1
|
Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leishmania (Leishmania) mexicana. Parasitol Res 2017; 117:45-58. [PMID: 29159705 DOI: 10.1007/s00436-017-5635-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 02/03/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by the parasite of the genus Leishmania. About 13 million people are infected worldwide, and it is estimated that 350 million are at risk of infection. Clinical manifestations depend on the parasite species and factors related to the host such as the immune system, nutrition, housing, and financial resources. Available treatments have severe side effects; therefore, research currently focuses on finding more active and less toxic compounds. Quinoxalines have been described as promising alternatives. In this context, 17 isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives were evaluated as potential leishmanicidal agents. Their effect on the cell metabolism of Leishmania mexicana promastigotes and their cytotoxic effects on the J774.A1 cell line and on erythrocytes were evaluated, and their selectivity index was calculated. Compounds T-069 (IC50 = 1.49 μg/mL), T-070 (IC50 = 1.71 μg/mL), T-072 (IC50 = 6.62 μg/mL), T-073 (IC50 = 1.25 μg/mL), T-085 (IC50 = 0.74 μg/mL), and T-116 (IC50 = 0.88 μg/mL) were the most active against L. mexicana promastigotes and their mechanism of action was characterized by flow cytometry and microscopy. Compound T-073, the most selective quinoxaline derivative, induced cell membrane damage, phosphatidylserine exposition, reactive oxygen species production, disruption of the mitochondrion membrane potential, and DNA fragmentation, all in a dose-dependent manner, indicating the induction of regulated necrosis. Light and transmission electron microscopy showed the drastic morphological changes induced and the mitochondrion as the most sensitive organelle in response to T-073. This study describes the mechanism by which active isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide quinoxalines affect the parasite.
Collapse
|
2
|
Parija SC, Jeremiah S. Blastocystis: Taxonomy, biology and virulence. Trop Parasitol 2013; 3:17-25. [PMID: 23961437 PMCID: PMC3745665 DOI: 10.4103/2229-5070.113894] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/24/2013] [Indexed: 11/20/2022] Open
Abstract
The unicellular protist Blastocystis has long been an unsolved puzzle for taxonomists, microbiologists and clinicians. Over the years, the organism has been bounced on and off the different branches of the tree of life due the possession of unique phenotypic characters intermediary to different organisms. The organism is polymorphic with only few of forms such as vacuolar, granular, amoeboid, and the cyst form being commonly known. However it could exist in other forms much more frequently than the widely known forms which could be missed by the unaware observer. Certain older concepts in the life cycle of Blastocystis although has been proven wrong are still being followed in various textbooks and other trustworthy internet sources. The causal role of Blastocystis in human disease has long been a subject of controversy. It is widely believed that certain subtypes of the organism are virulent. But this is not so as other factors are also involved in the clinical outcome of the infection. In these contexts, this review intends to shed light on the past misconceptions and the recent findings on the taxonomy, biology and the virulence of this organism.
Collapse
|
3
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
4
|
Dhurga DB, Suresh KG, Tan TC, Chandramathi S. Apoptosis in Blastocystis spp. is related to subtype. Trans R Soc Trop Med Hyg 2012; 106:725-30. [PMID: 23141370 DOI: 10.1016/j.trstmh.2012.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022] Open
Abstract
Previous studies have shown that apoptosis-like features are observed in Blastocystis spp., an intestinal protozoan parasite, when exposed to the cytotoxic drug metronidazole (MTZ). This study reports that among the four subtypes of Blastocystis spp. investigated for rate of apoptosis when treated with MTZ, subtype 3 showed the highest significant increase after 72h of in vitro culture when treated with MTZ at 0.1mg/ml (79%; p<0.01) and 0.0001mg/ml (89%; p<0.001). The close correlation between viable cells and apoptotic cells for both dosages implies that the pathogenic potential of these isolates has been enhanced when treated with MTZ. This suggests that there is a mechanism in Blastocystis spp. that actually regulates the apoptotic process to produce higher number of viable cells when treated. Apoptosis may not just be programmed cell death but instead a mechanism to increase the number of viable cells to ensure survival during stressed conditions. The findings of the present study have an important contribution to influence chemotherapeutic approaches when developing drugs against the emerging Blastocystis spp. infections.
