1
|
Zhang L, Pang J, Feng Q, Hao J, Gu X, Jiang X, Yang S, Wei W, Wu R. Neuroanatomical basis of 5-HT 1A receptor agonism in disruption of maternal behavior in rats. Behav Brain Res 2025; 486:115554. [PMID: 40158553 DOI: 10.1016/j.bbr.2025.115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The acute activation of serotonin 1 A (5-HT1A) receptors appears to disrupt maternal behavior in rats; however, the underlying neuroanatomical mechanisms remain poorly understood. We employed two approaches to investigate the role of 5-HT1A receptors in maternal behavior to address this knowledge gap. First, we used real-time polymerase chain reaction (PCR) to analyze 5-HT1A receptor mRNA expression in female rats at different reproductive stages. We identified stage- and region-specific expression patterns, including temporary increases in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal raphe nucleus (DRN), as well as a temporary decrease in the medial prefrontal cortex (mPFC), amygdala, hippocampus, and ventromedial hypothalamic nucleus (VMH) during the perinatal, early, and middle postpartum periods. These findings suggest that coordinated 5-HT1A activity across these brain regions is critical for normal maternal behavior. Second, we used c-Fos immunohistochemistry to elucidate the central mechanisms underlying the effects of the acute and repeated administration of 8-OH-DPAT (a 5-HT1A receptor agonist, 1.0 mg/kg, sc.) on maternal behavior. Acute 8-OH-DPAT administration disrupted maternal behaviors, including pup retrieval, pup licking, nest building and hovering over pups, while simultaneously increased c-Fos expression in the mPFC, ventral bed nucleus of the stria terminalis (vBNST), NAc shell, lateral septum (LS), and medial amygdala (MeA). Disruptions in pup retrieval, pup licking and nest building persisted following five days of repeated 8-OH-DPAT treatment, whereas hovering over pups showed substantial recovery, returning to near-normal levels. Concurrently, c-Fos expression increased in the vBNST but decreased in the mPFC, MeA, and DRN. These results suggest that acute and repeated 8-OH-DPAT administration disrupts maternal behavior via distinct presynaptic and postsynaptic 5-HT1A receptor mechanisms. This study highlights the complex regulatory role of 5-HT1A receptor activity in maternal care and provides insights into the neuroanatomical and neurochemical mechanisms underlying maternal behavior.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinyue Pang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Qiyan Feng
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinmei Hao
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xin Gu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xiayang Jiang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Wang B, Liu P, Gao X, Yang F, Sun J, He F. Exploring the ameliorative effects of omega-3 fatty acid supplementation on maternal behavioral abnormalities induced by prenatal chronic restraint stress. Behav Brain Res 2025; 483:115458. [PMID: 39892657 DOI: 10.1016/j.bbr.2025.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Maternal behavior is a complex form of social conduct exhibited, which directly influences the brain development and emotional behavior of offspring. Studies have shown that stress significantly impacts maternal behavior, with the 5-HT (serotonin) system playing a crucial role in this process OBJECTIVE: This study aims to explore the ameliorative effects of omega-3 fatty acid supplementation on maternal behavioral abnormalities induced by prenatal chronic restraint stress, and to analyze the molecular mechanisms involved METHODS: Sprague-Dawley rats were divided into control, stress, and stress+omega-3 (500 mg/kg) groups. Depressive behaviors were assessed using the sucrose preference test and forced swimming test. The regulatory effects of Omega-3 on maternal behavior following stress were analyzed by measuring 5-HT levels, 5-HT receptors, 5-HT1A receptor expression, downstream cAMP levels, inflammatory markers (IL-1β, TNF-α, and IL-6), and oxidative stress responses (MDA levels) RESULTS: The stress group exhibited significant reductions in maternal behaviors, such as delayed pup retrieval and decreased licking time. Omega-3 supplementation effectively improved these abnormalities, enhancing maternal care and reducing violent behaviors. Mechanistically, omega-3 supplementation increased 5-HT and receptor expression, reduced inflammation and oxidative stress, and promoted neuronal function recovery CONCLUSION: Omega-3 fatty acids can effectively mitigate the negative impact of chronic stress on maternal behavior. The underlying mechanisms involve the regulation of the 5-HT system and the reduction of neuroinflammation. This finding provides a theoretical basis for clinical interventions targeting stress-related maternal behavior disorders.
Collapse
Affiliation(s)
- Bo Wang
- Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, PR China.
| | - Peijie Liu
- Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, PR China
| | - Xinhui Gao
- Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, PR China
| | - Fengqi Yang
- Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, PR China
| | - Jiarui Sun
- Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, PR China
| | - Fengqin He
- Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, PR China.
| |
Collapse
|
3
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
4
|
Li Y, Zhou L, Xiao L, Wang H, Wang G. Wheel Running During Pregnancy Alleviates Anxiety-and Depression-Like Behaviors During the Postpartum Period in Mice: The Roles of NLRP3 Neuroinflammasome Activation, Prolactin, and the Prolactin Receptor in the Hippocampus. Neurochem Res 2024; 49:2615-2635. [PMID: 38904910 DOI: 10.1007/s11064-024-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Despite the increase in the prevalence of postpartum depression among maternal disorder, its treatment outcomes remain suboptimal. Studies have shown that exercise can reduce postpartum depressive episodes in the mother, but the effects of exercise during pregnancy on maternal behavior and the potential mechanisms involved remain poorly understood. From the second day of pregnancy to the day of birth, dams exercised for 1 h a day by running on a controlled wheel. The maternal behaviors of the dams were assessed on postpartum day 2 to postpartum day 8. Chronic restraint stress was applied from postpartum day 2 to day 12. Blood was collected on postpartum days 3 and 8, then subjected to ELISA to determine the serum concentration of prolactin. The weight of each dam and the food intake were recorded. Anxiety- and depression-like behavioral tests were conducted, and hippocampal neuroinflammation and prolactin receptor levels were measured. The dams exhibited elevated levels of anxiety and depression, decreased serum prolactin levels, decreased prolactin receptor expression, and activation of NLRP3-mediated neuroinflammation in the hippocampus following the induction of postpartum chronic restraint stress, which were reversed with controlled wheel running during pregnancy. Overall, the findings of this study revealed that the preventive effects of exercise during pregnancy on postpartum anxiety-and depression-like behaviors were accompanied by increased serum prolactin levels, hippocampal prolactin receptor expression and hippocampal NLRP3-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
| |
Collapse
|
5
|
Zhang S, Zhang YD, Shi DD, Wang Z. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 2023; 13:216. [PMID: 38017588 PMCID: PMC10683256 DOI: 10.1186/s13578-023-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide in the pathogenesis and treatment of stress-related neuropsychiatric disorders (anxiety, depression and post-traumatic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT's anti-stress action, the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT in stress-related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treatment of stress-induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses of OXT in stress-related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an enormous potential therapeutic use as a hormone that regulates stress responses.
