1
|
Fokou PVT, Tali MBT, Mbouna CDJ, Yamthe LRT, Sharifi-Rad J, Calina D, Radha, Kumar M, Tchouankeu JC, Boyom FF. Natural products as transmission-blocking agents against malaria: a comprehensive review of bioactive compounds and their therapeutic potential. Malar J 2025; 24:164. [PMID: 40420292 PMCID: PMC12105229 DOI: 10.1186/s12936-025-05395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/03/2025] [Indexed: 05/28/2025] Open
Abstract
Malaria eradication is hindered by the persistence of transmission stages of Plasmodium falciparum that enable parasite transfer from humans to mosquitoes. Current therapeutic strategies, such as artemisinin-based combination therapy (ACT) combined with primaquine, are insufficient due to limited efficacy on mature gametocytes and safety concerns in populations with glucose-6-phosphate dehydrogenase deficiency. This highlights the critical need for innovative, safe, and effective transmission-blocking interventions. This review explores the potential of natural sources, including medicinal plants, marine organisms, and microorganisms-as reservoirs of novel bioactive compounds with anti-malarial properties. A comprehensive literature search identified promising natural products with gametocytocidal and sporontocidal activity, validated through advanced bioassays. The review also evaluates various methodologies, such as colorimetric, microscopy, and flow cytometry assays, for assessing transmission-blocking efficacy. The findings emphasize the potent gametocytocidal effects of certain plant extracts, such as Azadirachta indica and Vernonia amygdalina, and microbial products, including ionophores and proteasome inhibitors. Despite promising in vitro and in vivo data, the transition of these compounds to clinical applications remains limited. Challenges include standardizing assays, addressing resistance to current therapies, and ensuring drug safety for endemic populations. The current review underscores the untapped potential of natural products as transmission-blocking agents and proposes a systematic, stage-specific screening cascade to identify and optimize these compounds. Addressing these gaps could significantly advance global malaria eradication efforts.
Collapse
Affiliation(s)
- Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Bamenda, 39, Bambili, Cameroon.
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon.
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon.
| | - Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
| | | | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y , Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jean Claude Tchouankeu
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| |
Collapse
|
2
|
Alemayehu A. Biology and epidemiology of Plasmodium falciparum and Plasmodium vivax gametocyte carriage: Implication for malaria control and elimination. Parasite Epidemiol Control 2023; 21:e00295. [PMID: 36950502 PMCID: PMC10025134 DOI: 10.1016/j.parepi.2023.e00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Malaria is among the leading public health problems worldwide. Female anopheles mosquito orchestrates the transmission of malaria by taking gametocytes and introducing sporozoite while taking blood meals. Interrupting transmission is the major strategy for malaria elimination. The gametocyte stage is essential for the onward transmission of malaria. Thus, understanding its basic biology and epidemiology is key to malaria control and elimination. Therefore, the current review focuses on revealing the biology, prevalence, and determinants of gametocyte carriage as well as its implication on mitigation of malaria. It also illustrates the role of asymptomatic and sub-microscopic Plasmodium infections and G-6-PD deficiency in gametocyte carriage and hence malaria transmission. Gametocytogenesis is initiated at committed merozoites and gives rise to the development of gametocytes. The trigger for gametocytogenesis depends on the host, parasite, and intervention factors. Gametocytes pass through five developmental stages identifiable by molecular markers. A considerable number of malaria patients carry gametocytes at a sub-microscopic level, thereby serving as a potential infectious reservoir of transmission. Factors involving the human host, Plasmodium parasite, and intervention parameters play a critical role in gametocyte biology and prevalence. The contribution of asymptomatic and sub-microscopic infections to malaria transmission is unknown. The clear impact of G-6-PD deficiency on malaria control and elimination remains unclear. Lack of clarity on such issues might impede the success of interventions. Basic science and epidemiological studies should continue to overcome the challenges and cope with the ever-evolving parasite and guide interventions.
Collapse
Affiliation(s)
- Aklilu Alemayehu
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
3
|
Investigation of factors affecting the production of P. falciparum gametocytes in an Indian isolate. 3 Biotech 2021; 11:55. [PMID: 33489674 DOI: 10.1007/s13205-020-02586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022] Open
Abstract
The fundamental requirement of every gametocytocidal drug screening assay is the sufficient numbers of healthy and viable gametocytes. The number of in vitro gametocytes grossly depends on the genetic capacity of parasites to produce gametocytes and on various environmental factors that are not precisely elucidated. In the present study, we tested multiple environmental factors that are reported, hypothesized, or predicted to influence gametocyte numbers. We observed that hypoxanthine and the use of freshly drawn human blood significantly enhance gametocytemia (p < 0.05) in vitro. However, other tested factors did not significantly affect gametocytemia. The addition of N-acetyl glucosamine to the culture enriched the gametocytes but d-sorbitol (5% v/v) in amounts and duration of incubation tested was unable to do so without negatively affecting the maturity and health of the gametocytes. Although the in vitro gametocyte production depends on the genetic capability of the parasite strain tested, various environmental factors also control the ability of the strain to produce gametocytes up to a certain extent. This is the first study testing the role of various environmental factors that might affect the gametocyte development in a gametocyte producing strain. The results presented herein will help in the optimization of gametocyte production procedures for various gametocytocidal drug screening assays.
