1
|
Kaboré JW, Camara O, Ilboudo H, Capewell P, Clucas C, Cooper A, Kaboré J, Camara M, Jamonneau V, Hertz-Fowler C, Bélem AMG, Matovu E, Macleod A, Sidibé I, Noyes H, Bucheton B. Macrophage migrating inhibitory factor expression is associated with Trypanosoma brucei gambiense infection and is controlled by trans-acting expression quantitative trait loci in the Guinean population. INFECTION GENETICS AND EVOLUTION 2019; 71:108-115. [PMID: 30914286 DOI: 10.1016/j.meegid.2019.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
Infection by Trypanosoma brucei gambiense is characterized by a wide array of clinical outcomes, ranging from asymptomatic to acute disease and even spontaneous cure. In this study, we investigated the association between macrophage migrating inhibitory factor (MIF), an important pro-inflammatory cytokine that plays a central role in both innate and acquired immunity, and disease outcome during T. b. gambiense infection. A comparative expression analysis of patients, individuals with latent infection and controls found that MIF had significantly higher expression in patients (n = 141; 1.25 ± 0.07; p < .0001) and latent infections (n = 25; 1.23 ± 0.13; p = .0005) relative to controls (n = 46; 0.94 ± 0.11). Furthermore, expression decreased significantly after treatment (patients before treatment n = 33; 1.40 ± 0.18 versus patients after treatment n = 33; 0.99 ± 0.10, p = .0001). We conducted a genome wide eQTL analysis on 29 controls, 128 cases and 15 latently infected individuals for whom expression and genotype data were both available. Four loci, including one containing the chemokine CXCL13, were found to associate with MIF expression. Genes at these loci are candidate regulators of increased expression of MIF after infection. Our study is the first data demonstrating that MIF expression is elevated in T. b. gambiense-infected human hosts but does not appear to contribute to pathology.
Collapse
Affiliation(s)
- Justin Windingoudi Kaboré
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité des Maladies à Vecteurs et Biodiversités (UMaVeB), Bobo-Dioulasso, Burkina Faso
| | - Oumou Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Conakry, Guinea
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé (IRSS), Unité de Recherche Clinique de Nanoro (URCN), Nanoro, Burkina Faso
| | - Paul Capewell
- University of Glasgow, Wellcome Trust Centre for Molecular Parasitology, Glasgow, United Kingdom
| | - Caroline Clucas
- University of Glasgow, Wellcome Trust Centre for Molecular Parasitology, Glasgow, United Kingdom
| | - Anneli Cooper
- University of Glasgow, Wellcome Trust Centre for Molecular Parasitology, Glasgow, United Kingdom
| | - Jacques Kaboré
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité des Maladies à Vecteurs et Biodiversités (UMaVeB), Bobo-Dioulasso, Burkina Faso; Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso
| | - Mamadou Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Conakry, Guinea
| | - Vincent Jamonneau
- Institut de Recherche pour le Développement (IRD), UMR IRD-CIRAD 177 INTERTRYP, Montpellier, France
| | | | | | - Enock Matovu
- Makerere University, College of Veterinary Medicine Animal Resources and Biosecurity, Kampala, Uganda
| | - Annette Macleod
- University of Glasgow, Wellcome Trust Centre for Molecular Parasitology, Glasgow, United Kingdom
| | - Issa Sidibé
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité des Maladies à Vecteurs et Biodiversités (UMaVeB), Bobo-Dioulasso, Burkina Faso
| | - Harry Noyes
- University of Liverpool, Centre for Genomic Research, Liverpool, United Kingdom
| | - Bruno Bucheton
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Conakry, Guinea; Institut de Recherche pour le Développement (IRD), UMR IRD-CIRAD 177 INTERTRYP, Montpellier, France.
| | | |
Collapse
|
2
|
Kaboré J, Camara O, Koffi M, Sanou D, Ilboudo H, Sakandé H, Camara M, De Meeûs T, Ravel S, Belem AMG, MacLeod A, Bucheton B, Jamonneau V, Thévenon S. Differences in pathogenicity and virulence of Trypanosoma brucei gambiense field isolates in experimentally infected Balb/C mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:269-276. [PMID: 29807131 DOI: 10.1016/j.meegid.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei gambiense (T. b. gambiense) is the major causative agent of human African trypanosomiasis (HAT). A great variety of clinical outcomes have been observed in West African foci, probably due to complex host-parasite interactions. In order to separate the roles of parasite genetic diversity and host variability, we have chosen to precisely characterize the pathogenicity and virulence of T. b. gambiense field isolates in a mouse model. Thirteen T. b. gambiense strains were studied in experimental infections, with 20 Balb/C infected mice per isolate. Mice were monitored for 30 days, in which mortality, parasitemia, anemia, and weight were recorded. Mortality rate, prepatent period, and maximum parasitemia were estimated, and a survival analysis was performed to compare strain pathogenicity. Mixed models were used to assess parasitemia dynamics, weight, and changes in Packed Cell Volume (PCV). Finally, a multivariate analysis was performed to infer relationships between all variables. A large phenotypic diversity was observed. Pathogenicity was highly variable, ranging from strains that kill their host within 9 days to a non-pathogenic strain (no deaths during the experiment). Virulence was also variable, with maximum parasitemia values ranging from 42 million to 1 billion trypanosomes/ml. Reduced PCV and weight occurred in the first two weeks of the infection, with the exception of two strains. Finally, the global analysis highlighted three groups of strains: a first group with highly pathogenic strains showing an early mortality associated with a short prepatent period; a second group of highly virulent strains with intermediate pathogenicity; and a third group of isolates characterized by low pathogenicity and virulence patterns. Such biological differences could be related to the observed clinical diversity in HAT. A better understanding of the biological pathways underlying the observed phenotypic diversity could thus help to clarify the complex nature of the host-parasite interactions that determine the resistance/susceptibility status to T. brucei gambiense.
