1
|
Szota AM, Ćwiklińska-Jurkowska M, Radajewska I, Lis K, Grudzka P, Dróżdż W. Effect of Electroconvulsive Therapy (ECT) on IL-1β, IP-10, IL-17, TNFα, IL-10 and Soluble IL-2 Receptor in Treatment-Resistant Schizophrenia (TRS) Patients-A Preliminary Study. J Clin Med 2025; 14:3170. [PMID: 40364201 PMCID: PMC12072318 DOI: 10.3390/jcm14093170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Resistance to antipsychotic treatment in patients suffering from schizophrenia is linked to immune system disequilibrium. One effective therapeutic option for treatment-resistant schizophrenia is electroconvulsive therapy (ECT); however, its impact on cytokines remains poorly understood. The aim of this study is to evaluate the impact of ECT on cytokines (IL-1β, IP-10, IL-17, TNFα, IL-10, and soluble receptor for IL-2 (sIL-2R)) in TRS patients. Additionally, correlations between cytokine concentrations and schizophrenia symptoms severity are explored. Methods: Cytokine and receptor concentrations were measured in eight TRS patients before and after ECT and in 13 healthy participants from control group. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate the severity of the symptoms. Results: Before ECT, TRS patients exhibited significantly higher concentrations of IL-1ß, IL-10, IL-17, and IP-10 compared to the control group, whereas no significant differences were observed in sIL-2R and TNF-α. In the TRS patients, ECT induced a significant reduction in IL-10, IL-17 and IP-10 levels, while IL-1β, TNF-α, and sIL-2R remained unchanged compared to pre-ECT. ECT also led to clinical improvement in schizophrenia symptoms, as measured by PANSS. Furthermore, correlations between cytokine levels and PANSS results were found. Conclusions: The above results suggest that clinical improvement in TRS patients following ECT is associated with immune modulation, especially with the steadiness between pro- and anti-inflammatory systems. However, further research is required to elucidate these mechanisms in greater detail.
Collapse
Affiliation(s)
- Anna Maria Szota
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (P.G.); (W.D.)
| | - Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 13-15, 85-067 Bydgoszcz, Poland;
| | | | - Kinga Lis
- Department of Alergology, Clinical Immunology and Internal Diseases, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Ujejskiego Street 75, 85-168 Bydgoszcz, Poland;
| | - Przemysław Grudzka
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (P.G.); (W.D.)
| | - Wiktor Dróżdż
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (P.G.); (W.D.)
| |
Collapse
|
2
|
Dong Y, Tang Y, Li Y, Cao P, Xu G, Zhu R, Li R, Sui Y. Role of peripheral cytokines and orbitofrontal cortex subregion structure in schizophrenia agitation. Sci Rep 2025; 15:14125. [PMID: 40269239 PMCID: PMC12019167 DOI: 10.1038/s41598-025-99033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
This study aimed to examine the potential involvement of inflammatory imbalance and OFC subregion structure in the pathogenesis of agitation. In this study 119 schizophrenia patients were categorized into different subgroups of agitation using two-step cluster analysis. Peripheral cytokine and the OFC structure were examined in all subjects. Patients were assessed for immune-inflammatory response system and compensatory immunoregulatory reflex system (IRS/CIRS) reflecting the level of inflammatory imbalance. The immune biomarkers mainly include M1 (IL-6, IL-1β, IFN-α and TNF-α), T helper, Th-1 (IL-2, IL-12p70 and IFN-γ), Th-2 (IL-4 and IL-5), Th-17 (IL-17) and T regulatory cytokines (Treg) (IL-10). Compared with the low agitation group, the pro-inflammatory cytokine IL-6 was significantly higher in the high agitation group, as were the levels of the immune biomarkers Th-2, M1, IRS and IRS/CIRS. However, there was no significant difference in the OFC volume and cortical thickness between the two groups. In addition, left lateral OFC volume was negatively correlated with IRS/CIRS in the high agitation group. Moderation model showed that agitation significantly moderated the relationship between left lateral OFC volume and IRS/CIRS. Thus, the present study provides assistance in explaining the etiological mechanisms of agitation in schizophrenia.
Collapse
Affiliation(s)
- Yingbo Dong
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yilin Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ruiqiu Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Runda Li
- Department of Duke University, Durham, NC, USA
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
3
|
Samoud S, Mtiraoui A, Zamali I, Galai Y, Hannachi N, Manoubi W, Nakhli J, Louzir H, Kissi YE. Comparative Analysis of Serum BAFF and IL-17 Levels Pre- and Post-Antipsychotic Treatment for Acute Schizophrenia. Int J Mol Sci 2025; 26:385. [PMID: 39796241 PMCID: PMC11720193 DOI: 10.3390/ijms26010385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The interplay between the cytokine network and antipsychotic treatment in schizophrenia remains poorly understood. This study aimed to investigate the impact of psychotropic medications on serum levels of IFN-γ, IL-4, TGF-β1, IL-17, and BAFF, and to explore their relationship with psychopathological features. We recruited 63 patients diagnosed with schizophrenia in the acute phase, all of whom were either drug-naïve or had been drug-free for at least three months. Serum levels of IL-4, IFN-γ, TGF-β1, IL-17, and BAFF were measured at baseline and after six months of antipsychotic treatment. The severity of symptoms was assessed using the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Positive Symptoms (SAPS), and the Scale for the Assessment of Negative Symptoms (SANS). Fifty-two patients completed the six-month follow-up for immunoassay analysis. Antipsychotic treatment led to a significant decrease in serum levels of IFN-γ, TGF-β1, and IL-17, alongside a significant increase in BAFF levels. Changes in IFN-γ were positively correlated with SANS scores and negatively correlated with Global Assessment of Functioning (GAF) scores. Changes in TGF-β1 were negatively correlated with GAF scores. Changes in BAFF were negatively correlated with SAPS scores. Multivariable regression models were used to explore the association between cytokine level changes (IL-17, BAFF, IFN-γ, and TGF-β1) and independent variables, including demographic (gender, age), behavioral (tobacco use), clinical (schizophrenia type, disease course, date of onset, prior treatment), and biological (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR)) factors, as well as standardized assessment scores. No significant associations were found, except for a significant negative correlation between TGF-β1 changes and GAF scores, as well as a positive correlation with age. Interestingly, advanced statistical analyses revealed that only changes in IL-17 and BAFF levels were significantly associated with antipsychotic treatment. Our findings suggest that antipsychotic drugs exert both pro- and anti-inflammatory effects on the cytokine network. The observed modulation of IL-17 and BAFF highlights their potential as future therapeutic targets in schizophrenia.
Collapse
Affiliation(s)
- Samar Samoud
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (I.Z.); (Y.G.)
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Ahlem Mtiraoui
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
- Department of Psychiatry, Farhat Hached University Hospital, Sousse 4000, Tunisia
- Research Laboratory LR12ES04, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia;
| | - Imen Zamali
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (I.Z.); (Y.G.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia;
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Yousr Galai
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (I.Z.); (Y.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Naila Hannachi
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
| | - Wiem Manoubi
- Department of Neuroscience, Erasmus University Medical Centre, 3000 GD Rotterdam, The Netherlands;
- Research Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology LR03SP02, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Jaafar Nakhli
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
- Department of Psychiatry, Farhat Hached University Hospital, Sousse 4000, Tunisia
- Research Laboratory LR12ES04, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia;
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia;
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Yousri El Kissi
- Research Laboratory LR12ES04, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia;
| |
Collapse
|
4
|
Sager REH, North HF, Weissleder C, Clearwater MS, Walker AK, Fullerton JM, Webster MJ, Shannon Weickert C. Divergent changes in complement pathway gene expression in schizophrenia and bipolar disorder: Links to inflammation and neurogenesis in the subependymal zone. Schizophr Res 2025; 275:25-34. [PMID: 39616737 DOI: 10.1016/j.schres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 01/23/2025]
Abstract
Deficits in neurogenesis markers in the subependymal zone (SEZ) are associated with elevated inflammation in schizophrenia and bipolar disorder. However, the extent to which complement factors are also changed in the SEZ of these major psychiatric disorders and their impact on neurogenesis remains poorly understood. We extracted RNA from the SEZ of 93 brains, including controls (n = 32), schizophrenia (n = 32), and bipolar disorder (n = 29) cases. Quantitative RT-PCR measured 13 complement transcripts encoding initiators, convertases, effectors or inhibitors. Differences in abundance were analysed by diagnosis and inflammatory subgroups (high- or low-inflammation), which were previously defined by SEZ cytokine and inflammation marker expression. Complement mRNAs C1QA (p = 0.011), C1QB (p < 0.001), C1R (p = 0.027), and Factor B (p = 0.025) were increased in high-inflammation schizophrenia versus low-inflammation controls. Conversely, high-inflammation bipolar cases had decreased C1QC (p = 0.011) and C3 (p = 0.003). Complement mRNAs C1R (SCZ, p = 0.010; BD, p = 0.047), C1S (SCZ, p = 0.026; BD, p = 0.017), and Factor B (BD, p = 0.025) were decreased in low-inflammation schizophrenia and bipolar subgroups versus low-inflammation controls. Complement inhibitors varied by subgroup: Factor H was increased in high-inflammation schizophrenia (p < 0.001), and CD59 in high-inflammation bipolar disorder (p = 0.020). Complement activator and inhibitor mRNAs were positively correlated with quiescent neural stem cell marker GFAPD (q < 0.05) but negatively with immature neuron markers DLX6-AS1 (q < 0.05) and DCX (q < 0.05). These findings suggest altered complement cascade expression in the SEZ in high- and low-inflammation schizophrenia and bipolar disorder, with opposite directional changes suggesting distinct molecular pathology. Complement activation may promote stem cell quiescence and reduce differentiation or survival of newborn neurons.