Collapse
Affiliation(s)
- D B Dhurga
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
5
|
Zhang N, Yang Y, Cheng L, Zhang XM, Zhang S, Wang W, Liu SY, Wang SY, Wang RB, Xu WJ, Dai L, Yan N, Fan P, Dai LX, Tian HW, Liu L, Deng HX. Combination of Caspy2 and IP-10 gene therapy significantly improves therapeutic efficacy against murine malignant neoplasm growth and metastasis. Hum Gene Ther 2012; 23:837-46. [PMID: 22548488 DOI: 10.1089/hum.2011.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown that Caspy2, a zebrafish active caspase, can efficiently suppress the growth of malignant tumor. The present study was designed to test whether combined gene therapy with IP-10, a potent antitumor chemokine, and Caspy2 would improve therapy efficacy. Recombinant plasmid expressing both Caspy2 and IP-10 genes was mixed with DOTAP-cholesterol nanoparticles. Immunocompetent mice bearing CT26 colon carcinoma, B16-F10 melanoma, and 4T1 breast carcinoma were treated with the complex. We found that the combined gene therapy more efficiently inhibited tumor growth, while efficiently prolonging the survival of tumor-bearing animals, compared with monotherapy. Moreover, a significant reduction in spontaneous lung metastasis could be observed in the 4T1 breast carcinoma model. Infiltration of CD8(+) T lymphocytes was also observed. In addition, apoptotic cells were widely detected by TUNEL assay and caspase-3 immunostaining in coadministered tumor tissues. The combination treatment also successfully inhibited angiogenesis and tumor cell proliferation as assessed by CD31 and Ki-67 immunostaining, respectively. Furthermore, depletion of CD8(+) T lymphocytes could significantly abrogate the antitumor activity, whereas the depletion of CD4(+) cells or natural killer cells showed partial abrogation. Rechallenged CT26 tumors were rejected in all of the surviving mice treated by combination therapy. Our results suggest that combined therapy with Caspy2 and IP-10 can significantly enhance antitumor activity by acting as an immune response initiator, apoptosis inducer, and angiogenesis inhibitor, which may be important for further applications in clinical cancer therapy.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
SUMMARYProgrammed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.
Collapse
|
7
|
Staurosporine-induced programmed cell death in Blastocystis occurs independently of caspases and cathepsins and is augmented by calpain inhibition. Microbiology (Reading) 2010; 156:1284-1293. [DOI: 10.1099/mic.0.034025-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the protozoan parasite Blastocystis exhibits apoptotic features with caspase-like activity upon exposure to a cytotoxic monoclonal antibody or the anti-parasitic drug metronidazole. The present study reports that staurosporine (STS), a common apoptosis inducer in mammalian cells, also induces cytoplasmic and nuclear features of apoptosis in Blastocystis, including cell shrinkage, phosphatidylserine (PS) externalization, maintenance of plasma membrane integrity, extensive cytoplasmic vacuolation, nuclear condensation and DNA fragmentation. STS-induced PS exposure and DNA fragmentation were abolished by the mitochondrial transition pore blocker cyclosporine A and significantly inhibited by the broad-range cysteine protease inhibitor iodoacetamide. Interestingly, the apoptosis phenotype was insensitive to inhibitors of caspases and cathepsins B and L, while calpain-specific inhibitors augmented the STS-induced apoptosis response. While the identities of the proteases responsible for STS-induced apoptosis warrant further investigation, these findings demonstrate that programmed cell death in Blastocystis is complex and regulated by multiple mediators.