Collapse
Affiliation(s)
- Jacques Kaboré
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso; Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Oumou Camara
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé, UFR Environnement, BP 150, Daloa, Côte d'Ivoire.
| | - Djénéba Sanou
- Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Hamidou Ilboudo
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | - Hassane Sakandé
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso.
| | - Mamadou Camara
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | | | - Sophie Ravel
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Adrien Marie Gaston Belem
- Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University of Glasgow, 464 Bearsden Road, Glasgow G60 1QH, UK.
| | - Bruno Bucheton
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | | | | |
Collapse
|
3
|
Candidate gene polymorphisms study between human African trypanosomiasis clinical phenotypes in Guinea. PLoS Negl Trop Dis 2017; 11:e0005833. [PMID: 28827791 PMCID: PMC5595334 DOI: 10.1371/journal.pntd.0005833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/12/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT), a lethal disease induced by Trypanosoma brucei gambiense, has a range of clinical outcomes in its human host in West Africa: an acute form progressing rapidly to second stage, spontaneous self-cure and individuals able to regulate parasitaemia at very low levels, have all been reported from endemic foci. In order to test if this clinical diversity is influenced by host genetic determinants, the association between candidate gene polymorphisms and HAT outcome was investigated in populations from HAT active foci in Guinea. METHODOLOGY AND RESULTS Samples were collected from 425 individuals; comprising of 232 HAT cases, 79 subjects with long lasting positive and specific serology but negative parasitology and 114 endemic controls. Genotypes of 28 SNPs in eight genes passed quality control and were used for an association analysis. IL6 rs1818879 allele A (p = 0.0001, OR = 0.39, CI95 = [0.24-0.63], BONF = 0.0034) was associated with a lower risk of progressing from latent infection to active disease. MIF rs36086171 allele G seemed to be associated with an increased risk (p = 0.0239, OR = 1.65, CI95 = [1.07-2.53], BONF = 0.6697) but did not remain significant after Bonferroni correction. Similarly MIF rs12483859 C allele seems be associated with latent infections (p = 0.0077, OR = 1.86, CI95 = [1.18-2.95], BONF = 0.2157). We confirmed earlier observations that APOL1 G2 allele (DEL) (p = 0.0011, OR = 2.70, CI95 = [1.49-4.91], BONF = 0.0301) is associated with a higher risk and APOL1 G1 polymorphism (p = 0.0005, OR = 0.45, CI95 = [0.29-0.70], BONF = 0.0129) with a lower risk of developing HAT. No associations were found with other candidate genes. CONCLUSION Our data show that host genes are involved in modulating Trypanosoma brucei gambiense infection outcome in infected individuals from Guinea with IL6 rs1818879 being associated with a lower risk of progressing to active HAT. These results enhance our understanding of host-parasite interactions and, ultimately, may lead to the development of new control tools.
Collapse
|
4
|
A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology 2017; 142 Suppl 1:S108-19. [PMID: 25656360 PMCID: PMC4413828 DOI: 10.1017/s0031182014000602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of several pathogens that cause the related veterinary disease Nagana. A complex co-evolution has occurred between these parasites and primates that led to the emergence of trypanosome-specific defences and counter-measures. The first line of defence in humans and several other catarrhine primates is the trypanolytic protein apolipoprotein-L1 (APOL1) found within two serum protein complexes, trypanosome lytic factor 1 and 2 (TLF-1 and TLF-2). Two sub-species of T. brucei have evolved specific mechanisms to overcome this innate resistance, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. In T. b. rhodesiense, the presence of the serum resistance associated (SRA) gene, a truncated variable surface glycoprotein (VSG), is sufficient to confer resistance to lysis. The resistance mechanism of T. b. gambiense is more complex, involving multiple components: reduction in binding affinity of a receptor for TLF, increased cysteine protease activity and the presence of the truncated VSG, T. b. gambiense-specific glycoprotein (TgsGP). In a striking example of co-evolution, evidence is emerging that primates are responding to challenge by T. b. gambiense and T. b. rhodesiense, with several populations of humans and primates displaying resistance to infection by these two sub-species.
Collapse
|
5
|
Sudarshi D, Lawrence S, Pickrell WO, Eligar V, Walters R, Quaderi S, Walker A, Capewell P, Clucas C, Vincent A, Checchi F, MacLeod A, Brown M. Human African trypanosomiasis presenting at least 29 years after infection--what can this teach us about the pathogenesis and control of this neglected tropical disease? PLoS Negl Trop Dis 2014; 8:e3349. [PMID: 25522322 PMCID: PMC4270486 DOI: 10.1371/journal.pntd.0003349] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Darshan Sudarshi
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Sarah Lawrence
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | | | - Vinay Eligar
- Princess of Wales Hospital, Bridgend Hospital, Wales, United Kingdom
| | - Richard Walters
- Morriston Hospital, Swansea, Wales, United Kingdom
- Princess of Wales Hospital, Bridgend Hospital, Wales, United Kingdom
| | - Shumonta Quaderi
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Alice Walker
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Paul Capewell
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Angela Vincent
- Nuffield Dept of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Francesco Checchi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael Brown
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
McCall LI, McKerrow JH. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol 2014; 30:342-9. [DOI: 10.1016/j.pt.2014.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/19/2023]
|
7
|
Kaboré J, De Meeûs T, Macleod A, Ilboudo H, Capewell P, Camara M, Gaston Belem AM, Bucheton B, Jamonneau V. A protocol to improve genotyping of problematic microsatellite loci of Trypanosoma brucei gambiense from body fluids. INFECTION GENETICS AND EVOLUTION 2013; 20:171-6. [PMID: 23954418 DOI: 10.1016/j.meegid.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
Microsatellite genotyping of Trypanosoma brucei gambiense, the causative agent of human African trypanosomiasis or sleeping sickness, and population genetics tools, are useful for inferring population parameters such as population size and dispersal. Amplifying parasite DNA directly from body fluids (i.e., blood, lymph or cerebrospinal fluid) allows avoiding costly and tedious isolation phases. It is however associated to increased frequencies of amplification failures (allelic dropouts and/or null alleles) at some loci. In this paper, we present a study focused on three T. brucei gambiense microsatellite loci suspected to present amplification problems when amplified from body fluids sampled in Guinean sleeping sickness foci. We checked for the real nature of blank and apparent homozygous genotypes of parasite DNA directly amplified from body fluids and tested the effect of three different DNA quantities of trypanosomes. Our results show that some initially blank and homozygous genotypes happen to be actual heterozygous genotypes. In Guinea, lymph from the cervical nymph nodes, known to contain the highest concentrations of parasites, appeared to provide the best amplification results. Simply repeating the PCR may be enough to retrieve the correct genotype, but we also show that increasing initial DNA content provides better results while undertaking first amplification. We finally propose an optimal protocol for amplifying trypanosome's DNA directly from body fluids that should be adapted to local characteristics and/or constraints.