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hayley F North
- Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Mechanism and therapy for genetic brain diseases, Institut Imagine, Paris, France
| | - Misaki S Clearwater
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Adam K Walker
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Miyano T, Hirouchi M, Yoshimura N, Hattori K, Mikkaichi T, Kiyosawa N. Plasma microRNAs Associate Positive, Negative, and Cognitive Symptoms with Inflammation in Schizophrenia. Int J Mol Sci 2024; 25:13522. [PMID: 39769285 PMCID: PMC11676741 DOI: 10.3390/ijms252413522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Schizophrenia is a complex and heterogenous psychiatric disorder characterized by positive, negative, and cognitive symptoms. Our previous study identified three subgroups of schizophrenia patients based on plasma microRNA (miRNA) profiles. The present study aims to (1) verify the reproducibility of the miRNA-based patient stratification and (2) explore the pathophysiological pathways linked to the symptoms using plasma miRNAs. We measured levels of 376 miRNAs in plasma samples of schizophrenia patients and obtained their Positive and Negative Syndrome Scale (PANSS) scores and the Brief Assessment of Cognition in Schizophrenia (BACS) scores. The plasma miRNA profiles identified similar subgroups of patients as in the previous study, suggesting miRNA-based patient stratification is potentially reproducible. Our multivariate analysis identified optimal combinations of miRNAs to estimate the PANSS positive and negative subscales and BACS composite scores. Those miRNAs consistently enriched 'inflammation' and 'NFκB1' according to miRNA set enrichment analysis. Our literature-based text mining and survey confirmed that those miRNAs were associated with IL-1β, IL-6, and TNFα, suggesting that exacerbated positive, negative, and cognitive symptoms are associated with high inflammation. In conclusion, miRNAs are a potential biomarker to identify patient subgroups reflecting pathophysiological conditions and to investigate symptom-related molecular mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Takuya Miyano
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Masakazu Hirouchi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Naoki Yoshimura
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Tsuyoshi Mikkaichi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| |
Collapse
|
6
|
Szota AM, Radajewska I, Ćwiklińska-Jurkowska M, Lis K, Grudzka P, Dróżdż W. Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)-A Pilot Study. Biomedicines 2024; 12:2637. [PMID: 39595201 PMCID: PMC11591560 DOI: 10.3390/biomedicines12112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Treatment-resistant schizophrenia (TRS) may be considered as a neuro-immune disorder. Electroconvulsive therapy (ECT) remains an important therapeutic option for patients with TRS, however, its impact on cytokine profile is barely investigated. Therefore, this study attempts to establish associations between serum cytokines IL-6, IL-12, IL-5, IL-10 and TGF-β1 changes (pre- and post-ECT) and the effectiveness of ECT in TRS patients. The second aim is to search for correlations between serum concentrations of the above specified cytokines and psychometric assessments of clinical schizophrenia symptoms. Methods: The cytokine concentrations were measured in eight TRS patients on psychopharmacological treatment prior to and following ECT and in 13 control subjects. Psychopathology assessment was based on the Positive and Negative Syndrome Scale (PANSS). Results: Prior to ECT, IL-10 concentration was significantly higher in TRS patients, while IL-5 was decreased in comparison to the controls. A significant concentration decrease in the pro-inflammatory cytokines IL-6 (p = 0.012), IL-12 (p = 0.049) and anti-inflammatory IL-10 (p = 0.012) post-ECT vs. pre-ECT was observed, whereas concentrations of IL-5 and TGF-β1 did not significantly change. Also, a significant decrease in schizophrenia symptoms measured by the PANSS post-ECT was found. Furthermore, the pattern of correlations between PANSS scores and cytokine concentrations was different when comparing levels pre- and post-ECT. Additionally, correlations between changes in PANSS scores and cytokine concentrations were found. Conclusions: These results may indicate the probable impact of electroconvulsive therapy on the balance between pro- and anti-inflammatory cytokines, which may correspond to a neurobiological therapeutic effect of ECT in TRS patients.
Collapse
Affiliation(s)
- Anna Maria Szota
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (I.R.); (P.G.); (W.D.)
| | - Izabela Radajewska
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (I.R.); (P.G.); (W.D.)
| | - Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 13-15, 85-067 Bydgoszcz, Poland;
| | - Kinga Lis
- Department of Alergology, Clinical Immunology and Internal Diseases, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Ujejskiego Street 75, 85-168 Bydgoszcz, Poland;
| | - Przemysław Grudzka
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (I.R.); (P.G.); (W.D.)
| | - Wiktor Dróżdż
- Department of Psychiatry, Ludwig Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Curie-Skłodowskiej Street 9, 85-094 Bydgoszcz, Poland; (I.R.); (P.G.); (W.D.)
| |
Collapse
|
7
|
Lv H, Guo M, Guo C, He K. The Interrelationships between Cytokines and Schizophrenia: A Systematic Review. Int J Mol Sci 2024; 25:8477. [PMID: 39126046 PMCID: PMC11313682 DOI: 10.3390/ijms25158477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Schizophrenia (SCZ) imposes a significant burden on patients and their families because of its high prevalence rate and disabling nature. Given the lack of definitive conclusions regarding its pathogenesis, physicians heavily rely on patients' subjective symptom descriptions for diagnosis because reliable diagnostic biomarkers are currently unavailable. The role of the inflammatory response in the pathogenesis of SCZ has been supported by some studies. The findings of these studies showed abnormal changes in the levels of inflammatory factors, such as cytokines (CKs), in both peripheral blood and cerebrospinal fluid (CSF) among individuals affected by SCZ. The findings imply that inflammatory factors could potentially function as risk indicators for the onset of SCZ. Consequently, researchers have directed their attention towards investigating the potential utility of CKs as viable biomarkers for diagnosing SCZ. Extracellular vesicles (EVs) containing disease-specific components exhibit remarkable stability and abundance, making them promising candidates for biomarker discovery across various diseases. CKs encapsulated within EVs secreted by immune cells offer valuable insights into disease progression. This review presents a comprehensive analysis summarizing the relationship between CKs and SCZ and emphasizes the vital role of CKs encapsulated within EVs in the pathogenesis and development of SCZ.
Collapse
Affiliation(s)
- Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| | - Meng Guo
- Finance Office, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| |
Collapse
|
8
|
Li S, Lv D, Qian C, Jiang J, Zhang P, Xi C, Wu L, Gao X, Fu Y, Zhang D, Chen Y, Huang H, Zhu Y, Wang X, Lai J, Hu S. Circulating T-cell subsets discrepancy between bipolar disorder and major depressive disorder during mood episodes: A naturalistic, retrospective study of 1015 cases. CNS Neurosci Ther 2024; 30:e14361. [PMID: 37491837 PMCID: PMC10848094 DOI: 10.1111/cns.14361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
AIMS We aimed to investigate whether peripheral T-cell subsets could be a biomarker to distinguish major depressive disorder (MDD) and bipolar disorder (BD). METHODS Medical records of hospitalized patients in the Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, from January 2015 to September 2020 with a discharge diagnosis of MDD or BD were reviewed. Patients who underwent peripheral blood examination of T-cell subtype proportions, including CD3+, CD4+, CD8+ T-cell, and natural killer (NK) cells, were enrolled. The Chi-square test, t-test, or one-way analysis of variance were used to analyze group differences. Demographic profiles and T-cell data were used to construct a random forest classifier-based diagnostic model. RESULTS Totally, 98 cases of BD mania, 459 cases of BD depression (BD-D), and 458 cases of MDD were included. There were significant differences in the proportions of CD3+, CD4+, CD8+ T-cell, and NK cells among the three groups. Compared with MDD, the BD-D group showed higher CD8+ but lower CD4+ T-cell and a significantly lower ratio of CD4+ and CD8+ proportions. The random forest model achieved an area under the curve of 0.77 (95% confidence interval: 0.71-0.83) to distinguish BD-D from MDD patients. CONCLUSION These findings imply that BD and MDD patients may harbor different T-cell inflammatory patterns, which could be a potential diagnostic biomarker for mood disorders.
Collapse
Affiliation(s)
- Shaoli Li
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Department of Medical Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| | - Duo Lv
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chao Qian
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Shaoxing 7th People's HospitalShaoxingChina
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peifen Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lingling Wu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xingle Gao
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | | | - Yiyi Zhu
- Wenzhou Medical UniversityWenzhouChina
| | - Xiaorong Wang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
9
|
Yu H, Ni P, Tian Y, Zhao L, Li M, Li X, Wei W, Wei J, Wang Q, Guo W, Deng W, Ma X, Coid J, Li T. Association of elevated levels of peripheral complement components with cortical thinning and impaired logical memory in drug-naïve patients with first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:79. [PMID: 37935744 PMCID: PMC10630449 DOI: 10.1038/s41537-023-00409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Schizophrenia has been linked to polymorphism in genes encoding components of the complement system, and hyperactive complement activity has been linked to immune dysfunction in schizophrenia patients. Whether and how specific complement components influence brain structure and cognition in the disease is unclear. Here we compared 52 drug-naïve patients with first-episode schizophrenia and 52 healthy controls in terms of levels of peripheral complement factors, cortical thickness (CT), logical memory and psychotic symptoms. We also explored the relationship between complement factors with CT, cognition and psychotic symptoms. Patients showed significantly higher levels of C1q, C4, factor B, factor H, and properdin in plasma. Among patients, higher levels of C3 in plasma were associated with worse memory recall, while higher levels of C4, factor B and factor H were associated with thinner sensory cortex. These findings link dysregulation of specific complement components to abnormal brain structure and cognition in schizophrenia.
Collapse
Affiliation(s)
- Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Peiyan Ni
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jeremy Coid
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zhang Y, Yin J, Yan H, Yan L, Li Y, Zhang C, Li Y, Liu B, Lin J, Zhang L, Hu X, Song C. Correlations between omega-3 fatty acids and inflammatory/glial abnormalities: the involvement of the membrane and neurotransmitter dysfunction in schizophrenia. Front Cell Neurosci 2023; 17:1163764. [PMID: 37937262 PMCID: PMC10626455 DOI: 10.3389/fncel.2023.1163764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Macrophages or T-lymphocytes triggered inflammation and, consequently, activated glial cells may contribute to neuroinflammation and neurotransmitter dysfunction in schizophrenia (SZ), while omega(n)-3 polyunsaturated fatty acids (PUFAs) can attenuate some SZ symptoms through anti-inflammatory effects. However, the correlations between macrophage/T-lymphocyte-produced cytokines and glia phenotypes, between inflammatory status and PUFAs composition, between cytokines and neurotransmitter function, and between n-3 PUFAs and neurotransmitter abnormality in SZ are unclear. Methods Changes in T-helper (h) patterns, peripheral macrophage/glial markers, PUFAs profile, membrane fluidity, and neurotransmitter functions were evaluated in SZ patients (n = 50) and healthy controls (n = 30) using ELISA, gas chromatography, fluorescence anisotropy techniques, and HPLC, respectively. Results Compared to the control, blood lymphocyte proliferation, the concentration of macrophage/microglia phenotype M1 markers, including cytokines IL-1β, TNF-α (Th1) and IL-6 (Th2), and astrocyte phenotype A1 marker S100β was significantly increased, while IL-17 and n-3 PUFAs contents, n-3/n-6 ratio, and membrane fluidity (FLU) were significantly decreased in SZ. Moreover, increased DA and HVA, decreased 5-HT and NE, and their metabolites appeared in SZ. Moreover, negative correlations between IL-6 and A2 marker Brain-Derived Neurotrophic Factor (BDNF) or n-3 PUFAs EPA and between IL-1β and FLU or 5HIAA, while positive correlations between EPA and 5-HIAA and between FLU and DHA were found in SZ. Discussion These findings showed (1) no clear Th pattern, but pro-inflammatory-dominant immunity occurred; (2) the pro-inflammatory pattern may result in the activated microglia M1 and astrocyte A1 phenotype; and (3) increased pro-inflammatory cytokines were related to decreased n-3 PUFA and decreased membrane fluidity and dysfunctional neurotransmitter systems in SZ.