Collapse
|
8
|
Yin J, Ye AJJ, Tan KSW. Autophagy is involved in starvation response and cell death in Blastocystis. Microbiology (Reading) 2010; 156:665-677. [DOI: 10.1099/mic.0.033944-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have demonstrated that colony forms of Blastocystis undergo cell death with numerous membrane-bound vesicles containing organelles located within the central vacuole, resembling morphological features of autophagy. In this study, we investigated whether Blastocystis underwent autophagy upon amino acid starvation and rapamycin treatment. Concurrently, we provide new insight into a possible function of the central vacuole. The use of the autophagy marker monodansylcadaverine, and the autophagy inhibitors3-methyladenine and wortmannin, showed the existence of autophagy in amino-acid-starved and rapamycin-treated Blastocystis. Confocal microscopy and transmission electron microscopy studies also showed morphological changes that were suggestive of autophagy. The unusually large size of the autophagic compartments within the parasite central vacuole was found to be unique in Blastocystis. In addition, autophagy was found to be triggered when cells were exposed to the cytotoxic antibody mAb 1D5, and autophagy was intensified in the presence of the caspase inhibitor zVAD.fmk. Taken together, our results suggest that the core machinery for autophagy is conserved in Blastocystis, and that it plays an important role in the starvation response and cell death of the parasite.
Collapse
Affiliation(s)
- Jing Yin
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - Angeline J. J. Ye
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - Kevin S. W. Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| |
Collapse
|
9
|
Abstract
Metronidazole constitutes a mainstay in the antimicrobial therapy of intestinal protozoa, and is also traditionally considered first-line therapy in cases where there is a requirement to treat Blastocystis, a common protist of disputable clinical significance. Many compounds have been used in attempts to eradicate the parasite, and an accumulating body of data indicates that successful antimicrobial eradication of Blastocystis is far from straightforward. This review focuses on some issues that prevent us from reaching a clear understanding of how to eradicate Blastocystis based on chemotherapeutic intervention, by focusing on conflicting reports on the efficacy of metronidazole and other compounds and study design and data limitations. The review provides a comprehensive overview of antimicrobials used to target Blastocystis, and discusses issues pertaining to drug resistance, treatment failure, and reinfection. Finally, key methodological and molecular diagnostic tools that will assist in the generation of data required to improve current knowledge are identified and discussed.
Collapse
|
10
|
Corrêa G, Vilela R, Menna-Barreto RF, Midlej V, Benchimol M. Cell death induction in Giardia lamblia: Effect of beta-lapachone and starvation. Parasitol Int 2009; 58:424-37. [DOI: 10.1016/j.parint.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/28/2009] [Accepted: 08/10/2009] [Indexed: 12/18/2022]
|
11
|
Wu B, Yin J, Texier C, Roussel M, Tan KSW. Blastocystis legumain is localized on the cell surface, and specific inhibition of its activity implicates a pro-survival role for the enzyme. J Biol Chem 2009; 285:1790-8. [PMID: 19915007 DOI: 10.1074/jbc.m109.049064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Programmed cell death (PCD) is crucial for cellular growth and development in multicellular organisms. Although distinct PCD features have been described for unicellular eukaryotes, homology searches have failed to reveal clear PCD-related orthologues among these organisms. Our previous studies revealed that a surface-reactive monoclonal antibody (mAb) 1D5 could induce multiple PCD pathways in the protozoan Blastocystis. In this study, we identified, by two-dimensional gel electrophoresis and mass spectrometry, the target of mAb 1D5 as a surface-localized legumain, an asparagine endopeptidase that is usually found in lysosomal/acidic compartments of other organisms. Recombinant Blastocystis legumain displayed biphasic pH optima in substrate assays, with peaks at pH 4 and 7.5. Activity of Blastocystis legumain was greatly inhibited by the legumain-specific inhibitor carbobenzyloxy-Ala-Ala-AAsn-epoxycarboxylate ethyl ester (APE-RR) (where AAsn is aza-asparagine) and moderately inhibited by mAb 1D5, cystatin, and caspase-1 inhibitor. Interestingly, inhibition of legumain activity induced PCD in Blastocystis, observed by increased externalization of phosphatidylserine residues and in situ DNA fragmentation. In contrast to plants, in which legumains have been shown to play a pro-death role, legumain appears to display a pro-survival role in Blastocystis.