Collapse
Affiliation(s)
- Jacques Kaboré
- Centre International de Recherche-Développement sur l'Élevage en zones Subhumides (CIRDES), Unité de recherches sur les bases biologiques de la lutte intégrée, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso; Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Courtin D, Milet J, Sabbagh A, Massaro JD, Castelli EC, Jamonneau V, Bucheton B, Sese C, Favier B, Rouas-Freiss N, Moreau P, Donadi EA, Garcia A. HLA-G 3′ UTR-2 haplotype is associated with Human African trypanosomiasis susceptibility. INFECTION GENETICS AND EVOLUTION 2013; 17:1-7. [DOI: 10.1016/j.meegid.2013.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
9
|
Mothana RA, Al-Musayeib NM, Matheeussen A, Cos P, Maes L. Assessment of the in vitro antiprotozoal and cytotoxic potential of 20 selected medicinal plants from the island of Soqotra. Molecules 2012; 17:14349-60. [PMID: 23208469 PMCID: PMC6268263 DOI: 10.3390/molecules171214349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/18/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC₅₀ 2.2 µg/mL) while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC₅₀ < 10 µg/mL). Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC₅₀ 3.5 and 8.4 µg/mL). Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.
Collapse
Affiliation(s)
- Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; E-Mail:
- Department of Pharmacognosy, Faculty of Pharmacy, Sana’a University, P.O. Box 33039, Sana’a, Yemen
| | - Nawal M. Al-Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; E-Mail:
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; E-Mails: (A.M.); (P.C.); (L.M.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; E-Mails: (A.M.); (P.C.); (L.M.)
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; E-Mails: (A.M.); (P.C.); (L.M.)
| |
Collapse
|
10
|
Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M, Solano P, Garcia A, Courtin D, Laveissière C, Lingue K, Büscher P, Bucheton B. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis 2012; 6:e1691. [PMID: 22720107 PMCID: PMC3373650 DOI: 10.1371/journal.pntd.0001691] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/30/2012] [Indexed: 02/04/2023] Open
Abstract
The final outcome of infection by Trypanosoma brucei gambiense, the main agent of sleeping sickness, has always been considered as invariably fatal. While scarce and old reports have mentioned cases of self-cure in untreated patients, these studies suffered from the lack of accurate diagnostic tools available at that time. Here, using the most specific and sensitive tools available to date, we report on a long-term follow-up (15 years) of a cohort of 50 human African trypanosomiasis (HAT) patients from the Ivory Coast among whom 11 refused treatment after their initial diagnosis. In 10 out of 11 subjects who continued to refuse treatment despite repeated visits, parasite clearance was observed using both microscopy and polymerase chain reaction (PCR). Most of these subjects (7/10) also displayed decreasing serological responses, becoming progressively negative to trypanosome variable antigens (LiTat 1.3, 1.5 and 1.6). Hence, in addition to the “classic” lethal outcome of HAT, we show that alternative natural progressions of HAT may occur: progression to an apparently aparasitaemic and asymptomatic infection associated with strong long-lasting serological responses and progression to an apparently spontaneous resolution of infection (with negative results in parasitological tests and PCR) associated with a progressive drop in antibody titres as observed in treated cases. While this study does not precisely estimate the frequency of the alternative courses for this infection, it is noteworthy that in the field national control programs encounter a significant proportion of subjects displaying positive serologic test results but negative results in parasitological testing. These findings demonstrate that a number of these subjects display such infection courses. From our point of view, recognising that trypanotolerance exists in humans, as is now widely accepted for animals, is a major step forward for future research in the field of HAT. The existence of a diversity of infection outcomes – ranging from self-cure to asymptomatic, severe or fatal cases – is now widely recognised for most parasitic and infectious diseases. The dogma concerning sleeping sickness, however, is still that infection is 100% fatal. Here we describe a 15-year follow-up of patients diagnosed with human African trypanosomiasis (HAT) in the Ivory Coast but who refused treatment. Our results, based on clinical, serological, molecular, and parasitological investigations, combining diagnostic tools for the field and highly specific and sensitive laboratory tests, constitute the most comprehensive study on the natural evolution of Trypanosoma brucei gambiense infection in its human host. At least two alternative natural progressions of HAT to the “classic” fatal disease were identified: a progression to an apparently aparasitaemic and asymptomatic infection and a progression to an apparently spontaneous resolution of infection. We believe that recognising that trypanotolerance exists in humans is a major step forward for future research aimed at identifying human-specific defence and immune mechanisms involved in the control of T.b. gambiense infection and thus new candidate therapeutic or prophylactic targets.
Collapse
Affiliation(s)
- Vincent Jamonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bouteille B, Buguet A. The detection and treatment of human African trypanosomiasis. Res Rep Trop Med 2012; 3:35-45. [PMID: 30890865 DOI: 10.2147/rrtm.s24751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human African trypanosomiasis (HAT) is caused by the injection of Trypanosoma brucei (T. b.) gambiense or T. b. rhodesiense by Glossina, the tsetse fly. Three historical eras followed the exclusive clinical approach of the 19th century. At the turn of the century, the "initial research" era was initiated because of the dramatic spread of HAT throughout intertropical Africa, and scientists discovered the agent and its vector. Two entities, recurrent fever and sleeping sickness, were then considered a continuum between hemolymphatic stage 1 and meningoencephalitic stage 2. Treatments were developed. Soon after World War I, specific services and mobile teams were created, initiating the "epidemiological" era, during which populations were visited, screened, and treated. As a result, by 1960, annual new cases were rare. New mass screening and staging tools were then developed in a third, "modern" era, especially to counter a new epidemic wave. Currently, diagnosis still relies on microscopic detection of trypanosomes without (wet and thick blood films) or with concentration techniques (capillary tube centrifugation, miniature anion-exchange centrifugation technique). Staging is a vital step. Stage 1 patients are treated on site with pentamidine or suramin. However, stage 2 patients are treated in specialized facilities, using drugs that are highly toxic and/or that require complex administration procedures (melarsoprol, eflornithine, or nifurtimox-eflornithine combination therapy). Suramin and melarsoprol are the only medications active against Rhodesian HAT. Staging still relies on cerebrospinal fluid examination for trypanosome detection and white blood cell counts: stage 1, absence of trypanosomes, white blood cell counts ≤ 5/µL; stage 2, presence of trypanosomes, white blood cell counts ≥ 20/µL; T. b. gambiense HAT intermediate stage, between these still controversial thresholds. Our group has proposed the use of noninvasive ambulatory polysomnography to identify sleep-wake abnormalities characteristic of stage 2 of the disease. Only patients with abnormal sleep-wake patterns would then undergo confirmative lumbar puncture.