Collapse
|
4
|
Abstract
Malaria is the major cause of mortality and morbidity in tropical countries. The causative agent, Plasmodium sp., has a complex life cycle and is armed with various mechanisms which ensure its continuous transmission. Gametocytes represent the sexual stage of the parasite and are indispensable for the transmission of the parasite from the human host to the mosquito. Despite its vital role in the parasite's success, it is the least understood stage in the parasite's life cycle. The presence of gametocytes in asymptomatic populations and induction of gametocytogenesis by most antimalarial drugs warrants further investigation into its biology. With a renewed focus on malaria elimination and advent of modern technology available to biologists today, the field of gametocyte biology has developed swiftly, providing crucial insights into the molecular mechanisms driving sexual commitment. This review will summarise key current findings in the field of gametocyte biology and address the associated challenges faced in malaria detection, control and elimination.
Collapse
|
5
|
Birget PLG, Repton C, O'Donnell AJ, Schneider P, Reece SE. Phenotypic plasticity in reproductive effort: malaria parasites respond to resource availability. Proc Biol Sci 2017; 284:20171229. [PMID: 28768894 PMCID: PMC5563815 DOI: 10.1098/rspb.2017.1229] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections-i.e. is phenotypically plastic-in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections.
Collapse
Affiliation(s)
- Philip L G Birget
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Charlotte Repton
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Aidan J O'Donnell
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Petra Schneider
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah E Reece
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
6
|
Abstract
Understanding transmission biology at an individual level is a key component of intervention strategies that target the spread of malaria parasites from human to mosquito. Gametocytes are specialized sexual stages of the malaria parasite life cycle developed during evolution to achieve crucial steps in transmission. As sexual differentiation and transmission are tightly linked, a deeper understanding of molecular and cellular events defining this relationship is essential to combat malaria. Recent advances in the field are gradually revealing mechanisms underlying sexual commitment, gametocyte sequestration, and dynamics of transmissible stages; however, key questions on fundamental gametocyte biology still remain. Moreover, species-specific variation between Plasmodium falciparum and Plasmodium vivax transmission dynamics pose another significant challenge for worldwide malaria elimination efforts. Here, we review the biology of transmission stages, highlighting numerous factors influencing development and dynamics of gametocytes within the host and determinants of human infectiousness.
Collapse
Affiliation(s)
- Elamaran Meibalan
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | - Matthias Marti
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| |
Collapse
|
7
|
Reader J, Botha M, Theron A, Lauterbach SB, Rossouw C, Engelbrecht D, Wepener M, Smit A, Leroy D, Mancama D, Coetzer TL, Birkholtz LM. Nowhere to hide: interrogating different metabolic parameters of Plasmodium falciparum gametocytes in a transmission blocking drug discovery pipeline towards malaria elimination. Malar J 2015; 14:213. [PMID: 25994518 PMCID: PMC4449569 DOI: 10.1186/s12936-015-0718-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Background The discovery of malaria transmission-blocking compounds is seen as key to malaria elimination strategies and gametocyte-screening platforms are critical filters to identify active molecules. However, unlike asexual parasite assays measuring parasite proliferation, greater variability in end-point readout exists between different gametocytocidal assays. This is compounded by difficulties in routinely producing viable, functional and stage-specific gametocyte populations. Here, a parallel evaluation of four assay platforms on the same gametocyte populations was performed for the first time. This allowed the direct comparison of the ability of different assay platforms to detect compounds with gametocytocidal activity and revealed caveats in some assay readouts that interrogate different parasite biological functions. Methods Gametocytogenesis from Plasmodium falciparum (NF54) was optimized with a robust and standardized protocol. ATP, pLDH, luciferase reporter and PrestoBlue® assays were compared in context of a set of 10 reference compounds. The assays were performed in parallel on the same gametocyte preparation (except for luciferase reporter lines) using the same drug preparations (48 h). The remaining parameters for each assay were all comparable. Results A highly robust method for generating viable and functional gametocytes was developed and comprehensively validated resulting in an average gametocytaemia of 4 %. Subsequent parallel assays for gametocytocidal activity indicated that different assay platforms were not able to screen compounds with variant chemical scaffolds similarly. Luciferase reporter assays revealed that synchronized stage-specific gametocyte production is essential for drug discovery, as differential susceptibility in various gametocyte developmental populations is evident. Conclusions With this study, the key parameters for assays aiming at testing the gametocytocidal activity of potential transmission blocking molecules against Plasmodium gametocytes were accurately dissected. This first and uniquely comparative study emphasizes differential effects seen with the use of different assay platforms interrogating variant biological systems. Whilst this data is informative from a biological perspective and may provide indications of the drug mode of action, it does highlight the care that must be taken when screening broad-diversity chemotypes with a single assay platform against gametocytes for which the biology is not clearly understood. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0718-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janette Reader
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| | - Mariëtte Botha
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| | - Anjo Theron
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa.