Collapse
Affiliation(s)
- Binhui Wu
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore 117597
| | | | | | | | | |
Collapse
|
12
|
Arambage SC, Grant KM, Pardo I, Ranford-Cartwright L, Hurd H. Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro. Parasit Vectors 2009; 2:32. [PMID: 19604379 PMCID: PMC2720949 DOI: 10.1186/1756-3305-2-32] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A wide range of unicellular eukaryotes have now been shown to undergo a form of programmed cell death (PCD) that resembles apoptosis; exhibiting morphological and, in some cases, biochemical markers typical of metazoans. However, reports that sexual and asexual stages of malaria parasites exhibit these markers have been challenged. Here we use a rodent malaria model, Plasmodium berghei, to determine whether, and what proportion of cultured ookinetes show signs of apoptosis-like death and extend the study to examine ookinetes of Plasmodium falciparum in vivo. RESULTS Ookinetes displayed the following markers of PCD: loss of mitochondrial membrane potential, nuclear chromatin condensation, DNA fragmentation, translocation of phosphatidylserine to the outer surface of the cell membrane and caspase-like activity. The proportion of parasites expressing apoptosis markers rose with time, particularly when cultured in phosphate buffered saline. Some ookinetes positive for apoptosis markers also had compromised membranes, which could represent a late stage in the process. When these are included a similar proportion of ookinetes display each marker. Over 50% of P. falciparum ookinetes, removed from the mosquito midgut lumen 24 h post-infection, had nuclei containing fragmented DNA. CONCLUSION We have confirmed previous reports that Plasmodium ookinetes display multiple signs that suggest they die by a mechanism resembling apoptosis. This occurs in vivo and in vitro without experimental application of triggers. Our findings support the hypothesis that non-necrotic mechanisms of cell death evolved before the advent of multicellular organisms.
Collapse
Affiliation(s)
- Shashini C Arambage
- Institute of Science and Technology in Medicine, Centre for Applied Entomology and Parasitology, School of Life Sciences, Huxley Building, Keele University, Staffordshire, ST5 5BG, UK.
| | | | | | | | | |
Collapse
|
13
|
Stensvold CR, Nielsen HV, Mølbak K, Smith HV. Pursuing the clinical significance of Blastocystis--diagnostic limitations. Trends Parasitol 2008; 25:23-9. [PMID: 19013108 DOI: 10.1016/j.pt.2008.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/11/2008] [Accepted: 09/23/2008] [Indexed: 11/17/2022]
Abstract
The clinical significance of one of the most prevalent single-celled intestinal parasites worldwide, Blastocystis, remains unsettled. A plethora of clinical and epidemiological studies have been undertaken to generate data on its prevalence in different populations and investigate the role of the parasite as a cause of gastro- and extra-intestinal disease. In this article, we pinpoint limitations of studies that seek to determine the clinical significance of Blastocystis, based on shortcomings in our understanding of Blastocystis diagnosis and biology, and identify methodologies for further studies aimed at determining the molecular epidemiology and clinical impact of this parasite.
Collapse
Affiliation(s)
- C Rune Stensvold
- Department of Bacteriology, Mycology and Parasitology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
| | | | | | | |
Collapse
|
14
|
Tan KSW. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev 2008; 21:639-65. [PMID: 18854485 PMCID: PMC2570156 DOI: 10.1128/cmr.00022-08] [Citation(s) in RCA: 459] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SUMMARY Blastocystis is an unusual enteric protozoan parasite of humans and many animals. It has a worldwide distribution and is often the most commonly isolated organism in parasitological surveys. The parasite has been described since the early 1900s, but only in the last decade or so have there been significant advances in our understanding of Blastocystis biology. However, the pleomorphic nature of the parasite and the lack of standardization in techniques have led to confusion and, in some cases, misinterpretation of data. This has hindered laboratory diagnosis and efforts to understand its mode of reproduction, life cycle, prevalence, and pathogenesis. Accumulating epidemiological, in vivo, and in vitro data strongly suggest that Blastocystis is a pathogen. Many genotypes exist in nature, and recent observations indicate that humans are, in reality, hosts to numerous zoonotic genotypes. Such genetic diversity has led to a suggestion that previously conflicting observations on the pathogenesis of Blastocystis are due to pathogenic and nonpathogenic genotypes. Recent epidemiological, animal infection, and in vitro host-Blastocystis interaction studies suggest that this may indeed be the case. This review focuses on such recent advances and also provides updates on laboratory and clinical aspects of Blastocystis spp.