Collapse
Affiliation(s)
- Bernard Bouteille
- Laboratory of Parasitology, Dupuytren University Hospital of Limoges, France,
| | - Alain Buguet
- Polyclinic Marie-Louise Poto-Djembo, Pointe-Noire, Congo
| |
Collapse
|
12
|
Musuyu Muganza D, Fruth BI, Nzunzu Lami J, Mesia GK, Kambu OK, Tona GL, Cimanga Kanyanga R, Cos P, Maes L, Apers S, Pieters L. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:301-308. [PMID: 22394563 DOI: 10.1016/j.jep.2012.02.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/13/2012] [Accepted: 02/19/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antiprotozoal and cytotoxic activity of the aqueous extracts from 33 medicinal plants, used by traditional healers for the treatment of various parasitic diseases and collected after an ethnopharmacological inventory conducted in the Bolongo area, Bandundu province in DR Congo, was evaluated. MATERIALS AND METHODS Decoctions were prepared, lyophilized and evaluated for in vitro antiprotozoal activity against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum, and the chloroquine- and pyrimethamine-resistant K1 strain of Plasmodium falciparum. Cytotoxicity against MRC-5 cells was included to assess selectivity of activity. RESULTS Most of the tested extracts exhibited pronounced (IC(50)≤5μg/ml) or good (5<IC(50)≤10μg/ml) antiprotozoal activity against one or more of the selected protozoa. A total of 19 plant extracts inhibited Trypanosoma b. brucei, especially the extract from Isolona hexaloba stem bark (IC(50)=1.95μg/ml, SI=16.5); 8 plant extracts were active against Trypanosoma cruzi, the extracts from Enanatia chlorantha stem bark and Quassia africana root bark being the most active with IC(50) values of 1.87 and 1.88μg/ml, respectively (SI=3.0 and 3.3, respectively); 8 plant extracts showed activity against Leishmania infantum, with extracts from Napoleona vogelii stem bark and Quassia africana root bark as the most active with IC(50) values of 5.66 and 5.04μg/ml (SI=11.3 and 1.2). Finally, 9 plant extracts inhibited Plasmodium falciparum K1 with the extracts from Quassia africana (root bark and stem bark) being the most active ones with IC(50) values of 0.46 and 1.27μg/ml (SI=13.7 and 13.6). Extracts from Enantia chlorantha stem bark, Piptadeniastrum africanum stem bark and Quassia africana root bark were cytotoxic for MRC-5 cells (CC(50)<10μg/ml). CONCLUSIONS These results can partly support and justify the traditional use of some of these plant species for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- D Musuyu Muganza
- Faculty of Pharmaceutical Sciences, University of Kinshasa, PO. Box 212, Kinshasa XI, Congo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Trypanosomes are protozoan parasites of medical and veterinary importance. It is well established that different species, subspecies and strains of trypanosome can cause very different disease in the mammalian host, exemplified by the two human-infective subspecies of Trypanosoma brucei that cause either acute or chronic disease. We are beginning to understand how the host response shapes the course of the disease and how genetic variation in the host can be a factor in disease severity, particularly in the mouse model, but until recently the role of parasite genetic variation that determines differential disease outcome has been a neglected area. This review will discuss the recent advances in this field, covering both our current knowledge of the T. brucei genes involved and the approaches that are leading towards the identification of T. brucei virulence genes. Finally, the potential for using parasite genotype variation to examine the evolutionary context of virulence will be discussed.
Collapse
Affiliation(s)
- L J Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Bucheton B, MacLeod A, Jamonneau V. Human host determinants influencing the outcome of Trypanosoma brucei gambiense infections. Parasite Immunol 2011; 33:438-47. [PMID: 21385185 PMCID: PMC3427891 DOI: 10.1111/j.1365-3024.2011.01287.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since first identified, human African trypanosomiasis (HAT) or sleeping sickness has been described as invariably fatal. Increasing data however argue that infection by Trypanosoma brucei gambiense, the causative agent of HAT, results in a wide range of outcomes in its human host and importantly that a number of subjects in endemic areas are apparently able to control infection to low levels, undetectable by the classical parasitological tests used in the field. Thus, trypanotolerance seems to occur in humans as has already been described in cattle or in the rodent experimental models of infection. This review focuses on the description of the diversity of outcomes resulting from T. b. gambiense in humans and on the host factors involved. The consequences/impacts on HAT epidemiology resulting from this diversity are also discussed with regard to implementing sustainable HAT control strategies.
Collapse
Affiliation(s)
- B Bucheton
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France.