Collapse
Affiliation(s)
- Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Roets M, Brand L, Steyn SF. Increased depressive-like behaviour of postpartum Flinders sensitive and resistant line rats is reversed by a predictable postpartum stressor. Behav Brain Res 2023; 442:114321. [PMID: 36720349 DOI: 10.1016/j.bbr.2023.114321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
During the peripartum period, women are at an increased risk to develop perinatal distress, presenting as symptoms of depression and/or anxiety. Yet, due to practical and ethical restrictions, our understanding of this condition remains limited. Animal studies that focus on the neuropsychiatric mechanisms associated with the postpartum period, often ignore the genetical predisposition factor. We therefore investigated whether pregnancy could alter the bio-behavioural profile of the Flinders sensitive and resistant line rats, and whether these effects are exacerbated by a postpartum stressor. Postpartum dams were compared to nulliparous controls in behavioural tests, analysing depressive- and anxiety-like behaviours. Next, postpartum dams were subjected to a maternal separation and early weaning (MSEW) regimen, with their behaviour and serotonergic and noradrenergic concentrations compared to rats not separated from their pups. Regardless of strain, pregnancy decreased time spent in the open arms of the elevated plus maze and hippocampal serotonin concentrations. Time spent immobile in the forced swim test was also increased, with a significant effect in the FRL and a strong trend in the FSL rats. MSEW reversed these behaviours in both strains and increased social interaction with a male counterpart in the FSL rats, without influencing hippocampal or cortical serotonin or norepinephrine. Taken together, these results suggest that pregnancy influences postpartum behaviour, in a strain-dependent manner. Contrary to what we expected, MSEW overall decreased depressive- and anxiety-like behaviours, with strain specific differences, indicating that a chronic, predictable stressor may not necessarily adversely affect postpartum behaviour.
Collapse
Affiliation(s)
- Mareli Roets
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Linda Brand
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
7
|
Zaccarelli-Magalhães J, Abreu GR, Fukushima AR, Pantaleon LP, Ribeiro BB, Munhoz C, Manes M, de Lima MA, Miglioli J, Flório JC, Lebrun I, Waziry PAF, Fonseca TL, Bocco BMLC, Bianco AC, Ricci EL, Spinosa HS. Postpartum depression in rats causes poor maternal care and neurochemical alterations on dams and long-lasting impairment in sociability on the offspring. Behav Brain Res 2023; 436:114082. [PMID: 36041571 PMCID: PMC10823501 DOI: 10.1016/j.bbr.2022.114082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
Postpartum depression is a mentally disabling disease with multifactorial etiology that affects women worldwide. It can also influence child development and lead to behavioral and cognitive alterations. Despite the high prevalence, the disease is underdiagnosed and poorly studied. To study the postpartum depression caused by maternal separation model in rats, dams were separated from their litter for 3 h daily starting from lactating day (LD) 2 through LD12. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day (PND) 2 through PND90. The stress caused by the dam-offspring separation led to poor maternal care and a transient increase in anxiety in the offspring detected during infancy. The female offspring also exhibited a permanent impairment in sociability during adult life. These changes were associated with neurochemical alterations in the prefrontal cortex and hippocampus, and low TSH concentrations in the dams, and in the hypothalamus, hippocampus and striatum of the offspring. These results indicate that the postpartum depression resulted in a depressive phenotype, changes in the brain neurochemistry and in thyroid economy that remained until the end of lactation. Changes observed in the offspring were long-lasting and resemble what is observed in children of depressant mothers.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Gabriel R Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - André R Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Lorena P Pantaleon
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Beatriz B Ribeiro
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Camila Munhoz
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Mayara A de Lima
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Júlia Miglioli
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Paula A F Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Bárbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Antônio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Esther L Ricci
- School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Helenice S Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| |
Collapse
|
8
|
Neurobiology of Maternal Behavior in Nonhuman Mammals: Acceptance, Recognition, Motivation, and Rejection. Animals (Basel) 2022; 12:ani12243589. [PMID: 36552508 PMCID: PMC9774276 DOI: 10.3390/ani12243589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different species of mammals, the expression of maternal behavior varies considerably, although the end points of nurturance and protection are the same. Females may display passive or active responses of acceptance, recognition, rejection/fear, or motivation to care for the offspring. Each type of response may indicate different levels of neural activation. Different natural stimuli can trigger the expression of maternal and paternal behavior in both pregnant or virgin females and males, such as hormone priming during pregnancy, vagino-cervical stimulation during parturition, mating, exposure to pups, previous experience, or environmental enrichment. Herein, we discuss how the olfactory pathways and the interconnections of the medial preoptic area (mPOA) with structures such as nucleus accumbens, ventral tegmental area, amygdala, and bed nucleus of stria terminalis mediate maternal behavior. We also discuss how the triggering stimuli activate oxytocin, vasopressin, dopamine, galanin, and opioids in neurocircuitries that mediate acceptance, recognition, maternal motivation, and rejection/fear.
