep brain stimulation in the ITP is safe and may be effective in the treatment of OCD. A multicenter evaluation of the safety and efficacy of ITP in OCD is currently in process.
Collapse
Affiliation(s)
- Fiacro Jiménez
- Unit for Stereotactic, Functional Neurosurgery and Radiosurgery, Mexico General Hospital, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|