| | | | | |
Collapse
|
15
|
VAN den BOSSCHE P, CHITANGA S, MASUMU J, MARCOTTY T, DELESPAUX V. Virulence in Trypanosoma congolense Savannah subgroup. A comparison between strains and transmission cycles. Parasite Immunol 2011; 33:456-60. [DOI: 10.1111/j.1365-3024.2010.01277.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Ilboudo H, Jamonneau V, Camara M, Camara O, Dama E, Léno M, Ouendeno F, Courtin F, Sakande H, Sanon R, Kaboré J, Coulibaly B, N'Dri L, Diarra A, N'Goran E, Bucheton B. Diversity of response to Trypanosoma brucei gambiense infections in the Forecariah mangrove focus (Guinea): perspectives for a better control of sleeping sickness. Microbes Infect 2011; 13:943-52. [PMID: 21658462 DOI: 10.1016/j.micinf.2011.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/29/2022]
Abstract
At a time when human African trypanosomiasis (HAT) elimination again seems a reachable goal in many parts of sub-Saharan Africa, it is becoming increasingly important to characterise the factors involved in disease resurgence or maintenance to develop sustainable control strategies. In this study conducted in the Forecariah mangrove focus in Guinea, HAT patients and serological suspects (SERO) were identified through mass screening of the population with the Card Agglutination Test for Trypanosomiasis (CATT) and were followed up for up to 2 years. Analysis of the samples collected during the follow-up of HAT patients and SERO was performed with PCR (TBR1/TBR2) and the trypanolysis serological test (TL) in order to clarify the role played by these individuals in the epidemiology of HAT. PCR positivity was higher in TL⁺ than in SERO TL⁻ (50% vs. 18%, respectively). Whereas CATT plasma titres decreased both in treated HAT patients and SERO TL⁻, SERO TL⁺ maintained high CATT titres. Four out of 17 SERO TL⁺ developed HAT during the study. These results strongly suggest that SERO TL⁺ individuals are asymptomatic carriers. In the context where disease prevalence is sufficiently low, treating SERO TL⁺ individual may thus be of crucial importance in order to cut transmission.
Collapse
Affiliation(s)
- Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01BP454 Bobo-Dioulasso 01, Burkina Faso
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tait A, Morrison LJ, Duffy CW, Cooper A, Turner CMR, Macleod A. Trypanosome genetics: populations, phenotypes and diversity. Vet Parasitol 2011; 181:61-8. [PMID: 21570772 DOI: 10.1016/j.vetpar.2011.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the last decade, there has been a wide range of studies using a series of molecular markers to investigate the genotypic diversity of some of the important species of African trypanosomes. Here, we review this work and provide an update of our current understanding of the mechanisms that generate this diversity based on population genetic analysis. In parallel with field based studies, our knowledge of the key features of the system of genetic exchange in Trypanosoma brucei, based on laboratory analysis, has reached the point at which this system can be used as a tool to determine the genetic basis of a phenotype. In this context, we have outlined our current knowledge of the basis for phenotypic variation among strains of trypanosomes, and highlight that this is a relatively under researched area, except for work on drug resistance. There is clear evidence for 'strain'-specific variation in tsetse transmission, a range of virulence/pathogenesis phenotypes and the ability to cross the blood brain barrier. The potential for using genetic analysis to dissect these phenotypes is illustrated by the recent work defining a locus determining organomegaly for T. brucei. When these results are considered in relation to the body of research on the variability of the host response to infection, it is clear that there is a need to integrate the study of host and parasite diversity in relation to understanding infection outcome.
Collapse
Affiliation(s)
- Andy Tait
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
First evidence that parasite infecting apparent aparasitemic serological suspects in human African trypanosomiasis are Trypanosoma brucei gambiense and are similar to those found in patients. INFECTION GENETICS AND EVOLUTION 2011; 11:1250-5. [PMID: 21530681 DOI: 10.1016/j.meegid.2011.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/20/2022]
Abstract
Thanks to its sensitivity and its ease of use in the field, the card agglutination test for trypanosomiasis (CATT) is widely used for serological screening of Trypanosoma brucei gambiense human African trypanosomiasis (HAT). Positive subjects are then examined by microscopy to confirm the disease. However, the CATT exhibits false-positive results raising the question of whether CATT-positive subjects who are not confirmed by microscopic detection of trypanosomes (SERO) are truly exposed to T.b. gambiense infection. For this purpose, we applied microsatellite genotyping on DNA extracted from blood of both HAT confirmed patients and SERO subjects in Guinea and Côte d'Ivoire since microsatellite genotyping has proved useful for the study of T.b. gambiense genetic diversity. Problems of amplification failures raise the question of the sensitivity of microsatellite markers when applied on biological samples especially from SERO subjects for who low blood parasitaemia are suspected. Nevertheless, we have shown that the trypanosomes from SERO individuals that have been genotyped belong to T.b. gambiense group 1 and were identical to those found in HAT patients. These results constitute the first evidences that at least some SERO are indeed infected by T.b. gambiense group 1 and that they may constitute a human reservoir of parasite in HAT foci. Whether these individuals should undergo treatment remains an open question as long as their role in HAT transmission is unknown. Our results strongly recommend the follow-up of such subjects to improve control strategies.
Collapse
|
19
|
Kaboré J, Macleod A, Jamonneau V, Ilboudo H, Duffy C, Camara M, Camara O, Belem AMG, Bucheton B, De Meeûs T. Population genetic structure of Guinea Trypanosoma brucei gambiense isolates according to host factors. INFECTION GENETICS AND EVOLUTION 2011; 11:1129-35. [PMID: 21515408 DOI: 10.1016/j.meegid.2011.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
Human African trypanosomiasis (HAT) or sleeping sickness is a major public health problem in sub-Saharan Africa and is due to the kinetoplastid parasite Trypanosoma brucei gambiense in West and Central Africa. The exact role of multiple infections, the basis of clinical diversity observed in patients and the determinism that leads trypanosomes into different body fluids of the host remain opened questions to date. In this paper we investigate, in three Guinean foci, whether strains found in blood, lymph or cerebrospinal fluid (CSF) or in patients at different phase of HAT (phase 1, early phase 2 and late phase 2) are representative of the focus they belong to. Amplifications of parasites directly from body fluids led to substantial amounts of allelic drop outs, especially so for blood and CSF samples, which required data recoding of all homozygous sites into missing data. While controlling for geography, date of sampling and patient's phase of the disease, we found no effect of body fluids in the genetic structure of T. b. gambiense despite the presence of mixed infections. On the contrary, we found that the strains found in patients in different phase of the disease differed genetically, with early phase patients being more likely to be infected with more recent strains than patients at a more advanced phase of the disease. Thus, the combination of date of sampling and patient's status represents a parameter to be controlled for in population genetic structure analyses. Additional studies will also be required to explore further the phenomenon of mixed infections and its consequences.