Collapse
|
9
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
10
|
Mundorf A, Bölükbas I, Freund N. Maternal separation: Does it hold the potential to model consequences of postpartum depression? Dev Psychobiol 2022; 64:e22219. [PMID: 35050513 DOI: 10.1002/dev.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
The postpartum period is a sensitive time where women are especially vulnerable to develop postpartum depression (PPD), with 10%-15% of women affected. This review investigates whether the maternal separation (MS) paradigm in rodents holds the potential to help to understand mothers suffering from PPD. MS is a well-established stress model to investigate effects on infants, whereas effects on the dam are often overlooked. The database PubMed was searched for studies investigating effects of daily MS within the first weeks after parturition on dams in rats and mice and compared to findings in PPD mothers. MS was categorized as brief MS (5-45 min) with or without handling of pups and long MS (3-4 h and longer). MS alters maternal care, depressive-like behavior, anxiety, and aggression; leads to alterations in neuronal gene expression; and affects hormone and neurotransmitter levels similar to observations in PPD patients. Even though there are disparities between human and rodent mothers, with some results differing in directionality, as well as the reason for separation (self-induced in PPD, externally induced in MS), the overall effects found on neurobiological, hormonal, and behavioral levels mostly coincide. Thus, the MS paradigm can add relevant knowledge to existing PPD animal models, further advancing the study of PPD.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.,Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ibrahim Bölükbas
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Demarchi L, Pawluski JL, Bosch OJ. The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides 2021; 143:170593. [PMID: 34091013 DOI: 10.1016/j.peptides.2021.170593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
The bond between a mother and her child is the strongest bond in nature. Consequently, the loss of a child is one of the most stressful and traumatic life events that causes Prolonged Grief Disorder in up to 94 % of bereaved parents. While both parents are affected, mothers are of higher risk to develop mental health complications; yet, very little research has been done to understand the impact of the loss of a child, stillbirth and pregnancy loss on key neurobiological systems. The emotional impact of losing a child, e.g., Prolonged Grief Disorder, is likely accompanied by dysregulations in neural systems important for mental health. Among those are the neuropeptides contributing to attachment and stress processing. In this review, we present evidence for the involvement of the brain oxytocin (OXT) and corticotropin-releasing factor (CRF) systems, which both play a role in maternal behavior and the stress response, in the neurobiology of grief in mothers from a behavioral and molecular point of view. We will draw conclusions from reviewing relevant animal and human studies. However, the paucity of research on the tragic end to an integral bond in a female's life calls for the need and responsibility to conduct further studies on mothers experiencing the loss of a child both in the clinic and in appropriate animal models.
Collapse
Affiliation(s)
- Luisa Demarchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085 Rennes, France.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Kim P. How stress can influence brain adaptations to motherhood. Front Neuroendocrinol 2021; 60:100875. [PMID: 33038383 PMCID: PMC7539902 DOI: 10.1016/j.yfrne.2020.100875] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Research shows that a woman's brain and body undergo drastic changes to support her transition to parenthood during the perinatal period. The presence of this plasticity suggests that mothers' brains may be changed by their experiences. Exposure to severe stress may disrupt adaptive changes in the maternal brain and further impact the neural circuits of stress regulation and maternal motivation. Emerging literature of human mothers provides evidence that stressful experience, whether from the past or present environment, is associated with altered responses to infant cues in brain circuits that support maternal motivation, emotion regulation, and empathy. Interventions that reduce stress levels in mothers may reverse the negative impact of stress exposure on the maternal brain. Finally, outstanding questions regarding the timing, chronicity, types, and severity of stress exposure, as well as study design to identify the causal impact of stress, and the role of race/ethnicity are discussed.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, United States.
| |
Collapse
|
13
|
Sex and the serotonergic underpinnings of depression and migraine. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:117-140. [PMID: 33008520 DOI: 10.1016/b978-0-444-64123-6.00009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most psychiatric disorders demonstrate sex differences in their prevalence and symptomatology, and in their response to treatment. These differences are particularly pronounced in mood disorders. Differences in sex hormone levels are among the most overt distinctions between males and females and are thus an intuitive underpinning for these clinical observations. In fact, treatment with estrogen and testosterone was shown to exert antidepressant effects, which underscores this link. Changes to monoaminergic signaling in general, and serotonergic transmission in particular, are understood as central components of depressive pathophysiology. Thus, modulation of the serotonin system may serve as a mechanism via which sex hormones exert their clinical effects in mental health disorders. Over the past 20 years, various experimental approaches have been applied to identify modes of influence of sex and sex hormones on the serotonin system. This chapter provides an overview of different molecular components of the serotonin system, followed by a review of studies performed in animals and in humans with the purpose of elucidating sex hormone effects. Particular emphasis will be placed on studies performed with positron emission tomography, a method that allows for human in vivo molecular imaging and, therefore, assessment of effects in a clinically representative context. The studies addressed in this chapter provide a wealth of information on the interaction between sex, sex hormones, and serotonin in the brain. In general, they offer evidence for the concept that the influence of sex hormones on various components of the serotonin system may serve as an underpinning for the clinical effects these hormones demonstrate.