Collapse
Affiliation(s)
- Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Marine Medicine Research and Development Center of Shenzhen Institutes of Guangdong Ocean University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jingwen Yin
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haifeng Yan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ling Yan
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yuyu Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yajuan Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Baiping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Juda Lin
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | | | - Xueqiong Hu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Marine Medicine Research and Development Center of Shenzhen Institutes of Guangdong Ocean University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
11
|
Cropley VL, Kittel M, Heurich M, Föcking M, Leweke FM, Pantelis C. Complement proteins are elevated in blood serum but not CSF in clinical high-risk and antipsychotic-naïve first-episode psychosis. Brain Behav Immun 2023; 113:136-144. [PMID: 37437819 DOI: 10.1016/j.bbi.2023.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Alterations in the complement system have been reported in some people with psychotic disorder, including in pre-psychotic individuals, suggesting that complement pathway dysregulation may be a feature of the early psychosis phenotype. Measurement of complement protein expression in psychosis has been largely restricted to the blood from patients with established illness who were taking antipsychotic medication. The present study examined a range of complement proteins in blood and cerebrospinal fluid (CSF) derived from individuals at clinical high-risk for psychosis (CHR), antipsychotic-naïve first-episode psychosis (FEP) and healthy controls. A panel of complement proteins (C1q, C3, C3b/iC3b, C4, factor B and factor H) were quantified in serum and matched CSF in 72 participants [n = 23 individuals at CHR, n = 24 antipsychotic-naïve FEP, n = 25 healthy controls] using a multiplex immunoassay. Analysis of covariance was used to assess between-group differences in complement protein levels in serum and CSF. Pearson's correlation was used to assess the relationship between serum and CSF proteins, and between complement proteins and symptom severity. In serum, all proteins, except for C3, were significantly higher in FEP and CHR. While a trend was observed, protein levels in CSF did not statistically differ between groups and appeared to be impacted by BMI and sample storage time. Across the whole sample, serum and CSF protein levels were not correlated. In FEP, higher levels of serum classical and alternative grouped pathway components were correlated with symptom severity. Our exploratory study provides evidence for increased activity of the peripheral complement system in the psychosis spectrum, with such elevations varying with clinical severity. Further study of complement in CSF is warranted. Longitudinal investigations are required to elucidate whether complement proteins change peripherally and/or centrally with progression of psychotic illness.
Collapse
Affiliation(s)
- V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & NorthWestern Mental Health, Melbourne, Australia.
| | - M Kittel
- Institute for Clinical Chemistry, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom
| | - M Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F M Leweke
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & NorthWestern Mental Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia
| |
Collapse
|
12
|
Wakabayashi C, Kunugi H. Possible involvement of Interleukin-17A in the deterioration of prepulse inhibition on acoustic startle response in mice. Neuropsychopharmacol Rep 2023; 43:365-372. [PMID: 37280178 PMCID: PMC10496063 DOI: 10.1002/npr2.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
AIM Proinflammatory cytokines such as interleukin-6 (IL-6) and IL-17A have been implicated in the pathophysiology of schizophrenia which often shows sensorimotor gating abnormalities. This study aimed to examine whether a proinflammatory cytokine, IL-17A, induces impairment in sensorimotor gating in mice. We also examined whether IL-17A administration affects GSK3α/β protein level or phosphorylation in the striatum. METHODS Recombinant mouse IL-17A (low-dose: 0.5 ng/mL and high-dose: 50 ng/mL with 10 μL/g mouse body weight, respectively) or vehicle was intraperitoneally administered into C57BL/6 male mice 10 times in 3 weeks (sub-chronic administration). Prepulse inhibition test using acoustic startle stimulus was conducted 4 weeks after the final IL-17A administration. We evaluated the effect of IL-17A administration on protein level or phosphorylation of GSK3α/β in the striatum by using Western blot analysis. RESULTS Administration of IL-17A induced significant PPI deterioration. Low-dose of IL-17A administration significantly decreased both GSK3α (Ser21) and GSK3β (Ser9) phosphorylation in mouse striatum. There was no significant alteration of GSK3α/β protein levels except for GSK3α in low-dose IL-17A administration group. CONCLUSION We demonstrated for the first time that sub-chronic IL-17A administration induced PPI disruption and that IL-17A administration resulted in decreased phosphorylation of GSKα/β at the striatum. These results suggest that IL-17A could be a target molecule in the prevention and treatment of sensorimotor gating abnormalities observed in schizophrenia.
Collapse
Affiliation(s)
- Chisato Wakabayashi
- Department of Mental Disorder Research, National Institute of NeuroscienceNational Center of Neurology and PsychiatryKodairaJapan
- Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHimejiJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of NeuroscienceNational Center of Neurology and PsychiatryKodairaJapan
- Department of PsychiatryTeikyo University School of MedicineItabashiJapan
| |
Collapse
|
13
|
Arihisa W, Kondo T, Yamaguchi K, Matsumoto J, Nakanishi H, Kunii Y, Akatsu H, Hino M, Hashizume Y, Sato S, Sato S, Niwa S, Yabe H, Sasaki T, Shigenobu S, Setou M. Lipid-correlated alterations in the transcriptome are enriched in several specific pathways in the postmortem prefrontal cortex of Japanese patients with schizophrenia. Neuropsychopharmacol Rep 2023; 43:403-413. [PMID: 37498306 PMCID: PMC10496066 DOI: 10.1002/npr2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
AIMS Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.
Collapse
Affiliation(s)
- Wataru Arihisa
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
| | - Takeshi Kondo
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Department of Biochemistry, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | | | - Junya Matsumoto
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | | | - Yasuto Kunii
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura HospitalToyohashiJapan
- Department of Community‐based Medical Education/Department of Community‐based MedicineNagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | | | - Shumpei Sato
- RIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Shinji Sato
- Business Development, Otsuka Pharmaceutical Co., Ltd. Shinagawa Grand Central TowerTokyoJapan
| | - Shin‐Ichi Niwa
- Department of Psychiatry, Aizu Medical CenterFukushima Medical UniversityFukushimaJapan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Takehiko Sasaki
- Department of Biochemical PathophysiologyMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Preeminent Medical Photonics Education & Research CenterHamamatsu University School of MedicineShizuokaJapan
- Department of AnatomyThe University of Hong KongHong KongChina
| |
Collapse
|
14
|
Cao Y, Xu Y, Xia Q, Shan F, Liang J. Peripheral Complement Factor-Based Biomarkers for Patients with First-Episode Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:1455-1462. [PMID: 37384352 PMCID: PMC10295471 DOI: 10.2147/ndt.s420475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Objective Schizophrenia (SCZ) is a severe, protracted neurological disorder that causes disruptive conduct in millions of individuals globally. Discovery of potential biomarkers in clinical settings would lead to the development of efficient diagnostic techniques and an awareness of the disease's pathogenesis and prognosis. The aim of the present study was to discover and identify serum complement factor-based biomarkers in discriminating patients with first-episode SCZ from healthy controls. Methods Eighty-nine patients with first-episode SCZ and 89 healthy controls were included in this study. Psychiatric symptom severity of patients with SCZ was measured with the Brief Psychiatric Rating Scale-18 Item Version (BPRS) and the Scales for the Assessment of Negative/Positive Symptoms (SANS/SAPS). A total of 5 complement factors including complement component 1 (C1), C2, C3, C4, and 50% hemolytic complement (CH50) were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits. The levels of serum complement factors in the SCZ and control groups were compared, and the receiver operating characteristic (ROC) curve method was used to assess the diagnostic values of various complement factors for separating SCZ patients from healthy controls. Pearson's correlation test was used to assess the relationships between serum complement factor concentrations and the psychiatric symptom severity. Results There was an increase in serum levels of C1, C2, C3, C4, and CH50 among patients with SCZ. Moreover, based on ROC curve analysis, the AUC value of a combined panel of C1, C2, C3, C4, and CH50 was 0.857 when used to discriminate patients with SCZ from healthy controls. Furthermore, serum C2, C3, and CH50 levels were positively correlated to the scores of SANS, SAPS, and BPRS in patients with SCZ, respectively. Conclusion These results suggested that circulating complement factors including C1, C2, C3, C4, and CH50 may have potential in discovering biomarkers for diagnosing first-episode SCZ.
Collapse
Affiliation(s)
- Yin Cao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| |
Collapse
|
15
|
Rudkowski K, Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Podwalski P, Bielecki M, Mak M, Michalczyk A, Tarnowski M, Sielatycka K, Budkowska M, Łuczkowska K, Dołęgowska B, Ratajczak MZ, Samochowiec J, Kucharska-Mazur J, Sagan L. Complement Activation Products in Patients with Chronic Schizophrenia. J Clin Med 2023; 12:jcm12041577. [PMID: 36836111 PMCID: PMC9967657 DOI: 10.3390/jcm12041577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Evidence suggests a role of the immune system in the pathogenesis of a number of mental conditions, including schizophrenia (SCH). In terms of physiology, aside from its crucial protective function, the complement cascade (CC) is a critical element of the regeneration processes, including neurogenesis. Few studies have attempted to define the function of the CC components in SCH. To shed more light on this topic, we compared the levels of complement activation products (CAP) (C3a, C5a and C5b-9) in the peripheral blood of 62 patients with chronic SCH and disease duration of ≥ 10 years with 25 healthy controls matched for age, sex, BMI and smoking status. Concentrations of all the investigated CAP were elevated in SCH patients. However, after controlling for potential confounding factors, significant correlations were observed between SCH and C3a (M = 724.98 ng/mL) and C5a (M = 6.06 ng/mL) levels. In addition, multivariate logistic regression showed that C3a and C5b-9 were significant predictors of SCH. There were no significant correlations between any CAP and SCH symptom severity or general psychopathology in SCH patients. However, two significant links emerged between C3a and C5b-9 and global functioning. Increased levels of both complement activation products in the patient group as compared to healthy controls raise questions concerning the role of the CC in the etiology of SCH and further demonstrate dysregulation of the immune system in SCH patients.
Collapse
Affiliation(s)
- Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
- Correspondence: ; Tel./Fax: +48-(91)-3511306
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Felczaka 3c, 71-415 Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkoposlkich 72, 70-110 Szczecin, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
16
|
Serum complement proteins rather than inflammatory factors is effective in predicting psychosis in individuals at clinical high risk. Transl Psychiatry 2023; 13:9. [PMID: 36631451 PMCID: PMC9834035 DOI: 10.1038/s41398-022-02305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Immunological/inflammatory factors are implicated in the development of psychosis. Complement is a key driver of inflammation; however, it remains unknown which factor is better at predicting the onset of psychosis. This study aimed to compare the alteration and predictive performance of inflammation and complement in individuals at clinical high risk (CHR). We enrolled 49 individuals at CHR and 26 healthy controls (HCs). Twenty-five patients at CHR had converted to psychosis (converter) by the 3-year follow-up. Inflammatory cytokines, including interleukin (IL)-1β, 6, 8, 10, tumor necrosis factor-alpha (TNF-alpha), macrophage colony-stimulating factor levels, and complement proteins (C1q, C2, C3, C3b, C4, C4b, C5, C5a, factor B, D, I, H) were measured by enzyme-linked immunosorbent assay at baseline. Except for TNF- alpha, none of the inflammatory cytokines reached a significant level in either the comparison of CHR individuals and HC or between CHR-converters and non-converters. The C5, C3, D, I, and H levels were significantly lower (C5, p = 0.006; C3, p = 0.009; D, p = 0.026; I, p = 0.016; H, p = 0.019) in the CHR group than in the HC group. Compared to non-converters, converters had significantly lower levels of C5 (p = 0.012) and C5a (p = 0.007). None of the inflammatory factors, but many complement factors, showed significant correlations with changes in general function and symptoms. None of the inflammatory markers, except for C5a and C5, were significant in the discrimination of conversion outcomes in CHR individuals. Our results suggest that altered complement levels in the CHR population are more associated with conversion to psychosis than inflammatory factors. Therefore, an activated complement system may precede the first-episode of psychosis and contribute to neurological pathogenesis at the CHR stage.