Collapse
Affiliation(s)
- Jacques Kaboré
- Centre International de Recherche-Développement sur l'Élevage en zones Subhumides, Unité de recherches sur les bases biologiques de la lutte intégrée, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Transcriptomics and proteomics in human African trypanosomiasis: current status and perspectives. J Proteomics 2011; 74:1625-43. [PMID: 21316496 DOI: 10.1016/j.jprot.2011.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis, or sleeping sickness, is a neglected vector-borne parasitic disease caused by protozoa of the species Trypanosoma brucei sensu lato. Within this complex species, T. b. gambiense is responsible for the chronic form of sleeping sickness in Western and Central Africa, whereas T. b. rhodesiense causes the acute form of the disease in East Africa. Presently, 1.5 million disability-adjusted life years (DALYs) per year are lost due to sleeping sickness. In addition, on the basis of the mortality, the disease is ranked ninth out of 25 human infectious and parasitic diseases in Africa. Diagnosis is complex and needs the intervention of a specialized skilled staff; treatment is difficult and expensive and has potentially life-threatening side effects. The use of transcriptomic and proteomic technologies, currently in rapid development and increasing in sensitivity and discriminating power, is already generating a large panel of promising results. The objective of these technologies is to significantly increase our knowledge of the molecular mechanisms governing the parasite establishment in its vector, the development cycle of the parasite during the parasite's intra-vector life, its interactions with the fly and the other microbial inhabitants of the gut, and finally human host-trypanosome interactions. Such fundamental investigations are expected to provide opportunities to identify key molecular events that would constitute accurate targets for further development of tools dedicated to field work for early, sensitive, and stage-discriminant diagnosis, epidemiology, new chemotherapy, and potentially vaccine development, all of which will contribute to fighting the disease. The present review highlights the contributions of the transcriptomic and proteomic analyses developed thus far in order to identify potential targets (genes or proteins) and biological pathways that may constitute a critical step in the identification of new targets for the development of new tools for diagnostic and therapeutic purposes.
Collapse
|
21
|
Jamonneau V, Bucheton B, Kaboré J, Ilboudo H, Camara O, Courtin F, Solano P, Kaba D, Kambire R, Lingue K, Camara M, Baelmans R, Lejon V, Büscher P. Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in West Africa. PLoS Negl Trop Dis 2010; 4:e917. [PMID: 21200417 PMCID: PMC3006129 DOI: 10.1371/journal.pntd.0000917] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Because of its high sensitivity and its ease of use in the field, the card agglutination test for trypanosomiasis (CATT) is widely used for mass screening of sleeping sickness. However, the CATT exhibits false-positive results (i) raising the question of whether CATT-positive subjects who are negative in parasitology are truly exposed to infection and (ii) making it difficult to evaluate whether Trypanosoma brucei (T.b.) gambiense is still circulating in areas of low endemicity. The objective of this study was to assess the value of the immune trypanolysis test (TL) in characterising the HAT status of CATT-positive subjects and to monitor HAT elimination in West Africa. METHODOLOGY/PRINCIPAL FINDINGS TL was performed on plasma collected from CATT-positive persons identified within medical surveys in several West African HAT foci in Guinea, Côte d'Ivoire and Burkina Faso with diverse epidemiological statuses (active, latent, or historical). All HAT cases were TL+. All subjects living in a nonendemic area were TL-. CATT prevalence was not correlated with HAT prevalence in the study areas, whereas a significant correlation was found using TL. CONCLUSION AND SIGNIFICANCE TL appears to be a marker for contact with T.b. gambiense. TL can be a tool (i) at an individual level to identify nonparasitologically confirmed CATT-positive subjects as well as those who had contact with T.b. gambiense and should be followed up, (ii) at a population level to identify priority areas for intervention, and (iii) in the context of HAT elimination to identify areas free of HAT.
Collapse
Affiliation(s)
- Vincent Jamonneau
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jones DC, Hallyburton I, Stojanovski L, Read KD, Frearson JA, Fairlamb AH. Identification of a κ-opioid agonist as a potent and selective lead for drug development against human African trypanosomiasis. Biochem Pharmacol 2010; 80:1478-86. [PMID: 20696141 PMCID: PMC3025325 DOI: 10.1016/j.bcp.2010.07.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 01/16/2023]
Abstract
A resazurin-based cell viability assay was developed for phenotypic screening of the LOPAC 1280 ‘library of pharmacologically active compounds’ against bloodstream forms of Trypanosoma brucei in vitro identifying 33 compounds with EC50 values <1 μM. Counter-screening vs. normal diploid human fibroblasts (MRC5 cells) was used to rank these hits for selectivity, with the most potent (<70 nM) and selective (>700-fold) compounds being suramin and pentamidine. These are well-known antitrypanosomal drugs which demonstrate the robustness of the resazurin cell viability assay. The most selective novel inhibitor was (+)-trans-(1R,2R)-U50,488 having an EC50 value of 60 nM against T. brucei and 270-fold selectivity over human fibroblasts. Interestingly, (−)-U50,488, a known CNS-active κ-opioid receptor agonist and other structurally related compounds were >70-fold less active or inactive, as were several μ- and κ-opioid antagonists. Although (+)-U50,488 was well tolerated by the oral route and displayed good pharmaceutical properties, including high brain penetration, the compound was not curative in the mouse model of infection. Nonetheless, the divergence of antinociceptive and antitrypanosomal activity represents a promising start point for further exploratory chemistry. Bioinformatic studies did not reveal any obvious candidate opioid receptors and the target of this cytostatic compound is unknown. Among the other potent, but less selective screening hits were compound classes with activity against protein kinases, topoisomerases, tubulin, as well as DNA and energy metabolism.
Collapse
Affiliation(s)
- Deuan C Jones
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
23
|
Nimmo C. Time to put out the lights on sleeping sickness? Travel Med Infect Dis 2010; 8:263-8. [PMID: 20970729 DOI: 10.1016/j.tmaid.2010.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Sleeping sickness (or Human African Trypanosomiasis, HAT) is a potentially fatal parasitic disease that affects a large proportion of sub-Saharan Africa. It was epidemic in the early 20th century before being nearly eradicated through a variety of control programmes. Despite this, there was a resurgence in the 1980s and 90s following relaxation of these programmes. Recent advances are reversing this trend once more. However, more research is required to improve diagnosis and treatment, and to better understand the epidemiology of HAT if complete eradication is to be achieved in the future.