Collapse
|
14
|
Alves RL, Portugal CC, Summavielle T, Barbosa F, Magalhães A. Maternal separation effects on mother rodents’ behaviour: A systematic review. Neurosci Biobehav Rev 2020; 117:98-109. [DOI: 10.1016/j.neubiorev.2019.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
|
15
|
Aguggia JP, Suárez MM, Rivarola MA. Multiparity Dampened the Neurobehavioral Consequences of Mother-Pup Separation Stress in Dams. Neuroscience 2019; 416:207-220. [PMID: 31377452 DOI: 10.1016/j.neuroscience.2019.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Reproductive experience in mammals produces significant neuroendocrine and behavioral changes that are necessary to ensure the survival of the mother and the young. Exposure to stress during postpartum may affect the proper development of maternal behaviors. The present study examined whether previous reproductive experience affects neurobehavioral responses in females exposed to mother-infant separation stress during the postpartum period (4.5 h/day for 3 weeks). Anxiety-like behavior and spatial learning were evaluated in nulliparous (NP), primiparous (PRI) and multiparous (MULT). In maternal animals (PRI and MULT), maternal behavior was also assessed. Cell survival and proliferation in the dentate gyrus, as well as BDNF expression in the hippocampus, were evaluated by immunohistochemistry as possible candidates for mediating brain plasticity in response to reproductive experience and stress. Anxiety-like behavior as measured on the open field test showed an increase in NP and PRI-stressed, while neither stressed nor unstressed MULT expressed this behavior. Maternal unstressed animals both PRI and MULT exhibited enhanced memory task performance in the Barnes maze. Multiparity increased cell proliferation and cell survival in female rats and these changes occurred independently of pup exposure. The expression of BDNF was higher in the CA1 area in MULT rats. Although multiparity protects the mother against some of the effects of maternal separation stress, promoting behaviors directed to the pups during the early postpartum, preventing anxiety-like behaviors and mitigating memory deterioration after weaning, the data showed that disrupting natural dam-pup interaction produced neurobiological consequences on the mother even with multiple reproductive experience.
Collapse
Affiliation(s)
- Julieta Paola Aguggia
- INICSA (CONICET-UNC), Enrique Barros esq, Enfermera Gordillo, Ciudad Universitaria, 5016 Córdoba-Argentina, Av. Vélez Sarsfield 299. X5000JJC Córdoba, Argentina
| | - Marta Magdalena Suárez
- INICSA (CONICET-UNC), Enrique Barros esq, Enfermera Gordillo, Ciudad Universitaria, 5016 Córdoba-Argentina, Av. Vélez Sarsfield 299. X5000JJC Córdoba, Argentina
| | - María Angélica Rivarola
- INICSA (CONICET-UNC), Enrique Barros esq, Enfermera Gordillo, Ciudad Universitaria, 5016 Córdoba-Argentina, Av. Vélez Sarsfield 299. X5000JJC Córdoba, Argentina.
| |
Collapse
|
16
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
17
|
Lambert KG, Byrnes EM. Challenges to the parental brain: Neuroethological and translational considerations. Front Neuroendocrinol 2019; 53:100747. [PMID: 31004617 DOI: 10.1016/j.yfrne.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 02/05/2023]
Abstract
Extending from research documenting adaptive parental responses in nonthreatening contexts, the influences of various neuroethological and physiological challenges on effective parenting responses are considered in the current review. In natural habitats, rodent family units are exposed to predators, compromised resources, and other environmental stressors that disrupt HPA axis functions. With the additional physiological demands associated with caring for offspring, alterations in stress-related neuroendocrine responsiveness contribute to adaptive responses in many challenging contexts. Some environmental contexts, however, such as restricted nesting resources, result in disrupted maternal responses that have a negative impact on offspring wellbeing. Additionally, parental dysregulation associated with exposure to environmental chemicals or pharmacological substances, also compromise maternal responses with effects that often extend to future generations. Continued preclinical and clinical research elucidating parental responses to various stressors and physiological disruptors is necessary to provide valuable translational information identifying threats to effective parenting outcomes.
Collapse
Affiliation(s)
- Kelly G Lambert
- Department of Psychology, University of Richmond, VA 23173, United States.
| | - Elizabeth M Byrnes
- Cummings School of Veterinary Medicine, Tufts University, N. Grafton, MA 01536, United States
| |
Collapse
|
18
|
Pawluski JL, Li M, Lonstein JS. Serotonin and motherhood: From molecules to mood. Front Neuroendocrinol 2019; 53:100742. [PMID: 30878665 PMCID: PMC6541513 DOI: 10.1016/j.yfrne.2019.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Emerging research points to a valuable role of the monoamine neurotransmitter, serotonin, in the display of maternal behaviors and reproduction-associated plasticity in the maternal brain. Serotonin is also implicated in the pathophysiology of numerous affective disorders and likely plays an important role in the pathophysiology of maternal mental illness. Therefore, the main goals of this review are to detail: (1) how the serotonin system of the female brain changes across pregnancy and postpartum; (2) the role of the central serotonergic system in maternal caregiving and maternal aggression; and (3) how the serotonin system and selective serotonin reuptake inhibitor medications (SSRIs) are involved in the treatment of maternal mental illness. Although there is much work to be done, studying the central serotonin system's multifaceted role in the maternal brain is vital to our understanding of the processes governing matrescence and the maintenance of motherhood.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Xi TF, Li DN, Li YY, Qin Y, Wang HH, Song NN, Zhang Q, Ding YQ, Shi XZ, Xie DP. Central 5-hydroxytryptamine (5-HT) mediates colonic motility by hypothalamus oxytocin-colonic oxytocin receptor pathway. Biochem Biophys Res Commun 2018; 508:959-964. [PMID: 30545636 DOI: 10.1016/j.bbrc.2018.11.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.