Collapse
|
17
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
18
|
Gao Y, Liu X, Pan M, Zeng D, Zhou X, Tsunoda M, Zhang Y, Xie X, Wang R, Hu W, Li L, Yang H, Song Y. Integrated untargeted fecal metabolomics and gut microbiota strategy for screening potential biomarkers associated with schizophrenia. J Psychiatr Res 2022; 156:628-638. [PMID: 36375230 DOI: 10.1016/j.jpsychires.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia (SZ) is a serious neurodevelopmental disorder. As the etiology of SZ is complex and the pathogenesis is not thoroughly understood, the diagnosis of different subtypes still depends on the subjective judgment of doctors. Therefore, there is an urgent need to develop early objective laboratory diagnostic biomarkers to screen different subtypes of patients as early as possible, and to implement targeted prevention and precision medicine to reduce the risk of SZ and improve patients' quality of life. In this study, untargeted metabolomics and 16S rDNA sequencing were used to analyze the differences in metabolites and gut microflora among 28 patients with two types of schizophrenia and 11 healthy subjects. The results showed that the metabolome and sequencing data could effectively discriminate among paranoid schizophrenia patients, undifferentiated schizophrenia patients and healthy controls. We obtained 65 metabolites and 76 microorganisms with significant changes, and fecal metabolite composition was significantly correlated with the differential genera (|r|>0.5), indicating that there was a regulatory relationship between the gut microbiota and the host metabolites. The gut microbiome, as an objective and measurable index, showed good diagnostic value for distinguishing schizophrenia patients from healthy people, especially with a combination of several differential microorganisms, which had the best diagnostic effect (AUC>0.9). Our results are conducive to understanding the complicated metabolic changes in SZ patients and providing valuable information for the clinical diagnosis of SZ.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xianglai Liu
- Hainan Provincial Anning Hospital, Haikou, 571100, China
| | - Mingyu Pan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Debin Zeng
- Hainan Provincial Anning Hospital, Haikou, 571100, China
| | - Xiying Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lushuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Haimei Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
19
|
Grey matter volume and its association with cognitive impairment and peripheral cytokines in excited individuals with schizophrenia. Brain Imaging Behav 2022; 16:2618-2626. [DOI: 10.1007/s11682-022-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
|
20
|
Al-Hakeim HK, Al-Musawi AF, Al-Mulla A, Al-Dujaili AH, Debnath M, Maes M. The interleukin-6/interleukin-23/T helper 17-axis as a driver of neuro-immune toxicity in the major neurocognitive psychosis or deficit schizophrenia: A precision nomothetic psychiatry analysis. PLoS One 2022; 17:e0275839. [PMID: 36256663 PMCID: PMC9578624 DOI: 10.1371/journal.pone.0275839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schizophrenia and especially deficit schizophrenia (DSCZ) are characterized by increased activity of neuroimmunotoxic pathways and a generalized cognitive decline (G-CoDe). There is no data on whether the interleukin (IL)-6/IL-23/T helper 17 (IL-6/IL-23/Th17)-axis is more associated with DSCZ than with non-deficit schizophrenia (NDSCZ) and whether changes in this axis are associated with the G-CoDe and the phenome (a factor extracted from all symptom domains) of schizophrenia. METHODS This study included 45 DSCZ and 45 NDSCZ patients and 40 controls and delineated whether the IL-6/IL-23/Th17 axis, trace elements (copper, zinc) and ions (magnesium, calcium) are associated with DSCZ, the G-CoDe and the schizophrenia phenome. RESULTS Increased plasma IL-23 and IL-6 levels were associated with Th17 upregulation, assessed as a latent vector (LV) extracted from IL-17, IL-21, IL-22, and TNF-α. The IL-6/IL-23/Th17-axis score, as assessed by an LV extracted from IL-23, IL-6, and the Th17 LV, was significantly higher in DSCZ than in NDSCZ and controls. We discovered that 70.7% of the variance in the phenome was explained by the IL-6/IL-23/Th17-axis (positively) and the G-CoDe and IL-10 (both inversely); and that 54.6% of the variance in the G-CoDe was explained by the IL-6/IL-23/Th17 scores (inversely) and magnesium, copper, calcium, and zinc (all positively). CONCLUSION The pathogenic IL-6/IL-23/Th17-axis contributes to the generalized neurocognitive deficit and the phenome of schizophrenia, especially that of DSCZ, due to its key role in peripheral inflammation and neuroinflammation and its consequent immunotoxic effects on neuronal circuits. These clinical impairments are more prominent in subjects with lowered IL-10, magnesium, calcium, and zinc.
Collapse
Affiliation(s)
| | - Ali Fattah Al-Musawi
- Department of Clinical Pharmacy and Laboratory Sciences, College of Pharmacy, University of Al-Kafeel, Kufa, Iraq
| | - Abbas Al-Mulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
21
|
Subbanna M, Shivakumar V, Bhalerao G, Varambally S, Venkatasubramanian G, Debnath M. Variants of Th17 pathway-related genes influence brain morphometric changes and the risk of schizophrenia through epistatic interactions. Psychiatr Genet 2022; 32:146-155. [PMID: 35353801 DOI: 10.1097/ypg.0000000000000315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE T helper 17 (Th17) pathway has been reported to be abnormal in schizophrenia; however, it is not known whether variation within genes of this pathway has any impact on schizophrenia. Herein, the impact of genetic variations and gene-gene interactions of Th17 pathway-related genes on the risk, psychopathology, and brain volume was examined in schizophrenia patients. METHODS Functional polymorphisms within interleukin 6 ( IL6 )(rs1800795 and rs1800797), IL10 (rs1800872 and rs1800896), IL17A (rs2275913 and rs8193036), IL22 (rs2227484 and rs2227485), IL23R (rs1884444), and IL27 (rs153109 and rs181206) genes were studied in 224 schizophrenia patients and 226 healthy controls. These variants were correlated with the brain morphometry, analyzed using MRI in a subset of patients ( n = 117) and controls ( n = 137). RESULTS Patients carrying CC genotype of rs2227484 of IL22 gene had significantly higher apathy total score [ F (1,183) = 5.60; P = 0.019; partial ɳ 2 = 0.030]. Significant epistatic interactions between IL6 (rs1800797) and IL17A (rs2275913) genes were observed in schizophrenia patients. GG genotype of rs2275913 of IL17A gene was associated with reduced right middle occipital gyrus volume in schizophrenia patients ( T = 4.56; P < 0.001). CONCLUSION Interactions between genes of Th17 pathway impact the risk for schizophrenia. The variants of Th17 pathway-related genes seem to have a determining effect on psychopathology and brain morphometric changes in schizophrenia.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, and Departments of
- Integrative Medicine
| | - Gaurav Bhalerao
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, and Departments of
| | - Shivarama Varambally
- Integrative Medicine
- Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, and Departments of
- Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences
| |
Collapse
|
22
|
Haptoglobin in ultra-high risk of psychosis – Findings from the longitudinal youth at risk study (LYRIKS). Brain Behav Immun Health 2022; 23:100481. [PMID: 35757657 PMCID: PMC9214821 DOI: 10.1016/j.bbih.2022.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022] Open
|
23
|
The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol Rep 2022; 74:909-919. [PMID: 35796871 DOI: 10.1007/s43440-022-00384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Microglia play a major role in the development of brain inflammation after central nervous system injury. On the other hand, microglia also participate in the repair process. The dualistic role of these cells results from the fact that various states of their activation are associated with specific phenotypes. The M1 phenotype is responsible for the production of proinflammatory mediators, whereas the M2 microglia release anti-inflammatory and trophic factors and take part in immunosuppressive and neuroprotective processes. The histone deacetylase inhibitor sodium butyrate (SB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury. The aim of this study was to examine the effects of sodium butyrate on the proliferation and M1/M2 polarization of primary microglial cells after oxygen and glucose deprivation (OGD) in vitro. METHODS Primary microglial cultures were prepared from 1-day-old rats, subjected to the OGD procedure and treated with SB (0.1 mM, 1 mM and 10 mM). The effect of OGD and SB on microglial proliferation was assessed by double immunofluorescence, and microglial phenotypes were evaluated by qPCR. RESULTS The OGD procedure stimulated the proliferation of microglia after 24 h of culturing, and SB treatment reduced the division of these cells. This effect was inversely proportional to the SB concentration. The OGD procedure increased proinflammatory CD86 and IL1β gene expression and reduced the expression of the anti-inflammatory M2 markers arginase and CD200 in microglia. CONCLUSIONS SB can change the polarization of microglia after OGD from an unfavourable M1 to a beneficial M2 phenotype. Our results show that SB is a potential immunosuppressive agent that can modulate microglial activation stimulated by ischaemic-like conditions.
Collapse
|
24
|
Impulsive and aggressive traits and increased peripheral inflammatory status as psychobiological substrates of homicide behavior in schizophrenia. THE EUROPEAN JOURNAL OF PSYCHIATRY 2022. [DOI: 10.1016/j.ejpsy.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Koricanac A, Tomic Lucic A, Veselinovic M, Bazic Sretenovic D, Bucic G, Azanjac A, Radmanovic O, Matovic M, Stanojevic M, Jurisic Skevin A, Simovic Markovic B, Pantic J, Arsenijevic N, Radosavljevic GD, Nikolic M, Zornic N, Nesic J, Muric N, Radmanovic B. Influence of antipsychotics on metabolic syndrome risk in patients with schizophrenia. Front Psychiatry 2022; 13:925757. [PMID: 35958655 PMCID: PMC9357900 DOI: 10.3389/fpsyt.2022.925757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Many studies so far have shown that antipsychotic therapy may have an effect on the development of metabolic syndrome in patients diagnosed with schizophrenia. Our goal was to determine whether our respondents are at risk for developing metabolic syndrome and who is more predisposed to it. METHODS In a stable phase, 60 patients diagnosed with schizophrenia were equally divided into three groups according to the drug (risperidone, clozapine, and aripiprazole monotherapy). Control group had 20 healthy examinees. Patients were evaluated first using The Positive and Negative Syndrome Scale (PANSS). Prolactin, lipid status, glycemia, insulin, cytokine values (IL-33, TGF-β, and TNF-α) and C-reactive protein (CRP) were measured. Also, Body mass index (BMI), Homeostatic Model Assesment for Insulin Resistance (HOMA index), waist and hip circumference (WHR) and blood pressure (TA) measurement were performed in the study. RESULTS Patients treated with risperidone compared to healthy control subjects and aripiprazol group of patients had statistically significant difference in prolactin levels. In clozapine group compared to healthy control group values of HDL cholesterol and glucose level were statistically significant different. In aripiprazole group compared to healthy control group value of BMI was statistically significant different. Statistically significant correlations were found in TNF-α with glucose and HOMA index in risperidone treated patients and with BMI in clozapine group of patients; IL-33 with glucose in risperidone and with BMI in clozapine group of patients and TGF-β with glucose in risperidone group, with insulin and HOMA index in clozapine group and statistically significant negative correlation with LDL cholesterol in aripiprazole group of patients. CONCLUSION Patients on risperidone and clozapine therapy may be at greater risk of developing metabolic syndrome than patients treated with aripiprazole. Statistically significant difference in concentration of TNF-α and TGF-β was in the group of patients treated with risperidone compared to healthy control group.