Collapse
Affiliation(s)
- Kevin S W Tan
- Department of Microbiology, Laboratory of Molecular and Cellular Parasitology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
15
|
Deponte M. Programmed cell death in protists. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1396-405. [PMID: 18291111 DOI: 10.1016/j.bbamcr.2008.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/19/2008] [Indexed: 12/01/2022]
Abstract
Programmed cell death in protists does not seem to make sense at first sight. However, apoptotic markers in unicellular organisms have been observed in all but one of the six/eight major groups of eukaryotes suggesting an ancient evolutionary origin of this regulated process. This review summarizes the available data on apoptotic markers in non-opisthokonts and elucidates potential functions and evolution of programmed cell death. A newly discovered family of caspase-like proteases, the metacaspases, is considered to exert the function of caspases in unicellular organisms. Important results on metacaspases, however, showed that they cannot be always correlated to the measured proteolytic activity during protist cell death. Thus, a major challenge for apoptosis research in a variety of protists remains the identification of the molecular cell death machinery.
Collapse
Affiliation(s)
- Marcel Deponte
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
16
|
Totino PRR, Daniel-Ribeiro CT, Corte-Real S, de Fátima Ferreira-da-Cruz M. Plasmodium falciparum: erythrocytic stages die by autophagic-like cell death under drug pressure. Exp Parasitol 2007; 118:478-86. [PMID: 18226811 DOI: 10.1016/j.exppara.2007.10.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/16/2007] [Accepted: 10/30/2007] [Indexed: 01/20/2023]
Abstract
It has been reported that an apoptotic cell death process can occur with protozoans, but no consensus on Plasmodium susceptibility to apoptosis was reached till now. Thus, we evaluated if Plasmodium falciparum blood forms undergo apoptosis after in vitro pressure with chloroquine, S-nitroso-N-acetyl-penicillamine (SNAP) or staurosporine. Inhibition of parasite growth and loss of viability were observed in treated cultures by both light microscopy and flow cytometry. When DNA fragmentation was verified, only a small number of TUNEL-positive parasites was detected in treated cultures and pretreatment of parasite with a general caspase inhibitor was not able to prevent parasite death. Considering the lack of apoptotic characteristics and the observation of parasites with cytoplasmatic vacuolization by electron microscopy, we conclude that P. falciparum parasites under chloroquine, SNAP or staurosporine pressures do not die by apoptosis but by a process similar to autophagy. The autophagic pathway could be explored as an alternative target for the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Paulo Renato Rivas Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Leônidas Deane, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
17
|
Bruchhaus I, Roeder T, Rennenberg A, Heussler VT. Protozoan parasites: programmed cell death as a mechanism of parasitism. Trends Parasitol 2007; 23:376-83. [PMID: 17588817 DOI: 10.1016/j.pt.2007.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/27/2007] [Accepted: 06/06/2007] [Indexed: 12/25/2022]
Abstract
Programmed cell death (PCD) is a potent mechanism to remove parasitized cells, but it has also been shown that protozoan parasites can induce or inhibit apoptosis in host cells. In recent years, it has become clear that unicellular parasites can also undergo PCD, meaning that they commit suicide in response to various stimuli. This review focuses on the role of protozoan PCD and on the interaction between protozoan parasites and the host cell death machinery from the perspective of parasite survival strategies.
Collapse
Affiliation(s)
- Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
18
|
Paramá A, Castro R, Lamas J, Sanmartín ML, Santamarina MT, Leiro J. Scuticociliate proteinases may modulate turbot immune response by inducing apoptosis in pronephric leucocytes. Int J Parasitol 2007; 37:87-95. [PMID: 17049529 DOI: 10.1016/j.ijpara.2006.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/26/2022]
Abstract
The role of proteinases of the histiophagous ciliate Philasterides dicentrarchi, purified by affinity chromatography in bacitracin-Sepharose, on apoptosis (programmed cell death) of turbot pronephric leucocytes (PL) was investigated. The results showed that more than 90% of proteinases purified by bacitracin-Sepharose were cysteine proteinases, which lacked significant caspase-3-like activity and generated three main gelatinolytic bands of molecular weights 36, 45 and 77 kDa as determined by gelatine-SDS-PAGE and immunoblot. Viability of PL cells after 24 h stimulation with P. dicentrarchi cysteine proteinases did not differ from that of non-stimulated cells. Apoptosis was confirmed by: (i) caspase activity, (ii) DNA fragmentation, and (iii) nucleus fragmentation. The caspase-3-like activity in PL incubated for 4h in the presence of 125, 250 and 500 microg/ml of proteinases increased in a dose-dependent fashion. The PL DNA was fragmented following 24-h exposure to P. dicentrarchi cysteine proteinases and characteristic DNA ladders consisting of multimers of approximately 180-200 pb were produced. Morphological changes, such as chromatin condensation and nucleus fragmentation, were observed under fluorescence microscopy after DAPI staining of the PL cells incubated with cysteine proteinase-incubated for 24 h. The results suggest that the pathogenic scuticociliate P. dicentrarchi may induce host leucocyte programmed cell death via the production of cysteine proteinases, as a mechanism of pathogenesis and evasion of the turbot innate immune response.