Collapse
Affiliation(s)
- Tao-Fang Xi
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan-Ni Li
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Yian Li
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ying Qin
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hai-Hong Wang
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ning-Ning Song
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiong Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Dong-Ping Xie
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
20
|
Holschbach MA, Vitale EM, Lonstein JS. Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. Behav Brain Res 2018; 348:53-64. [PMID: 29653128 DOI: 10.1016/j.bbr.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 11/29/2022]
Abstract
The behavioral modifications associated with early motherhood, which include high aggression, caring for the young, and low anxiety, are all affected by acute pharmacological manipulation of serotonin signaling. However, the effects on all these behaviors of permanently disrupting serotonin signaling from one of its primary sources, the dorsal raphe nucleus (DR), have not been examined in detail. To address this, serotonin-specific lesions centered on the dorsomedial DR (DRdm; DR subregion strongly implicated in emotional behaviors) were induced at mid-pregnancy (day 15) or early postpartum (day 2) in rats using a saporin-conjugated neurotoxin targeting the serotonin transporter (Anti-SERT-SAP). Prepartum or postpartum Anti-SERT-SAP reduced DRdm serotonin immunoreactivity by ∼40-65%, and postpartum Anti-SERT-SAP also reduced it in the ventromedial and lateral wings of the DR, as well as in the median raphe. Serotonin-immunoreactive fibers were significantly reduced in the anterior hypothalamus, but not medial preoptic area, of lesioned dams. Pre- or postpartum lesions both greatly reduced maternal aggression, but while prepartum lesions did not affect later undisturbed maternal caregiving, the larger postpartum lesions prevented the postpartum decline in kyphotic nursing and reduced pup licking. Serotonin lesions did not affect pup retrieval, but the prepartum lesions temporarily increased maternal hovering over and licking the pups observed immediately after the disruptive retrieval tests. Dams' anxiety-like behaviors and litter weight gains were unaffected by the lesions. These findings suggest that DRdm serotonin projecting to the AH is particularly critical for maternal aggression, but that more widespread disruption of midbrain raphe serotonin is necessary to greatly impair maternal caregiving. Postpartum anxiety may rely more on other neurochemical systems or different midbrain serotonergic cell populations.
Collapse
Affiliation(s)
- M Allie Holschbach
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA
| | - Erika M Vitale
- Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Li X, Ding X, Wu R, Chen L, Gao J, Hu G, Li M. A behavioral mechanistic investigation of the role of 5-HT 1A receptors in the mediation of rat maternal behavior. Pharmacol Biochem Behav 2018; 169:16-26. [PMID: 29649502 DOI: 10.1016/j.pbb.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
Abstract
Previous work suggests that 5-HT1A receptors play a special role in rodent maternal aggression, but not in other aspects of maternal care (e.g. pup retrieval and nest building). The present study re-assessed the basic effects of 5-HT1A activation or blockade on various maternal responses in postpartum female rats. We also examined the possible behavioral mechanisms underlying the maternal effects of 5-HT1A. Sprague-Dawley mother rats were injected with a 5-HT1A agonist 8-OH-DPAT (0.1, 0.5 or 1.0 mg/kg, sc), a 5-HT1A antagonist WAY-101405 (0.1, 0.5 or 1.0 mg/kg, sc) or 0.9% saline solution on postpartum days 3, 5, and 7. Maternal behavior was tested 30 min before, 30 min, 120 min, and 240 min after the injection. Acute and repeated 8-OH-DPAT treatment significantly disrupted pup retrieval, pup licking, nursing, and nest building in a dose-dependent fashion, whereas WAY-101405 had no effect at the tested doses. The 5-HT1A receptor specificity of 8-OH-DPAT's action was confirmed as its maternal disruption effect was reversed by pretreatment of WAY-100635 (a highly selective 5-HT1A receptor antagonist). Subsequent pup preference test found that 8-OH-DPAT did not decrease the pup preference over a novel object, thus no inhibition on maternal motivation or maternal affect. The pup separation test and pup retrieval on an elevated plus maze test also failed to find any motivational and motor impairment effect with 8-OH-DPAT. However, 8-OH-DPAT at the maternal disruptive dose did disrupt the prepulse inhibition (a measure of attentional function) of acoustic startle response and enhanced the basal startle response. These findings suggest that stimulation of 5-HT1A receptors by 8-OH-DPAT impairs maternal care by partially interfering with the attentional processing or basal anxiety. More work is needed to further delineate the psychological and neuronal mechanisms underlying the maternal disruptive effect of 5-HT1A receptor activation.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, The First Peoples's Hospital of Changzhou, 185 Juqian Street, Changzhou, Jiangsu 213003, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Xiaojing Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Leilei Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
22
|
Kelly AM, Hiura LC, Saunders AG, Ophir AG. Oxytocin Neurons Exhibit Extensive Functional Plasticity Due To Offspring Age in Mothers and Fathers. Integr Comp Biol 2018; 57:603-618. [PMID: 28957529 DOI: 10.1093/icb/icx036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The needs of offspring change as they develop. Thus, parents should concomitantly change their investment based on the age-related needs of the offspring as they mature. Due to the high costs of parental care, it is optimal for parents to exhibit a shift from intense caregiving of young offspring to promoting independence in older offspring. Yet, the neural mechanisms that underlie shifts in parental behavior are poorly understood, and little is known about how the parental brain responds to offspring of different ages. To elucidate mechanisms that relate to shifts in parental behavior as offspring develop, we examined behavioral and neural responses of male and female prairie voles (Microtus ochrogaster), a biparental rodent, to interactions with offspring at different stages of development (ranging from neonatal to weaning age). Importantly, in biparental species, males and females may adjust their behavior differentially as offspring develop. Because the nonapeptides, vasopressin (VP) and oxytocin (OT), are well known for modulating aspects of parental care, we focused on functional activity of distinct VP and OT cell groups within the maternal and