Collapse
Affiliation(s)
- Aleksandra Koricanac
- Department of Internal Medicine, General Hospital Kraljevo, Kraljevo, Serbia.,Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Tomic Lucic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Mirjana Veselinovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Bazic Sretenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Gorica Bucic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Anja Azanjac
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Olivera Radmanovic
- Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Mirjana Matovic
- Department of Internal Medicine, General Hospital Kraljevo, Kraljevo, Serbia.,Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marijana Stanojevic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Laboratory Diagnostics, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Aleksandra Jurisic Skevin
- Department of Physical Medicine and Rehabilitation, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojša Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Zornic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department for Anesthesiology and Reanimation, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Jelena Nesic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Endocrinology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Nemanja Muric
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Psychiatry Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Branimir Radmanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Psychiatry Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| |
Collapse
|
26
|
Mohd Asyraf AJ, Nour El Huda AR, Hanisah MN, Norsidah KZ, Norlelawati AT. Relationship of selective complement markers with schizophrenia. J Neuroimmunol 2021; 363:577793. [PMID: 34990981 DOI: 10.1016/j.jneuroim.2021.577793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Immune system dysregulation may be involved in schizophrenia, but biomarker studies have thus far reported inconsistent findings. The relationship of plasma levels of complement markers C3 and C4, with schizophrenia, sociodemographic and clinico-psychological factors were here studied in 183 patients and 212 controls. C3 and C4 levels were significantly higher in the patients and in subjects with elevated C-reactive protein (CRP), and positively correlated with body mass index (BMI) (p < 0.05). Schizophrenia, BMI, and CRP were significant predictors for C3 and C4 levels in multivariate analyses (p < 0.001). In conclusion, complements C3 and C4 are potential peripheral biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Abdull Jalil Mohd Asyraf
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Abd Rahim Nour El Huda
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Mohd Noor Hanisah
- Psychological Medicine Unit, Medical Faculty, Universiti Sultan Zainal Abidin, 24200 Kuala Terengganu, Terengganu, Malaysia
| | - Ku Zaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - A Talib Norlelawati
- Department of Pathology and Laboratory Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
27
|
Wang C, Zhang T, He L, Fu JY, Deng HX, Xue XL, Chen BT. Bacterial Translocation Associates With Aggression in Schizophrenia Inpatients. Front Syst Neurosci 2021; 15:704069. [PMID: 34658801 PMCID: PMC8511448 DOI: 10.3389/fnsys.2021.704069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Accumulating evidence indicates that inflammation abnormalities may contribute to aggression behaviors in psychotic patients, however, the possible sources of inflammation remain elusive. We aimed to evaluate the associations among aggression, inflammation, and bacterial translocation (BT) in aggression-affected schizophrenia (ScZ) inpatients with 2 weeks of antipsychotics discontinuation. Methods: Serum specimens collected from 112 aggression and 112 non-aggression individuals with ScZ and 56 healthy adults were used for quantifications of inflammation- or BT-related biomarkers. Aggression severity was assessed by Modified Overt Aggression Scale (MOAS). Results: Proinflammation phenotype dominated and leaky gut-induced BT occurred only in cases with ScZ with a history of aggression, and the MOAS score positively related to levels of C-reactive protein, interleukin (IL)-6, IL-1β, and tumor necrosis factor-α. Furthermore, serum levels of BT-derived lipopolysaccharide (LPS), as well as LPS-responded soluble CD14, were not only positively correlated with levels of above proinflammation mediators but also the total MOAS score and subscore for aggression against objects or others. Conclusion: Our results collectively demonstrate the presence of leaky gut and further correlate BT-derived LPS and soluble CD14 to onset or severity of aggression possibly by driving proinflammation response in inpatients with ScZ, which indicates that BT may be a novel anti-inflammation therapeutic target for aggression prophylaxis.
Collapse
Affiliation(s)
- Chong Wang
- Department of Psychiatry, Zhumadian Psychiatric Hospital (The Second People's Hospital of Zhumadian), Zhumadian, China
| | - Teng Zhang
- Department of Psychiatry, Zhumadian Psychiatric Hospital (The Second People's Hospital of Zhumadian), Zhumadian, China
| | - Lei He
- Department of Psychiatry, Zhumadian Psychiatric Hospital (The Second People's Hospital of Zhumadian), Zhumadian, China
| | - Ji-Yong Fu
- Department of Psychiatry, Zhumadian Psychiatric Hospital (The Second People's Hospital of Zhumadian), Zhumadian, China
| | - Hong-Xin Deng
- Department of Psychiatry, Zhumadian Psychiatric Hospital (The Second People's Hospital of Zhumadian), Zhumadian, China
| | - Xiao-Ling Xue
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bang-Tao Chen
- Department of Dermatology, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
28
|
Togay A, Togay B, Ozbay Gediz D, Akbaş SH, Köksoy S. Levels of lymphocyte-associated regulators of complement system CD55 and CD59 are changed in schizophrenia patients. Int J Psychiatry Clin Pract 2021; 25:277-282. [PMID: 34154502 DOI: 10.1080/13651501.2021.1927105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Although pathological mechanisms of schizophrenia are unknown, evidence in the literature suggests that the immune system might be involved in the pathogenesis. Complement is an important part of the immune system and it has been suggested to play role in the pathogenesis of schizophrenia. We aimed to investigate the potential involvement of the complement system in schizophrenia by the determination of peripheral concentrations of certain complement proteins and their regulators in patients. METHODS Plasma concentrations of complement C3, C4, and C1 inhibitory protein were measured by chemiluminescence in 41 schizophrenia patients and 39 healthy controls. Expression of CD55, CD59, and CD46 proteins on peripheral blood mononuclear cells were determined by flow cytometry in the same groups. RESULTS Frequencies of peripheral immune cells expressing CD55 were determined to be significantly higher in schizophrenia patients than in healthy people (p = 0.020). Frequencies of peripheral immune cells expressing CD59 was determined to be significantly higher in healthy people than in schizophrenia patients (p = 0.012). The expression level of CD55 per cell was measured to be significantly elevated in patients compared to healthy controls (p = 0.026). CONCLUSIONS Our data clearly demonstrate an elevated complement activity in schizophrenia and points to a possible complement association in the pathogenesis.Key pointsIncreased the expression level, and frequency of CD55 in schizophrenia patients.Decreased frequency of CD59 in schizophrenia patients.No difference in the expression level of CD59; the expression level, and frequency of CD46; frequency of complement C3, C4, and C1 inhibitory protein.
Collapse
Affiliation(s)
- Alper Togay
- Department of Medical Microbiology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Bilge Togay
- Clinic of Psychiatry, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Deniz Ozbay Gediz
- Clinic of Psychiatry, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Sadıka Halide Akbaş
- Department of Biochemistry, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Sadi Köksoy
- Department of Medical Microbiology, School of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
29
|
Dawidowski B, Górniak A, Podwalski P, Lebiecka Z, Misiak B, Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J Clin Med 2021; 10:jcm10173849. [PMID: 34501305 PMCID: PMC8432006 DOI: 10.3390/jcm10173849] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a chronic mental illness of unknown etiology. A growing and compelling body of evidence implicates immunologic dysfunction as the key element in its pathomechanism. Cytokines, whose altered levels have been increasingly reported in various patient populations, are the major mediators involved in the coordination of the immune system. The available literature reports both elevated levels of proinflammatory as well as reduced levels of anti-inflammatory cytokines, and their effects on clinical status and neuroimaging changes. There is evidence of at least a partial genetic basis for the association between cytokine alterations and schizophrenia. Two other factors implicated in its development include early childhood trauma and disturbances in the gut microbiome. Moreover, its various subtypes, characterized by individual symptom severity and course, such as deficit schizophrenia, seem to differ in terms of changes in peripheral cytokine levels. While the use of a systematic review methodology could be difficult due to the breadth and diversity of the issues covered in this review, the applied narrative approach allows for a more holistic presentation. The aim of this narrative review was to present up-to-date evidence on cytokine dysregulation in schizophrenia, its effect on the psychopathological presentation, and links with antipsychotic medication. We also attempted to summarize its postulated underpinnings, including early childhood trauma and gut microbiome disturbances, and propose trait and state markers of schizophrenia.
Collapse
Affiliation(s)
- Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Adrianna Górniak
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-510-091-466
| | - Zofia Lebiecka
- Department of Health Psychology, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Medical University, 50-367 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| |
Collapse
|
30
|
Chen Y, Zhao Z, Lin F, Wang L, Lin Z, Yue W. Associations Between Genotype and Peripheral Complement Proteins in First-Episode Psychosis: Evidences From C3 and C4. Front Genet 2021; 12:647246. [PMID: 34306006 PMCID: PMC8301372 DOI: 10.3389/fgene.2021.647246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia is a common neuropsychiatric disorder with complex pathophysiology. Recent reports suggested that complement system alterations contributed to pathological synapse elimination that was associated with psychiatric symptoms in schizophrenia. Complement component 3 (C3) and complement component 4 (C4) play central roles in complement cascades. In this study, we compared peripheral C3 and C4 protein levels between first-episode psychosis (FEP) and healthy control (HC). Then we explored whether single nucleotide polymorphisms (SNPs) at C3 or C4 genes affect peripheral C3 or C4 protein levels. In total, 181 FEPs and 204 HCs were recruited after providing written informed consent. We measured serum C3 and C4 protein levels using turbidimetric inhibition immunoassay and genotyped C3 and C4 polymorphisms using the Sequenom MassArray genotyping. Our results showed that three SNPs were nominally associated with schizophrenia (rs11569562/C3: A > G, p = 0.048; rs2277983/C3: A > G, p = 0.040; rs149898426/C4: G > A, p = 0.012); one haplotype was nominally associated with schizophrenia, constructed by rs11569562–rs2277983–rs1389623 (GGG, p = 0.048); FEP had higher serum C3 and C4 (both p < 0.001) levels than HC; rs1389623 polymorphisms were associated with elevated C3 levels in our meta-analysis (standard mean difference, 0.50; 95% confidence interval, 0.30 to 0.71); the FEP with CG genotype of rs149898426 had higher C4 levels than that with GG genotypes (p = 0.005). Overall, these findings indicated that complement system altered in FEP and rs149898426 of C4 gene represented a genetic risk marker for schizophrenia likely through mediating complement system. Further studies with larger sample sizes needs to be validated.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Zhenguo Zhao
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Fen Lin
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Lifang Wang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Zheng Lin
- Second Hospital Zhejiang University School of Medicine (SAHZU), Hangzhou, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
31
|
Comparison of inflammatory, nutrient, and neurohormonal indicators in patients with schizophrenia, bipolar disorder and major depressive disorder. J Psychiatr Res 2021; 137:401-408. [PMID: 33765452 DOI: 10.1016/j.jpsychires.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022]
Abstract
Psychiatric disorders are severe, debilitating conditions with unknown etiology and are commonly misdiagnosed, when based solely on clinical interviews, because of overlapping symptoms and similar familial patterns. Until now, no valid and objective biomarkers have been used to diagnose and differentiate between psychiatric disorders. We compared clinically tested serum indicators in terms of inflammation (C-reactive protein, complement proteins C3 and C4, and serum Immunoglobulins A, M, and G), nutrients (homocysteine, folate, and vitamin B12), and neurohormones (adrenocorticotropic hormone and cortisol) in patients with schizophrenia (SCZ, n = 1659), bipolar disorder (BD, n = 1901), and major depressive disorder (MDD, n = 1521) to investigate potential biomarkers. A receiver operating characteristic (ROC) curve was used to analyze the diagnostic potential of these analytes. We found that compared with MDD, serum levels of C-reactive protein, C3, C4, and homocysteine were higher in SCZ and BD groups, and folate and vitamin B12 were lower in SCZ and BD groups. In contrast with BD, adrenocorticotropic hormone and cortisol increased in patients with MDD. Although ROC analysis suggested that they were not able to effectively distinguish between the three, these biological indicators showed different patterns in the three disorders. As such, more specific biomarkers should be explored in the future.