| | - Sonja B Lauterbach
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Claire Rossouw
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa.
| | - Dewaldt Engelbrecht
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Melanie Wepener
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Annél Smit
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| | - Dalu Mancama
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa.
| | - Theresa L Coetzer
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
8
|
Gardiner DL, Trenholme KR. Plasmodium falciparum gametocytes: playing hide and seek. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:45. [PMID: 25861600 DOI: 10.3978/j.issn.2305-5839.2015.01.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Donald L Gardiner
- 1 School of Medicine, University of Queensland, Herston, Brisbane 4006, Australia ; 2 Australian Institute of Tropical Health & Medicine, James Cook University, Smithfield, QLD 4878, Australia ; 3 Department of Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Katharine R Trenholme
- 1 School of Medicine, University of Queensland, Herston, Brisbane 4006, Australia ; 2 Australian Institute of Tropical Health & Medicine, James Cook University, Smithfield, QLD 4878, Australia ; 3 Department of Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
9
|
Liu Z, Miao J, Cui L. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol 2012; 6:1351-69. [PMID: 22082293 DOI: 10.2217/fmb.11.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malaria parasites have evolved a complicated life cycle alternating between two hosts. Gametocytes are produced in the vertebrate hosts and are obligatory for natural transmission of the parasites through mosquito vectors. The mechanism of sexual development in Plasmodium has been the focus of extensive studies. In the postgenomic era, the advent of genome-wide analytical tools and genetic manipulation technology has enabled rapid advancement of our knowledge in this area. Patterns of gene expression during sexual development, molecular distinction of the two sexes, and mechanisms underlying subsequent formation of gametes and their fertilization have been progressively elucidated. However, the triggers and mechanism of sexual development remain largely unknown. This article provides an update of our understanding of the molecular and cellular events associated with the decision for commitment to sexual development and regulation of gene expression during gametocytogenesis. Insights into the molecular mechanisms of gametocyte development are essential for designing proper control strategies for interruption of malaria transmission and ultimate elimination.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Entomology, The Pennsylvania State University, 537 ASI Building University Park, PA 16802, USA
| | | | | |
Collapse
|
10
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 530] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|
11
|
Malaria gametocytogenesis. Mol Biochem Parasitol 2010; 172:57-65. [PMID: 20381542 PMCID: PMC2880792 DOI: 10.1016/j.molbiopara.2010.03.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023]
Abstract
Male and female gametocytes are the components of the malaria parasite life cycle which are taken up from an infected host bloodstream by mosquitoes and thus mediate disease transmission. These gamete precursors are morphologically and functionally quite distinct from their asexual blood stage counterparts and this is reflected in their distinct patterns of gene expression, cellular development and metabolism. Recent transcriptome, proteome and reverse genetic studies have added valuable information to that obtained from traditional studies. However, we still have no answer to the fundamental question regarding sexual development: 'what triggers gametocytogenesis'? In the current climate of eradication/elimination, tackling transmission by killing gametocytes has an important place on the agenda because most antimalarial drugs, whilst killing asexual blood stage parasites, have no effect on the transmissible stages.
Collapse
|
12
|
Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GAT. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol 2006; 22:424-30. [PMID: 16846756 DOI: 10.1016/j.pt.2006.07.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/05/2006] [Accepted: 07/03/2006] [Indexed: 11/20/2022]
Abstract
Much of the epidemiology of Plasmodium falciparum in Sub-Saharan Africa focuses on the prevalence patterns of asexual parasites in people of different ages, whereas the gametocytes that propagate the disease are often neglected. One expected benefit of the widespread introduction of artemisinin-based combination therapy for malaria is a reduction in gametocyte carriage. However, the factors that affect the transmission of parasites from humans to mosquitoes show complex dynamics in relation to the intensity and seasonality of malaria transmission, and thus such benefits might not be automatic. Here, we review data on gametocyte carriage in the context of the development of naturally acquired immunity and population infectivity.
Collapse
Affiliation(s)
- Chris Drakeley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|