paternal brain in response to separation from, reunion (after a brief period of separation) with, or no separation from offspring of different ages. We found several differences in the neural responses of individual VP and OT cell groups that varied based on the age of pups and sex of the parent. Hypothalamic VP neurons exhibit similar functional responses in both mothers and fathers. However, hypothalamic and amygdalar OT neurons exhibit differential functional responses to being separated from pups based on the sex of the parent. Our results also reveal that the developmental stage of offspring significantly impacts neural function within OT, but not VP, cell groups of both mothers and fathers. These findings provide insight into the functional plastic capabilities of the nonapeptide system, specifically in relation to parental behavior. Identifying neural mechanisms that exhibit functional plasticity can elucidate one way in which animals are able to shift behavior on relatively short timescales in order to exhibit the most context-appropriate and adaptive behaviors.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
23
|
Gemmel M, Bögi E, Ragan C, Hazlett M, Dubovicky M, van den Hove DL, Oberlander TF, Charlier TD, Pawluski JL. Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome. Neurosci Biobehav Rev 2018; 85:102-116. [DOI: 10.1016/j.neubiorev.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
|
24
|
Rojas P, Aguayo F, Neira D, Tejos M, Aliaga E, Muñoz J, Parra C, Fiedler J. Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors. Mol Cell Neurosci 2017; 85:148-161. [DOI: 10.1016/j.mcn.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/04/2017] [Accepted: 09/29/2017] [Indexed: 01/11/2023] Open
|
25
|
Bandinelli LP, Levandowski ML, Grassi-Oliveira R. The childhood maltreatment influences on breast cancer patients: A second wave hit model hypothesis for distinct biological and behavioral response. Med Hypotheses 2017; 108:86-93. [PMID: 29055407 DOI: 10.1016/j.mehy.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/20/2022]
Abstract
Stress and cancer are two complex situations involving different biological and psychological mechanisms. Their relationship have long been studied, and there is evidence of the impact stress has on both, development and disease progression. Furthermore, early stress has been studied as an important factor associated to this relationship, since its impacts on the immune, endocrine and cognitive development throughout life is already known. Therefore, understanding early stress as a first wave of stress in life is necessary in order to explore a possible second wave hit model. From this perspective, we believe that breast cancer can be understood as a second wave of stress during development and that, in addition to the first wave, can cause important impacts on the response to cancer treatment, such as increased chances of disease progression and distinct behavioral responses. In this article we propose a second wave hit hypothesis applied to breast cancer and its implications on the immune, endocrine and cognitive systems, through mechanisms that involve the HPA axis and subsequent activations of stress responses.
Collapse
Affiliation(s)
- Lucas Poitevin Bandinelli
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), RS, Brazil; Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (PUCRS), RS, Brazil
| | - Mateus Luz Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), RS, Brazil; Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (PUCRS), RS, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), RS, Brazil; Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (PUCRS), RS, Brazil.
| |
Collapse
|
26
|
Champagne FA, Curley JP. Plasticity of the Maternal Brain Across the Lifespan. New Dir Child Adolesc Dev 2017; 2016:9-21. [PMID: 27589495 DOI: 10.1002/cad.20164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Maternal behavior is dynamic and highly sensitive to experiential and contextual factors. In this review, this plasticity will be explored, with a focus on how experiences of females occurring from the time of fetal development through to adulthood impact maternal behavior and the maternal brain. Variation in postpartum maternal behavior is dependent on estrogen sensitivity within the medial preoptic area of the hypothalamus and activation within mesolimbic dopamine neurons. This review will discuss how experiences across the lifespan alter the function of these systems and the multigenerational consequences of these neuroendocrine and behavioral changes. These studies, based primarily on the examination of maternal behavior in laboratory rodents and nonhuman primates, provide mechanistic insights relevant to our understanding of human maternal behavior and to the mechanisms of lifelong plasticity.
Collapse
|
27
|
Avraham Y, Hants Y, Vorobeiv L, Staum M, Abu Ahmad W, Mankuta D, Galun E, Arbel-Alon S. Brain neurotransmitters in an animal model with postpartum depressive-like behavior. Behav Brain Res 2017; 326:307-321. [PMID: 28300619 DOI: 10.1016/j.bbr.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 02/01/2023]
Abstract
Post-Partum Depression (PPD) occurs in 15% of pregnancies and its patho-physiology is not known. We studied female BALB/c ("depressive") and C57BL/6 (control) mice as a model for PPD and assessed their behavior and correlates with brain neurotransmitters (NTs) - norepinephrine, dopamine, serotonin and intermediates, during the pre-pregnancy (PREP), pregnancy (PREG) and post-partum (PP) periods. Depressive-like behavior was evaluated by the Open Field (OFT), Tail Suspension (TST) and Forced Swim (FST) tests. Neurotransmitters (NTs) were determined in the striatum (care-giving), hippocampus (cognitive function) and hypothalamus (maternal care & eating behavior). In the BALB/c mice, while their performance in all behavioral tests was significantly reduced during pregnancy and P-P indicative of the development of depressive-like responses, no changes were observed in the C57BL/6 mice. Changes in NTs in BALB/C were as follows: PREP, all NTs in the three brain areas were decreased, although an increase in dopamine release was observed in the hippocampus. PREG: No changes were observed in the NTs except for a decrease in 5-HT in the striatum. P-P: striatum, low 5-HT, NE and dopamine; Hippocampus: low 5-HT, NE and high Dopamine; hypothalamus: all NTs increased, especially NE. Following pregnancy and delivery, the BALB/c mice developed depressive-like behavior associated with a significant decrease in 5-HT, dopamine and NE in the striatum and 5-HT and NE in the hippocampus. Dopamine increased in the latter together with a significant increase in all NTs in the hypothalamus. These findings suggest that the development of PPD may be associated with NT changes. Normalization of these alterations may have a role in the treatment of PPD.