Collapse
|
32
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
33
|
Gao J, Wei Q, Pan R, Yi W, Xu Z, Duan J, Tang C, He Y, Liu X, Song S, Su H. Elevated environmental PM 2.5 increases risk of schizophrenia relapse: Mediation of inflammatory cytokines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142008. [PMID: 32892002 DOI: 10.1016/j.scitotenv.2020.142008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ecological epidemiology suggests that hospital admissions for schizophrenia are associated with an increased environmental PM2.5, but no prospective study has verified this result, and the physiological mechanism is not clear. METHODS We used a repeated-measures design to prospectively assess the association of environmental PM2.5 and the risk of relapse in schizophrenia, and used two linear mixed-effects models to explore possible mediating effects of immune cytokines on the premise of controlling confounders. RESULTS We import the data using EpiData software, and collate and analyze of the data using R software. The increase of PM2.5 at lag0 had the greatest impact on the relapse of schizophrenia (for each 10 μg/m3 increase in PM2.5, the relapse risk score increased by 1.504, that is to say, odds ratio (OR) = 4.500 (95% confidence interval (CI): 2.849-7.106,P < 0.001)), and cumulative effects lasted for four days with the maximum at the second day (for each 10 μg/m3 increase in PM2.5, the relapse risk score increased by 1.301, OR = 3.673 (95%CI: 1.962-6.876,P < 0.001)). PM2.5 exposure was statistically related to four symptom dimensions of early signs scale (ESS), and the symptoms most affected by the increased PM2.5 were depression/withdrawal (ESSN) (OR = 1.990, 95%CI: 1.701-2.328), anxiety/agitation (ESS-A) (OR = 1.537, 95%CI: 1.340-1.763), initial psychosis (ESS-IP) (OR = 1.398, 95%CI: 1.151-1.697), and disinhibition (ESS-D) (OR = 1.235, 95%CI: 1.133-1.347). Furthermore, there are three statistically significant pathways in intermediary analysis: of PM2.5 and relapse risk: "PM2.5 → IL-17 → ESS", "PM2.5 → IL-17 → ESS-A", and "PM2.5 → IL-17 → ESS-N", and the intermediary ratio of IL-17 was 11.66%, 16.37% and 22.55%, respectively. CONCLUSIONS Increased environmental PM2.5 is a risk factor for the relapse of schizophrenia. Early relapse identification and intervention based on clinical characteristics are of great significance for timely termination of relapse and slowing down of relapse.
Collapse
Affiliation(s)
- Jiaojiao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Zihan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jun Duan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China.
| |
Collapse
|
34
|
Type 17 Immune Response Facilitates Progression of Inflammation and Correlates with Cognition in Stable Schizophrenia. Diagnostics (Basel) 2020; 10:diagnostics10110926. [PMID: 33182582 PMCID: PMC7698203 DOI: 10.3390/diagnostics10110926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of the type 17 immune pathway has already been considered in schizophrenia and we previously measured decreased sera values of interleukin (IL)-17 in early stages. We further explored the possible correlation of IL-17 systemic levels with proinflammatory cytokines and cognitive scores and additionally analyzed the percentage of IL-17 producing lymphocytes in peripheral blood of patients with stable schizophrenia. We included 27 patients diagnosed with schizophrenia (F20), after a three-month stable depot antipsychotic therapy (risperidone or paliperidone) and 18 healthy control subjects. Positive and Negative Syndrome Scale of Schizophrenia and the Montreal-Cognitive Assessment (MoCA) were conducted. Sera concentrations of IL-17, IL-6, tumor necrosis factor alpha (TNF-α) and soluble ST2 receptor (sST2) were measured. Flow cytometry and Natural Killer (NK) and T cell analyses were done in 10 patients and 10 healthy controls. Moderate positive correlation was established between IL-17 and TNF-α (r = 0.640; p = 0.001), IL-17 and IL-6 (r = 0.514; p = 0.006), IL-17 and sST2 (r = 0.394; p = 0.042). Furthermore, a positive correlation between the serum levels of IL-17 and MoCA scores was observed, especially with visuospatial and executive functioning, as well as language functioning and delayed recall (p < 0.05). Significantly higher percentage of IL-17 producing CD56+ NK cells was measured in peripheral blood of patients with schizophrenia in remission vs. healthy individuals (p = 0.001). The percentage of CD4+ T cells and CD4+ T cells that produce IL-17 was significantly increased in patients (p = 0.001). This study revealed the involvement of innate type 17 immune response in the progression of inflammation and this could be related to cognitive functioning in stable schizophrenia.
Collapse
|
35
|
Al-Dujaili AH, Mousa RF, Al-Hakeim HK, Maes M. High Mobility Group Protein 1 and Dickkopf-Related Protein 1 in Schizophrenia and Treatment-Resistant Schizophrenia: Associations With Interleukin-6, Symptom Domains, and Neurocognitive Impairments. Schizophr Bull 2020; 47:530-541. [PMID: 32971537 PMCID: PMC7965081 DOI: 10.1093/schbul/sbaa136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) and treatment-resistant schizophrenia (TRS) are associated with aberrations in immune-inflammatory pathways. Increased high mobility group protein 1 (HMGB1), an inflammatory mediator, and Dickkopf-related protein (DKK1), a Wnt/β-catenin signaling antagonist, affect the blood-brain barrier and induce neurotoxic effects and neurocognitive deficits. AIM The present study aims to examine HMGB1 and DDK1 in nonresponders to treatments (NRTT) with antipsychotics (n = 60), partial RTT (PRTT, n = 55), and healthy controls (n = 43) in relation to established markers of SCZ, including interleukin (IL)-6, IL-10, and CCL11 (eotaxin), and to delineate whether these proteins are associated with the SCZ symptom subdomains and neurocognitive impairments. RESULTS HMGB1, DKK1, IL-6, and CCL11 were significantly higher in SCZ patients than in controls. DKK1 and IL-6 were significantly higher in NRTT than in PRTT and controls, while IL-10 was higher in NRTT than in controls. Binary logistic regression analysis showed that SCZ was best predicted by increased DDK1 and HMGB1, while NRTT (vs PRTT) was best predicted by increased IL-6 and CCL11 levels. A large part of the variance in psychosis, hostility, excitation, mannerism, and negative (PHEMN) symptoms and formal thought disorders was explained by HMGB1, IL-6, and CCL11, while most neurocognitive functions were predicted by HMGB1, DDK1, and CCL11. CONCLUSIONS The neurotoxic effects of HMGB1, DKK1, IL-6, and CCL11 including the effects on the blood-brain barrier and the Wnt/β-catenin signaling pathway may cause impairments in executive functions and working, episodic, and semantic memory and explain, in part, PHEMN symptoms and a nonresponse to treatment with antipsychotic drugs.
Collapse
Affiliation(s)
| | - Rana Fadhil Mousa
- Faculty of Veterinary Medicine, University of Kerbala, Kerbala, Iraq
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
- To whom correspondence should be addressed; IMPACT Strategic Research Center, Barwon Health, School of Medicine, Deakin University, PO Box 281, Geelong, VIC3220, Australia; tel: 0066-930466001, e-mail:
| |
Collapse
|
36
|
Mongan D, Sabherwal S, Susai SR, Föcking M, Cannon M, Cotter DR. Peripheral complement proteins in schizophrenia: A systematic review and meta-analysis of serological studies. Schizophr Res 2020; 222:58-72. [PMID: 32456884 PMCID: PMC7594643 DOI: 10.1016/j.schres.2020.05.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is renewed focus on the complement system in the pathogenesis of schizophrenia. In addition to providing aetiological insights, consistently dysregulated complement proteins in serum or plasma may have clinical utility as biomarkers. METHODS We performed a systematic literature review searching PubMed, Embase and PsycINFO for studies measuring complement system activity or complement protein concentrations in serum or plasma from patients with schizophrenia compared to controls. Random-effects meta-analyses were performed to calculate pooled effect estimates (Hedges' g standardised mean difference [SMD]) for complement proteins whose concentrations were measured in three or more studies. The review was pre-registered on the PROSPERO database (CRD42018109012). RESULTS Database searching identified 1146 records. Fifty-eight full-text articles were assessed for eligibility and 24 studies included. Seven studies measured complement system activity. Activity of the classical pathway did not differ between cases and controls in four of six studies, and conflicting results were noted in two studies of alternative pathway activity. Twenty studies quantified complement protein concentrations of which complement components 3 (C3) and 4 (C4) were measured in more than three studies. Meta-analyses showed no evidence of significant differences between cases and controls for 11 studies of C3 (SMD 0.04, 95% confidence interval [CI] -0.29-0.36) and 10 studies of C4 (SMD 0.10, 95% CI -0.21-0.41). CONCLUSIONS Serological studies provide mixed evidence regarding dysregulation of the complement system in schizophrenia. Larger studies of a longitudinal nature, focusing on early phenotypes, could provide further insights regarding the potential role of the complement system in psychotic disorders.
Collapse
Affiliation(s)
- David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Sophie Sabherwal
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
37
|
Allimuthu P, Nandeesha H, Chinniyappan R, Bhardwaz B, Blessed Raj J. Relationship of Brain-Derived Neurotrophic Factor with Interleukin-23, Testosterone and Disease Severity in Schizophrenia. Indian J Clin Biochem 2020; 36:365-369. [PMID: 34220013 DOI: 10.1007/s12291-020-00880-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
Hormonal imbalance, inflammation and alteration in synaptic plasticity are reported to play a crucial role in the pathogenesis of schizophrenia. The objective of the study was to assess the serum levels of brain derived neurotrophic factor (BDNF) and its association with interleukin-23 (IL-23), testosterone and disease severity in schizophrenia. 40 cases and 40 controls were included in the study. Serum levels of BDNF, IL-23 and testosterone were estimated in all the subjects. Disease severity was assessed using Positive and Negative Syndrome Scale (PANSS). The study was designed in Tertiary care hospital, South India. The results were compared between two groups using Mann-Whitney U test. Spearman Correlation analysis was used to assess the association between biochemical parameters and PANSS. Interleukin-23 and testosterone were significantly increased and BDNF was significantly reduced in schizophrenia cases when compared with controls. BDNF was negatively correlated with IL-23 (r = - 400, p = 0.011), positive symptom subscale (r = - 0.393, p = 0.012), general psychopathology score subscale (r = - 407, p = 0.009) and total symptom subscale (r = - 404, p = 0.010). There was no significant association of IL-23 and testosterone with disease severity in schizophrenia cases. BDNF was reduced in schizophrenia cases and negatively associated with interleukin-23 and disease severity scores.
Collapse
Affiliation(s)
- Priya Allimuthu
- Department of Biochemistry and Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Hanumanthappa Nandeesha
- Department of Biochemistry and Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Raghavi Chinniyappan
- Department of Biochemistry and Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Balaji Bhardwaz
- Department of Biochemistry and Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.,Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jesudas Blessed Raj
- Department of Biochemistry and Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
38
|
Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 2020; 14:23. [PMID: 32116493 PMCID: PMC7015047 DOI: 10.3389/fnins.2020.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.