Collapse
Affiliation(s)
- A Paramá
- Departamento de Microbiología y Parasitología, Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, C/ Constantino Candeira, s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Duszenko M, Figarella K, Macleod ET, Welburn SC. Death of a trypanosome: a selfish altruism. Trends Parasitol 2006; 22:536-42. [PMID: 16942915 DOI: 10.1016/j.pt.2006.08.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/27/2006] [Accepted: 08/17/2006] [Indexed: 01/03/2023]
Abstract
African trypanosomes and some related parasitic protozoa are affected by a form of programmed cell death (PCD) that shows typical hallmarks of apoptosis. Although it has been speculated that PCD has a function in life-cycle progression and the struggle for survival of these parasites, no satisfactory model has yet been proposed for the molecular mechanism(s) of PCD in protozoa, raising questions about its physiological relevance in these organisms. As we discuss here, the most important point that needs to be addressed is whether a single-celled organism can undertake a process that is considered altruistic.
Collapse
Affiliation(s)
- Michael Duszenko
- Department of Biochemistry, University of Tubingen, Hoppe-Seyler-Str. 4, 72076 Tubingen, Germany.
| | | | | | | |
Collapse
|
20
|
Welburn SC, Macleod E, Figarella K, Duzensko M. Programmed cell death in African trypanosomes. Parasitology 2006; 132 Suppl:S7-S18. [PMID: 17018168 DOI: 10.1017/s0031182006000825] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Until recently it had generally been assumed that apoptosis and other forms of programmed cell death evolved during evolution of the metazoans to regulate growth and development in these multicellular organisms. However, recent research is adding strength to the original phenotypic observations described almost a decade ago which indicated that some parasitic protozoa may have evolved a cell death pathway analogous to the process described as apoptosis in metazoa. Here we explore the implications of a programmed cell death pathway in the African tsetse-transmitted trypanosomes.
Collapse
Affiliation(s)
- S C Welburn
- Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, University of Edinburgh, EH25 9RG.
| | | | | | | |
Collapse
|
21
|
Figarella K, Uzcategui NL, Beck A, Schoenfeld C, Kubata BK, Lang F, Duszenko M. Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ 2006; 13:1802-14. [PMID: 16456581 DOI: 10.1038/sj.cdd.4401862] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recently, we reported the induction of a programmed cell death (PCD) in bloodstream forms of Trypanosoma brucei by prostaglandin D(2) (PGD(2)). As this prostanoid is readily metabolized in the presence of albumin, we were prompted to investigate if PGD(2) metabolites rather than PGD(2) itself are responsible for the observed PCD. In fact, J series metabolites, especially PGJ(2) and Delta(12)PGJ(2), were able to induce PCD more efficiently than PGD(2). However, the stable PGD(2) analog 17phenyl-trinor-PGD(2) led to the same phenotype as the natural PGD(2), indicating that the latter induces PCD as well. Interestingly, the intracellular reactive oxygen species (ROS) level increased significantly under J series metabolites treatment and, incubation with N-acetyl-L-cysteine or glutathione reduced ROS production and cell death significantly. We conclude that PGJ(2) and Delta(12)PGJ(2) formation within the serum represents a mechanism to amplify PGD(2)-induced PCD in trypanosomes via ROS production.
Collapse
Affiliation(s)
- K Figarella
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|