Collapse
Affiliation(s)
- Y Avraham
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel.
| | - Y Hants
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - L Vorobeiv
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - M Staum
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - Wiessam Abu Ahmad
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - D Mankuta
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - E Galun
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - S Arbel-Alon
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
28
|
Cocaína durante la gestación y conducta materna postparto en ratones. ACTA COLOMBIANA DE PSICOLOGIA 2017. [DOI: 10.14718/acp.2017.20.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
El abuso materno de cocaína durante la gestación se relaciona con negligencia, maltrato y perturbación del vínculo madre- hijo, lo que incide directamente en el desarrollo de los infantes; por esto, las diversas problemáticas neuroconductuales de los hijos de padres drogodependientes podrían atribuirse a la inadecuada conducta materna o a la exposición prenatal a la droga. El objetivo de esta investigación fue analizar los efectos de la administración crónica de cocaína durante la gestación en la conducta materna postparto de ratones. Para esto se asignaron aleatoriamente 21 ratones CD1 hembras gestantes para la administración de solución salina y cocaína (25 mg/kg/día y 50 mg/kg/día), desde el octavo hasta el día veintiuno de gestación. Después del parto, durante 20 días (15 minutos diarios), se registró individualmente la frecuencia de presentación de 16 índices de conducta materna mediante un etograma. Se encontró que la cocaína afectó levemente la frecuencia de la conducta materna, aunque posiblemente afecte otros parámetros como la latencia, duración y secuencia de esta conducta.
Collapse
|
29
|
Sá Couto‐Pereira N, Ferreira CF, Lampert C, Arcego DM, Toniazzo AP, Bernardi JR, Silva DC, Von Poser Toigo E, Diehl LA, Krolow R, Silveira PP, Dalmaz C. Neonatal interventions differently affect maternal care quality and have sexually dimorphic developmental effects on corticosterone secretion. Int J Dev Neurosci 2016; 55:72-81. [DOI: 10.1016/j.ijdevneu.2016.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Natividade Sá Couto‐Pereira
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Charles Francisco Ferreira
- Programa de Pós‐Graduação em Ciências Biológicas: NeurociênciasUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
- Núcleo de Estudos da Saúde da Criança e do Adolescente, Hospital de Clínicas de Porto Alegre (HCPA)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Carine Lampert
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Danusa Mar Arcego
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Ana Paula Toniazzo
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Juliana Rombaldi Bernardi
- Núcleo de Estudos da Saúde da Criança e do Adolescente, Hospital de Clínicas de Porto Alegre (HCPA)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Diego Carrilho Silva
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Eduardo Von Poser Toigo
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Luisa Amalia Diehl
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Rachel Krolow
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Patrícia Pelufo Silveira
- Programa de Pós‐Graduação em Ciências Biológicas: NeurociênciasUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
- Núcleo de Estudos da Saúde da Criança e do Adolescente, Hospital de Clínicas de Porto Alegre (HCPA)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Carla Dalmaz
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
- Programa de Pós‐Graduação em Ciências Biológicas: NeurociênciasUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| |
Collapse
|
30
|
Chevaleyre V, Piskorowski RA. Hippocampal Area CA2: An Overlooked but Promising Therapeutic Target. Trends Mol Med 2016; 22:645-655. [DOI: 10.1016/j.molmed.2016.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
31
|
Solanki RR, Scholl JL, Watt MJ, Renner KJ, Forster GL. Amphetamine Withdrawal Differentially Increases the Expression of Organic Cation Transporter 3 and Serotonin Transporter in Limbic Brain Regions. J Exp Neurosci 2016; 10:93-100. [PMID: 27478387 PMCID: PMC4957605 DOI: 10.4137/jen.s40231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022] Open
Abstract
Amphetamine withdrawal increases anxiety and stress sensitivity related to blunted ventral hippocampus (vHipp) and enhances the central nucleus of the amygdala (CeA) serotonin responses. Extracellular serotonin levels are regulated by the serotonin transporter (SERT) and organic cation transporter 3 (OCT3), and vHipp OCT3 expression is enhanced during 24 hours of amphetamine withdrawal, while SERT expression is unaltered. Here, we tested whether OCT3 and SERT expression in the CeA is also affected during acute withdrawal to explain opposing regional alterations in limbic serotonergic neurotransmission and if respective changes continued with two weeks of withdrawal. We also determined whether changes in transporter expression were confined to these regions. Male rats received amphetamine or saline for two weeks followed by 24 hours or two weeks of withdrawal, with transporter expression measured using Western immunoblot. OCT3 and SERT expression increased in the CeA at both withdrawal timepoints. In the vHipp, OCT3 expression increased only at 24 hours of withdrawal, with an equivalent pattern seen in the dorsomedial hypothalamus. No changes were evident in any other regions sampled. These regionally specific changes in limbic OCT3 and SERT expression may partially contribute to the serotonergic imbalance and negative affect during amphetamine withdrawal.
Collapse
Affiliation(s)
- Rajeshwari R. Solanki
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Michael J. Watt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Kenneth J. Renner
- Biology Department, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Gina L. Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
32
|
Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams. Neuroscience 2016; 327:32-43. [DOI: 10.1016/j.neuroscience.2016.03.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022]
|
33
|
Chen S, Sato S. Role of oxytocin in improving the welfare of farm animals - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:449-454. [PMID: 26954194 PMCID: PMC5394829 DOI: 10.5713/ajas.15.1058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 02/08/2023]
Abstract
Recently, increasing attention has been paid to the welfare of farm animals, which have been evaluated using behavioral and physiological measures. However, so far, the measures have almost always been used to estimate poor welfare. In this review, firstly we focus on how oxytocin (OT) relates to positive social behavior, pleasure, and stress tolerance, and second on which management factors stimulate OT release. OT induces maternal and affiliative behaviors and has an anti-stress effect. Further, OT is produced during enjoyable events, and has positive feedback on its own release as well. Therefore, to some extent, the relationship of OT to positive normal behavior was mutually beneficial—heightened OT concentration owing to comfortable rearing conditions induces positive social behavior, which in turn may increase OT concentration. Hence, studies on animal welfare should pay more attention to increasing comfort and the stress tolerance, rather than only focusing on when stress occurs in farm animals.