Collapse
Affiliation(s)
- Juliana Magdalon
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - André Luiz Teles E Silva
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Vitor Abreu de Goes
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Andréa Laurato Sertié
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
39
|
Subbanna M, Shivakumar V, Venugopal D, Narayanaswamy JC, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Impact of antipsychotic medication on IL-6/STAT3 signaling axis in peripheral blood mononuclear cells of drug-naive schizophrenia patients. Psychiatry Clin Neurosci 2020; 74:64-69. [PMID: 31587436 DOI: 10.1111/pcn.12938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
AIM Immunopathogenesis remains a widely appreciated etiopathological model of schizophrenia. Persistent efforts have aimed to identify schizophrenia biomarkers indexing immune system abnormalities and also immuno-dampening effects of antipsychotic medications. Although data arising from published reports are encouraging, such studies are limited to a few immune parameters and not focused on a specific pathway. Th17 cells-mediated immuno-inflammatory responses have emerged as a potential mechanism in various neuropsychiatric conditions, including schizophrenia. The Th17 pathway is distinctly regulated through a coordinated action of multiple cytokines and transcription factors. In this study, we explored whether antipsychotic medication has any effect on the cytokines and transcription factors of the Th17 pathway. METHODS A total of 27 drug-naive schizophrenia patients were recruited and followed up for 3 months after initiation of antipsychotic medication. Lymphocyte gene expression levels of two transcription factors (STAT3 and RORC) and one of their upstream regulators, IL6, were quantified before and after treatment. Plasma levels of cytokines, such as interleukin (IL)-1β, IL-6, IL-17A, IL-23, and IL-33, were also analyzed before and after treatment. RESULTS Treatment with antipsychotic medication for 3 months resulted in significant downregulation of STAT3 gene expression as well as reduction in plasma levels of IL-1β, IL-6, and IL-17A. Significant reduction in total scores for the Scale for Assessment of Positive Symptoms and the Scale for Assessment of Negative Symptoms was also observed in schizophrenia patients after 3 months of antipsychotic treatment. CONCLUSION Our findings suggest possible immuno-modulatory effects of antipsychotic medication on the critical regulators, such as IL-6 and STAT3, of the Th17 pathway in schizophrenia patients. The IL-6/STAT3 signaling axis involved in the transcriptional regulation of Th17 cells might appear as an important target of antipsychotic treatment in schizophrenia patients. Alternatively, irrespective of the effect of antipsychotic drugs, the IL-6/STAT3 signaling axis might be crucially involved in ameliorating psychotic symptoms.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.,Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.,Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, Australia.,Orygen, Centre of Excellence in Youth Mental Health, Department of Psychiatry and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shivarama Varambally
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
40
|
Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what's next? Mol Psychiatry 2020; 25:114-130. [PMID: 31439935 DOI: 10.1038/s41380-019-0479-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
The complement system is a set of immune proteins involved in first-line defense against pathogens and removal of waste materials. Recent evidence has implicated the complement cascade in diseases involving the central nervous system, including schizophrenia. Here, we provide an up-to-date narrative review and critique of the literature on the relationship between schizophrenia and complement gene polymorphisms, gene expression, protein concentration, and pathway activity. A literature search identified 23 new studies since the first review on this topic in 2008. Overall complement pathway activity appears to be elevated in schizophrenia. Recent studies have identified complement component 4 (C4) and CUB and Sushi Multiple Domains 1 (CSMD1) as potential genetic markers of schizophrenia. In particular, there is some evidence of higher rates of C4B/C4S deficiency, reduced peripheral C4B concentration, and elevated brain C4A mRNA expression in schizophrenia patients compared to controls. To better elucidate the additive effects of multiple complement genotypes, we also conducted gene- and gene-set analysis through MAGMA which supported the role of Human Leukocyte Antigen class (HLA) III genes and, to a lesser extent, CSMD1 in schizophrenia; however, the HLA-schizophrenia association was likely driven by the C4 gene. Lastly, we identified several limitations of the literature on the complement system and schizophrenia, including: small sample sizes, inconsistent methodologies, limited measurements of neural concentrations of complement proteins, little exploration of the link between complement and schizophrenia phenotype, and lack of studies exploring schizophrenia treatment response. Overall, recent findings highlight complement components-in particular, C4 and CSMD1-as potential novel drug targets in schizophrenia. Given the growing availability of complement-targeted therapies, future clinical studies evaluating their efficacy in schizophrenia hold the potential to accelerate treatment advances.
Collapse
Affiliation(s)
- Julia J Woo
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Jennie G Pouget
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
41
|
Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine Alterations in Schizophrenia: An Updated Review. Front Psychiatry 2019; 10:892. [PMID: 31908647 PMCID: PMC6915198 DOI: 10.3389/fpsyt.2019.00892] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia, a multisystem disorder with an unknown etiology, is associated with several immune dysfunctions, including abnormal levels of circulating cytokines. In this review, we investigated the changes of cytokines in schizophrenic patients, their connection with behavioral symptoms severity and their potential clinical implications. We also assessed the possible causative role of abnormal cytokine levels in schizophrenia pathogenesis. Based on meta-analyses, we categorized cytokines according to their changes in schizophrenic patients into four groups: (1) increased cytokines, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-12, and transforming growth factor (TGF)-β, (2) non-altered cytokines, including IL-2, IL-4, and IL-17, (3) increased or non-altered cytokines, including IL-8 and interferon (IFN)-γ, and (4) IL-10 with increased, decreased, and non-altered levels. Notably, alterations in cytokines may be variable in four different categories of SP, including first-episode and drug-naïve, first-episode and non-drug-naïve, stable chronic, and chronic in acute relapse. Furthermore, disease duration, symptoms severity, incidence of aggression, and cognitive abilities are correlated with levels of certain cytokines. Clinical implications of investigating the levels of cytokine in schizophrenic patients include early diagnosis, novel therapeutic targets development, patient stratification for choosing the best therapeutic protocol, and predicting the prognosis and treatment response. The levels of IL-6, IL-8, IFN-γ, IL-2 are related to the treatment response. The available evidence shows a potential causative role for cytokines in schizophrenia development. There is a substantial need for studies investigating the levels of cytokines before disease development and delineating the therapeutic implications of the disrupted cytokine levels in schizophrenia.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Zare-Shahabadi
- Neuroimmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Molecular Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
42
|
Larsen JB, Stunes AK, Vaaler A, Reitan SK. Cytokines in agitated and non-agitated patients admitted to an acute psychiatric department: A cross-sectional study. PLoS One 2019; 14:e0222242. [PMID: 31509578 DOI: 10.1371/journal.pone.0222242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Different psychiatric diagnostic groups have been reported to have cytokine levels deviating from healthy controls. In acute clinical settings however, the specific challenging symptoms and signs are more important than a diagnostic group. Thus, exploration of cytokines and immune activity and their role in specific symptoms is important. Reports in this field so far are sparse. OBJECTIVE In the present study, we aimed to examine the association between immune activity measured as levels of cytokines and agitation (independent of diagnostic group) in patients admitted to an acute psychiatric inpatient department. METHODS A total of 316 patients admitted to an acute psychiatric inpatient department were included. Thirty-nine patients with psychosis were subject to subgroup analyses. Agitation was assessed by the Positive and Negative Syndrome Scale, Excitement Component (PANSS-EC). Based on PANNS-EC patients were stratified into two groups: 67 agitated patients and 249 non-agitated patients. Serum concentrations of the following immune markers were measured: interleukin (IL) -1β, IL-4, IL-6, IL-10, tumor necrosis factor (TNF) -α, interferon (IFN) -γ and transforming growth factor (TGF) -β. RESULTS Serum levels of TNF-α were significantly higher in patients with agitation compared to those without, both when all patients were included in the analyses (p = 0.004) and in the psychosis group (p = 0.027). After correcting for multiple testing, only the findings in the total population remained significant. CONCLUSIONS Our findings suggest an association between TNF-α and agitation in an acute psychiatric population. A similar trend was reproduced to the psychosis subgroup. This suggests that agitation might be an independent entity associated with cytokines across different diagnostic groups.
Collapse
Affiliation(s)
- Jeanette Brun Larsen
- St. Olav's University Hospital, Department of Mental Health, Trondheim, Norway
- Norwegian University of Science and Technology, Faculty of Medicine and Health Science, Department of Mental Health, Trondheim, Norway
| | - Astrid Kamilla Stunes
- Norwegian University of Science and Technology, Faculty of Medicine and Health Science, Department of Clinical and Molecular Medicine, Trondheim, Norway
- St. Olav's University Hospital, Medical Clinic, Trondheim, Norway
| | - Arne Vaaler
- St. Olav's University Hospital, Department of Mental Health, Trondheim, Norway
- Norwegian University of Science and Technology, Faculty of Medicine and Health Science, Department of Mental Health, Trondheim, Norway
| | - Solveig Klæbo Reitan
- St. Olav's University Hospital, Department of Mental Health, Trondheim, Norway
- Norwegian University of Science and Technology, Faculty of Medicine and Health Science, Department of Mental Health, Trondheim, Norway
| |
Collapse
|
43
|
Manchia M, Comai S, Pinna M, Pinna F, Fanos V, Denovan-Wright E, Carpiniello B. Biomarkers in aggression. Adv Clin Chem 2019; 93:169-237. [PMID: 31655730 DOI: 10.1016/bs.acc.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggressive behavior exerts an enormous impact on society remaining among the main causes of worldwide premature death. Effective primary interventions, relying on predictive models of aggression that show adequate sensitivity and specificity are currently lacking. One strategy to increase the accuracy and precision of prediction would be to include biological data in the predictive models. Clearly, to be included in such models, biological markers should be reliably associated with the specific trait under study (i.e., diagnostic biomarkers). Aggression, however, is phenotypically highly heterogeneous, an element that has hindered the identification of reliable biomarkers. However, current research is trying to overcome these challenges by focusing on more homogenous aggression subtypes and/or by studying large sample size of aggressive individuals. Further advance is coming by bioinformatics approaches that are allowing the integration of inter-species biological data as well as the development of predictive algorithms able to discriminate subjects on the basis of the propensity toward aggressive behavior. In this review we first present a brief summary of the available evidence on neuroimaging of aggression. We will then treat extensively the data on genetic determinants, including those from hypothesis-free genome-wide association studies (GWAS) and candidate gene studies. Transcriptomic and neurochemical biomarkers will then be reviewed, and we will dedicate a section on the role of metabolomics in aggression. Finally, we will discuss how biomarkers can inform the development of new pharmacological tools as well as increase the efficacy of preventive strategies.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Stefano Comai
- San Raffaele Scientific Institute and Vita Salute University, Milano, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy; Puericulture Institute and Neonatal Section, University Hospital Agency of Cagliari, Cagliari, Italy
| | | | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
44
|
Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M. The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: the IRS-CIRS Theory of Schizophrenia. Mol Neurobiol 2019; 57:778-797. [PMID: 31473906 DOI: 10.1007/s12035-019-01737-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Several lines of evidence indicate that aberrations in immune-inflammatory pathways may contribute to the pathophysiology of schizophrenia spectrum disorders. Here, we propose a novel theoretical framework that was previously developed for major depression and bipolar disorder, namely, the compensatory immune-regulatory reflex system (CIRS), as applied to the neuro-immune pathophysiology of schizophrenia and its phenotypes, including first-episode psychosis (FEP), acute relapses, chronic and treatment-resistant schizophrenia (TRS), comorbid depression, and deficit schizophrenia. These schizophrenia phenotypes and manifestations are accompanied by increased production of positive acute-phase proteins, including haptoglobin and α2-macroglobulin, complement factors, and macrophagic M1 (IL-1β, IL-6, and TNF-α), T helper (Th)-1 (interferon-γ and IL-2R), Th-2 (IL-4, IL-5), Th-17 (IL-17), and T regulatory (Treg; IL-10 and transforming growth factor (TGF)-β1) cytokines, cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway, and chemokines, including CCL-11 (eotaxin), CCL-2, CCL-3, and CXCL-8. While the immune profiles in the different schizophrenia phenotypes indicate the activation of the immune-inflammatory response system (IRS), there are simultaneous signs of CIRS activation, including increased levels of the IL-1 receptor antagonist (sIL-1RA), sIL-2R and tumor necrosis factor-α receptors, Th-2 and Treg phenotypes with increased IL-4 and IL-10 production, and increased levels of TRYCATs and haptoglobin, α2-macroglobulin, and other acute-phase reactants, which have immune-regulatory and anti-inflammatory effects. Signs of activated IRS and CIRS pathways are also detected in TRS, chronic, and deficit schizophrenia, indicating that these conditions are accompanied by a new homeostatic setpoint between upregulated IRS and CIRS components. In FEP, increased baseline CIRS activity is a protective factor that may predict favorable clinical outcomes. Moreover, impairments in the CIRS are associated with deficit schizophrenia and greater impairments in semantic and episodic memory. It is concluded that CIRS plays a key role in the pathophysiology of schizophrenia by negatively regulating the primary IRS and contributing to recovery from the acute phase of illness. Therefore, components of the CIRS may offer promising therapeutic targets for schizophrenia.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cristiano Noto
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andre F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, M6J 1H4, Canada
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic, Australia.