Collapse
Affiliation(s)
- Camus Nimmo
- University College London Medical School, Gower Street, London WC1E6BT, UK.
| |
Collapse
|
24
|
Meade KG, O'Gorman GM, Hill EW, Narciandi F, Agaba M, Kemp SJ, O'Farrelly C, MacHugh DE. Divergent antimicrobial peptide (AMP) and acute phase protein (APP) responses to Trypanosoma congolense infection in trypanotolerant and trypanosusceptible cattle. Mol Immunol 2009; 47:196-204. [PMID: 19889461 DOI: 10.1016/j.molimm.2009.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/27/2009] [Accepted: 09/30/2009] [Indexed: 01/20/2023]
Abstract
African animal trypanosomiasis (AAT) is endemic across Sub-Saharan African and is a major constraint to livestock production. The ability of certain cattle breeds to remain productive despite infection is known as trypanotolerance; however, the underlying immune mechanisms contributing to this trait remain poorly understood. Antimicrobial peptides (AMPs) and acute phase proteins (APPs) are evolutionarily conserved effector molecules of the innate immune system that have important roles in the resolution of infection and activation of the adaptive immune response. Expression levels of AMP genes (TAP, LAP, BNBD4, DEFB1, DEFB5 and LEAP2) and APP genes (HP, CP, AGP, LBP, SAA3 and CRP) were investigated using real time quantitative reverse transcription PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMC) isolated from two breeds of African cattle (trypanotolerant N'Dama and trypanosusceptible Boran), experimentally infected with Trypanosoma congolense. Haptoglobin and serum amyloid A (SAA) were also measured in plasma using quantitative protein assays. Results demonstrated that tracheal antimicrobial peptide (TAP) gene expression increased by 32-fold in Boran, compared to only 3-fold in N'Dama, by 14 days post-infection (dpi) and rising to 136-fold at 29 dpi in Boran, compared to 47-fold in N'Dama (P<0.05). Protein expression levels of SAA are elevated in N'Dama, rising to 163 microg/ml at 14 dpi compared with 72 microg/ml in Boran. The SAA expression profile mirrors the wave of parasitaemia detected in N'Dama. Seven single nucleotide polymorphisms (SNPs) were identified in the promoter regions of the SAA3 and SAA4 genes, which are predicted to affect transcription factor binding and thereby contributing to the differential patterns of expression detected between the breeds. Whereas elevated TAP expression is a conserved component of the innate immune response to infection in both breeds, higher SAA expression levels may contribute toward trypanotolerance in N'Dama.
Collapse
Affiliation(s)
- Kieran G Meade
- Animal Bioscience Centre, Teagasc, Grange, Co. Meath, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
SUMMARYHuman sleeping sickness in Africa, caused by Trypanosoma brucei spp. raises a number of questions. Despite the widespread distribution of the tsetse vectors and animal trypanosomiasis, human disease is only found in discrete foci which periodically give rise to epidemics followed by periods of endemicity A key to unravelling this puzzle is a detailed knowledge of the aetiological agents responsible for different patterns of disease – knowledge that is difficult to achieve using traditional microscopy. The science of molecular epidemiology has developed a range of tools which have enabled us to accurately identify taxonomic groups at all levels (species, subspecies, populations, strains and isolates). Using these tools, we can now investigate the genetic interactions within and between populations of Trypanosoma brucei and gain an understanding of the distinction between human- and nonhuman-infective subspecies. In this review, we discuss the development of these tools, their advantages and disadvantages and describe how they have been used to understand parasite genetic diversity, the origin of epidemics, the role of reservoir hosts and the population structure. Using the specific case of T.b. rhodesiense in Uganda, we illustrate how molecular epidemiology has enabled us to construct a more detailed understanding of the origins, generation and dynamics of sleeping sickness epidemics.
Collapse
|
26
|
Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in Western Africa. Proc Natl Acad Sci U S A 2008; 106:209-14. [PMID: 19106297 DOI: 10.1073/pnas.0811080106] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness caused by Trypanosoma brucei gambiense, occurs in Western and Central Africa. T. brucei s.l. displays a huge diversity of adaptations and host specificities, and questions about its reproductive mode, dispersal abilities, and effective size remain under debate. We have investigated genetic variation at 8 microsatellite loci of T. b. gambiense strains isolated from human African trypanosomiasis patients in the Ivory Coast and Guinea, with the aim of knowing how genetic information was partitioned within and between individuals in both temporal and spatial scales. The results indicate that (i) migration of T. b. gambiense group 1 strains does not occur at the scale of West Africa, and that even at a finer scale (e.g., within Guinea) migration is restricted; (ii) effective population sizes of trypanosomes, as reflected by infected hosts, are probably higher than what the epidemiological surveys suggest; and (iii) T. b. gambiense group 1 is most likely a strictly clonally reproducing organism.
Collapse
|
27
|
Checchi F, Filipe JAN, Barrett MP, Chandramohan D. The natural progression of Gambiense sleeping sickness: what is the evidence? PLoS Negl Trop Dis 2008; 2:e303. [PMID: 19104656 PMCID: PMC2602732 DOI: 10.1371/journal.pntd.0000303] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gambiense human African trypanosomiasis (HAT, sleeping sickness) is widely assumed to be 100% pathogenic and fatal. However, reports to the contrary exist, and human trypano-tolerance has been postulated. Furthermore, there is uncertainty about the actual duration of both stage 1 and stage 2 infection, particularly with respect to how long a patient remains infectious. Understanding such basic parameters of HAT infection is essential for optimising control strategies based on case detection. We considered the potential existence and relevance of human trypano-tolerance, and explored the duration of infectiousness, through a review of published evidence on the natural progression of gambiense HAT in the absence of treatment, and biological considerations. Published reports indicate that most gambiense HAT cases are fatal if untreated. Self-resolving and asymptomatic chronic infections probably constitute a minority if they do indeed exist. Chronic carriage, however, deserves further study, as it could seed renewed epidemics after control programmes cease.