Collapse
Affiliation(s)
- Siyu Chen
- Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555, Japan
| | - Shusuke Sato
- Animal Science, Faculty of Life and Environmental Science, Teikyo University of Science, Tokyo 120-0045, Japan
| |
Collapse
|
34
|
Abstract
This article is part of a Special Issue "Parental Care". The postpartum period involves some truly transformational changes in females' socioemotional behaviors. For most female laboratory rodents and women, these changes include an improvement in their affective state, which has positive consequences for their ability to sensitively care for their offspring. There is heterogeneity among females in the likelihood of this positive affective change, though, and some women experience elevated anxiety or depression (or in rodents anxiety- or depression-related behaviors) after giving birth. We aim to contribute to the understanding of this heterogeneity in maternal affectivity by reviewing selected components of the scientific literatures on laboratory rodents and humans examining how mothers' physical contact with her infants, genetics, history of anxiety and depression and early-life and recent-life experiences contribute to individual differences in postpartum affective states. These studies together indicate that multiple biological and environmental factors beyond female maternal state shape affective responses during the postpartum period, and probably do so in an interactive manner. Furthermore, the similar capacity of some of these factors to modulate anxiety and depression in human and rodent mothers suggests cross-species conservation of mechanisms regulating postpartum affectivity.
Collapse
Affiliation(s)
- Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Romano-López A, Méndez-Díaz M, García FG, Regalado-Santiago C, Ruiz-Contreras AE, Prospéro-García O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev Neurobiol 2015; 76:819-31. [PMID: 26539755 DOI: 10.1002/dneu.22361] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022]
Abstract
A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016.
Collapse
Affiliation(s)
- Antonio Romano-López
- Departamento De Fisiología, Laboratorio De Canabinoides, Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Mónica Méndez-Díaz
- Departamento De Fisiología, Laboratorio De Canabinoides, Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Fabio García García
- Laboratorio De Biología Del Sueño, Instituto De Ciencias De La Salud, Universidad Veracruzana, 91160, Ver., Mexico
| | - Citlalli Regalado-Santiago
- Laboratorio De Biología Del Sueño, Instituto De Ciencias De La Salud, Universidad Veracruzana, 91160, Ver., Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio De Neurogenómica Cognitiva, Coordinación De Psicofisiología, Facultad De Psicología, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Oscar Prospéro-García
- Departamento De Fisiología, Laboratorio De Canabinoides, Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico City, Mexico
| |
Collapse
|
36
|
Bastakis GG, Savvaki M, Stamatakis A, Vidaki M, Karagogeos D. Tag1 deficiency results in olfactory dysfunction through impaired migration of mitral cells. Development 2015; 142:4318-28. [PMID: 26525675 DOI: 10.1242/dev.123943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023]
Abstract
The olfactory system provides mammals with the abilities to investigate, communicate and interact with their environment. These functions are achieved through a finely organized circuit starting from the nasal cavity, passing through the olfactory bulb and ending in various cortical areas. We show that the absence of transient axonal glycoprotein-1 (Tag1)/contactin-2 (Cntn2) in mice results in a significant and selective defect in the number of the main projection neurons in the olfactory bulb, namely the mitral cells. A subpopulation of these projection neurons is reduced in Tag1-deficient mice as a result of impaired migration. We demonstrate that the detected alterations in the number of mitral cells are well correlated with diminished odor discrimination ability and social long-term memory formation. Reduced neuronal activation in the olfactory bulb and the corresponding olfactory cortex suggest that Tag1 is crucial for the olfactory circuit formation in mice. Our results underpin the significance of a numerical defect in the mitral cell layer in the processing and integration of odorant information and subsequently in animal behavior.
Collapse
Affiliation(s)
- George G Bastakis
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Antonis Stamatakis
- Laboratory of Biology, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, Athens GR11527, Greece
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| |
Collapse
|
37
|
Kalpachidou T, Raftogianni A, Melissa P, Kollia AM, Stylianopoulou F, Stamatakis A. Effects of a Neonatal Experience Involving Reward Through Maternal Contact on the Noradrenergic System of the Rat Prefrontal Cortex. Cereb Cortex 2015; 26:3866-3877. [PMID: 26315690 DOI: 10.1093/cercor/bhv192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The noradrenergic system plays an important role in prefrontal cortex (PFC) function. Since early life experiences play a crucial role in programming brain function, we investigated the effects of a neonatal experience involving reward through maternal contact on the noradrenergic system of the rat PFC. Rat pups were exposed during Postnatal days (PNDs) 10-13, to a T-maze in which contact with the mother was used as a reward (RER). RER males had higher norepinephrine levels in the PFC both on PND 13 and in adulthood. The RER experience resulted in adulthood in increased levels of the active demethylase GADD45b, hypomethylation of the β1 adrenergic receptor (ADRB1) gene promoter, and consequent enhanced expression of its mRNA in the PFC. In addition, protein and binding levels of the ADRB1, as well as those of its downstream effector phosphorylated cAMP response element-binding protein were elevated in RER males. The higher activity of the PFC noradrenergic system of the RER males was reflected in their superior performance in the olfactory discrimination and the contextual fear extinction, 2 PFC noradrenergic system-dependent behavioral tasks.
Collapse
Affiliation(s)
- Theodora Kalpachidou
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Androniki Raftogianni
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Pelagia Melissa
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Anna-Maria Kollia
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| |
Collapse
|
38
|
Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders. Brain Sci 2015; 5:258-74. [PMID: 26136145 PMCID: PMC4588139 DOI: 10.3390/brainsci5030258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Collapse
|