| |
Collapse
|
45
|
Motoyama M, Yamada H, Motonishi M, Matsunaga H. Elevated anti-gliadin IgG antibodies are related to treatment resistance in schizophrenia. Compr Psychiatry 2019; 93:1-6. [PMID: 31276901 DOI: 10.1016/j.comppsych.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mikuni Motoyama
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hisashi Yamada
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
46
|
Yuan X, Kang Y, Zhuo C, Huang XF, Song X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 2019; 512:373-380. [PMID: 30898321 DOI: 10.1016/j.bbrc.2019.02.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe mental disorder with unknown etiology. Many mechanisms, including dysregulation of neurotransmitters, immune disturbance, and abnormal neurodevelopment, are proposed for the pathogenesis of schizophrenia. The significance of communication between intestinal flora and the central nervous system through the gut-brain axis is increasingly being recognized. The intestinal microbiota plays an important role in regulating neurotransmission, immune homeostasis, and brain development. We hypothesize that an imbalance in intestinal flora causes immune activation and dysfunction in the gut-brain axis, contributing to schizophrenia. In this review, we examine recent studies that explore the intestinal flora and immune-mediated neurodevelopment of schizophrenia. We conclude that an imbalance in intestinal flora may reduce protectants and increase neurotoxin and inflammatory mediators, causing neuronal and synaptic damage, which induces schizophrenia.
Collapse
Affiliation(s)
- Xiuxia Yuan
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Chuanjun Zhuo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
47
|
Laskaris L, Zalesky A, Weickert CS, Di Biase MA, Chana G, Baune BT, Bousman C, Nelson B, McGorry P, Everall I, Pantelis C, Cropley V. Investigation of peripheral complement factors across stages of psychosis. Schizophr Res 2019; 204:30-37. [PMID: 30527272 DOI: 10.1016/j.schres.2018.11.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/02/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
The complement cascade has been proposed to contribute to the pathogenesis of schizophrenia. However, it remains unclear whether peripheral complement levels differ in cases compared to controls, change over the course of illness and whether they are associated with current symptomatology. This study aimed to: i) investigate whether peripheral complement protein levels are altered at different stages of illness, and ii) identify patterns among complement protein levels that predict clinical symptoms. Complement factors C1q, C3 and C4 were quantified in 183 participants [n = 83 Healthy Controls (HC), n = 10 Ultra-High Risk (UHR) for psychosis, n = 40 First Episode Psychosis (FEP), n = 50 Chronic schizophrenia] using Multiplex ELISA. Permutation-based t-tests were used to assess between-group differences in complement protein levels at each of the three illness stages, relative to age- and gender-matched healthy controls. Canonical correlation analysis was used to identify patterns of complement protein levels that correlated with clinical symptoms. C4 was significantly increased in chronic schizophrenia patients, while C3 and C4 were significantly increased in UHR patients. There were no differences in C1q, C3 and C4 in FEP patients when adjusting for BMI. A molecular pattern of increased C4 and decreased C3 was associated with positive and negative symptom severity in the pooled patient sample. Our findings indicate that peripheral complement concentration is increased across specific stages of psychosis and its imbalance may be associated with symptom severity. Given the small sample size of the UHR group, these findings should be regarded as exploratory, requiring replication.
Collapse
Affiliation(s)
- Liliana Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Cynthia Shannon Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Neuroscience Research Australia, Randwick, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Brain & Mind Centre, The University of Sydney, NSW, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Gursharan Chana
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, The University of Adelaide, SA, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Cooperative Research Centre for Mental Health, Carlton, VIC, Australia; Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ian Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Cooperative Research Centre for Mental Health, Carlton, VIC, Australia; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; North Western Mental Health, Melbourne Health, Parkville, VIC, Australia; Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia; Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, VIC, Australia.
| |
Collapse
|
48
|
Larsen JB, Stunes AK, Iversen VC, Vaaler AE, Reitan SK. Cytokines in Relation to Motor Activity in an Acute Psychiatric Population. Front Psychiatry 2019; 10:920. [PMID: 31920766 PMCID: PMC6930926 DOI: 10.3389/fpsyt.2019.00920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/19/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Deviations in motor activity are important clinical features of several psychiatric disorders in an acute state. Immune activity is associated with several psychiatric disorders and may affect motor activity. We aimed to examine the association between immune activity measured as serum levels of cytokines and deviations in motor activity, in an acute psychiatric setting. Methods: Data on motor activity and immune markers were available on 277 patients admitted to an acute psychiatric inpatient department. The degree of increased or decreased motor activity was clinically assessed at admission. Serum concentrations of the following immune markers were measured: interleukin (IL) -1β, IL-4, IL-6, IL-10, tumor necrosis factor (TNF) -α, interferon (IFN) -γ, and transforming growth factor (TGF) -β. Results: Scores of increased motor activity were negatively correlated with IFN-γ (rho = -0.128, p = 0.033) in an acute psychiatric population. There was also a trend towards an association between motor activity and TGF-β (rho = 0.118, p = 0.050). In a multiple-linear-regression model correcting for age, gender, and body-mass index (BMI, kg/m2), the association did not remain significant. No significant correlations between motor retardation and circulating cytokines were found. Conclusions: After adjustment for potential confounders our study did not reveal any significant association between cytokines and motor activity. However, there is an indication of increased Th17 and decreased Th1 responses in relation to increased motor activity in line with the few previous reports in the field. The phenomenon however needs further exploration.
Collapse
Affiliation(s)
- Jeanette Brun Larsen
- Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Kamilla Stunes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway.,Medical Clinic, St. Olav's University Hospital, Trondheim, Norway
| | - Valentina Cabral Iversen
- Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Einar Vaaler
- Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Solveig Klæbo Reitan
- Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Rodrigues-Amorim D, Rivera-Baltanás T, Regueiro B, Spuch C, de Las Heras ME, Vázquez-Noguerol Méndez R, Nieto-Araujo M, Barreiro-Villar C, Olivares JM, Agís-Balboa RC. The role of the gut microbiota in schizophrenia: Current and future perspectives. World J Biol Psychiatry 2018; 19:571-585. [PMID: 29383983 DOI: 10.1080/15622975.2018.1433878] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Schizophrenia is a poorly understood chronic disease. Its pathophysiology is complex, dynamic, and linked to epigenetic mechanisms and microbiota involvement. Nowadays, correlating schizophrenia with the environment makes sense owing to its multidimensional implications: temporal and spatial variability. Microbiota involvement and epigenetic mechanisms are factors that are currently being considered to better understand another dimension of schizophrenia. METHODS This review summarises and discusses currently available information, focussing on the microbiota, epigenetic mechanisms, technological approaches aimed at performing exhaustive analyses of the microbiota, and psychotherapies, to establish future perspectives. RESULTS The connection between the microbiota, epigenetic mechanisms and technological developments allows for formulating new approaches objectively oriented towards the development of alternative psychotherapies that may help treat schizophrenia. CONCLUSIONS In this review, the gut microbiota and epigenetic mechanisms were considered as key regulators, revealing a potential new aetiology of schizophrenia. Likewise, continuous technological advances (e.g. culturomics), aimed at the microbiota-gut-brain axis generate new evidence on this concept.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Tania Rivera-Baltanás
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Benito Regueiro
- b Microbiology and Parasitology Department (School of Medicine , Universidad de Santiago de Compostela). Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS , Vigo , Spain
| | - Carlos Spuch
- c Neurology Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - María Elena de Las Heras
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Raul Vázquez-Noguerol Méndez
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Maria Nieto-Araujo
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Carolina Barreiro-Villar
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Jose Manuel Olivares
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Roberto Carlos Agís-Balboa
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| |
Collapse
|
50
|
Subbanna M, Shivakumar V, Talukdar PM, Narayanaswamy JC, Venugopal D, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway mediated immunopathogenesis of schizophrenia. Cytokine 2018; 111:112-118. [PMID: 30138899 DOI: 10.1016/j.cyto.2018.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
The immuno-inflammatory origin of schizophrenia in a subset of patients is viewed as a key element of an overarching etiological construct. Despite substantial research, the immune components exerting major effect are yet to be fully clarified. Disrupted T cell networks have consistently been linked to the pathogenesis of schizophrenia. Amongst the Th cell subsets, the Th17 cells have emerged as a paradigmatic lineage with significant functional implications in a vast number of immune mediated diseases including brain disorders such as schizophrenia. The present study was aimed at examining the functional role of the Th17 pathway in schizophrenia. To address this, genotyping of IL17A (rs2275913; G197A) Single Nucleotide Polymorphism was carried out by the PCR-RFLP method in 221 schizophrenia patients and 223 healthy control subjects. Gene expression of two transcription factors STAT3 and RORC was quantified in a subset of drug naïve schizophrenia patients (n = 56) and healthy controls (n = 52) by TaqMan assay. The plasma levels of fifteen cytokines belonging to Th17 pathway were estimated in a subset of drug naïve schizophrenia patients (n = 61) and healthy controls (n = 50) by using Bio-Plex Pro Human Th17 cytokine assays. The AA genotype was associated with higher total score of bizarre behaviour and apathy in female schizophrenia patients. A high gene expression level of RORC was observed in drug naïve schizophrenia patients. In addition, significantly elevated plasma levels of IL-6 and IL-22, and reduced levels of IL-1β and IL-17F were noted in schizophrenia patients. Taken together, these findings indicate a dysregulated Th17 pathway in schizophrenia patients.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Pinku Mani Talukdar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Geelong, Victoria, Australia; Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Shivarama Varambally
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| |
Collapse
|