Collapse
Affiliation(s)
- Francesco Checchi
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Krafsur ES. Tsetse flies: genetics, evolution, and role as vectors. INFECTION GENETICS AND EVOLUTION 2008; 9:124-41. [PMID: 18992846 DOI: 10.1016/j.meegid.2008.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/27/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are an ancient taxon of one genus, Glossina, and limited species diversity. All are exclusively haematophagous and confined to sub-Saharan Africa. The Glossina are the principal vectors of African trypanosomes Trypanosoma sp. (Kinetoplastida: Trypanosomatidae) and as such, are of great medical and economic importance. Clearly tsetse flies and trypanosomes are coadapted and evolutionary interactions between them are manifest. Numerous clonally reproducing strains of Trypanosoma sp. exist and their genetic diversities and spatial distributions are inadequately known. Here I review the breeding structures of the principle trypanosome vectors, G. morsitans s.l., G. pallidipes, G. palpalis s.l. and G. fuscipes fuscipes. All show highly structured populations among which there is surprisingly little detectable gene flow. Rather less is known of the breeding structure of T. brucei sensu lato vis à vis their vector tsetse flies but many genetically differentiated strains exist in nature. Genetic recombination in Trypanosoma via meiosis has recently been demonstrated in the laboratory thereby furnishing a mechanism of strain differentiation in addition to that of simple mutation. Spatially and genetically representative sampling of both trypanosome species and strains and their Glossina vectors is a major barrier to a comprehensive understanding of their mutual relationships.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
29
|
Guilliams M, Bosschaerts T, Hérin M, Hünig T, Loi P, Flamand V, De Baetselier P, Beschin A. Experimental expansion of the regulatory T cell population increases resistance to African trypanosomiasis. J Infect Dis 2008; 198:781-91. [PMID: 18627271 DOI: 10.1086/590439] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammatory responses mounted to eliminate parasites can be lethal if not counterbalanced by regulatory responses protecting the host from collateral tissue damage. Here, we show that the maintained inflammation associated with tissue damage, anemia, and reduced survival of Trypanosoma brucei-infected mice correlates with the absence of the expansion of the regulatory T (T(reg)) cell population. Induction of T(reg) cell expansion via CD28 superagonist antibody treatment in these mice down-regulated interferon-gamma production by T cells and tumor necrosis factor-alpha and reactive oxygen species production by classically activated macrophages, triggered the development of alternatively activated macrophages, delayed the onset of liver injury, diminished the anemia burden, and prolonged the survival of infected animals. Thus, triggering the expansion of the T(reg) cell population coupled with the induction of alternatively activated macrophages can restore the balance between pro- and anti-inflammatory signals and thereby limit the pathogenicity of African trypanosomiasis.
Collapse
Affiliation(s)
- Martin Guilliams
- Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zoller T, Fèvre EM, Welburn SC, Odiit M, Coleman PG. Analysis of risk factors for T. brucei rhodesiense sleeping sickness within villages in south-east Uganda. BMC Infect Dis 2008; 8:88. [PMID: 18590541 PMCID: PMC2447837 DOI: 10.1186/1471-2334-8-88] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 06/30/2008] [Indexed: 11/26/2022] Open
Abstract
Background Sleeping sickness (HAT) caused by T.b. rhodesiense is a major veterinary and human public health problem in Uganda. Previous studies have investigated spatial risk factors for T.b. rhodesiense at large geographic scales, but none have properly investigated such risk factors at small scales, i.e. within affected villages. In the present work, we use a case-control methodology to analyse both behavioural and spatial risk factors for HAT in an endemic area. Methods The present study investigates behavioural and occupational risk factors for infection with HAT within villages using a questionnaire-based case-control study conducted in 17 villages endemic for HAT in SE Uganda, and spatial risk factors in 4 high risk villages. For the spatial analysis, the location of homesteads with one or more cases of HAT up to three years prior to the beginning of the study was compared to all non-case homesteads. Analysing spatial associations with respect to irregularly shaped geographical objects required the development of a new approach to geographical analysis in combination with a logistic regression model. Results The study was able to identify, among other behavioural risk factors, having a family member with a history of HAT (p = 0.001) as well as proximity of a homestead to a nearby wetland area (p < 0.001) as strong risk factors for infection. The novel method of analysing complex spatial interactions used in the study can be applied to a range of other diseases. Conclusion Spatial risk factors for HAT are maintained across geographical scales; this consistency is useful in the design of decision support tools for intervention and prevention of the disease. Familial aggregation of cases was confirmed for T. b. rhodesiense HAT in the study and probably results from shared behavioural and spatial risk factors amongmembers of a household.
Collapse
Affiliation(s)
- Thomas Zoller
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Courtin D, Berthier D, Thevenon S, Dayo GK, Garcia A, Bucheton B. Host genetics in African trypanosomiasis. INFECTION GENETICS AND EVOLUTION 2008; 8:229-38. [PMID: 18394971 DOI: 10.1016/j.meegid.2008.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
In Africa, the protozoan parasite of the genus Trypanosoma causes animal (AAT) and human African trypanosomiasis (HAT). These diseases are responsible for considerable mortality and economic losses, and until now the drugs commonly used have often been very toxic and expensive, with no vaccine available. A range of clinical presentations, from chronic to acute symptoms, is observed in both AAT and HAT. Host, parasite, and environmental factors are likely to be involved in this clinical variability. In AAT, some West African cattle (N'Dama, Bos taurus) have the ability to better control the disease development (and therefore to remain productive) than other taurine breeds (Zebu, Bos indicus). This phenomenon is called trypanotolerance and seems to have major genetic components. In humans, tolerance/resistance to the disease is suspected, however, this needs confirmation. This review focuses on recent advances made in the field of host genetics in African trypanosomiasis in animals (mouse and bovine) and humans. The perspectives for the development of new control strategies and their applications as well as a better understanding of the physiopathology of the disease are discussed.
Collapse
Affiliation(s)
- David Courtin
- Radboud University Medical Center, Medical Parasitology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Mesia GK, Tona GL, Nanga TH, Cimanga RK, Apers S, Cos P, Maes L, Pieters L, Vlietinck AJ. Antiprotozoal and cytotoxic screening of 45 plant extracts from Democratic Republic of Congo. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:409-415. [PMID: 18068320 DOI: 10.1016/j.jep.2007.10.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 09/12/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
AIM OF THE STUDY To evaluate in vitro the antiprotozoal and cytotoxic activities of 80% methanol extract from 45 medicinal plants collected in Sankuru (Democratic Republic of Congo) against Trypanosoma brucei brucei, Trypanosoma cruzi and the chloroquine-sensitive Ghanaian strain of Plasmodium falciparum, and MRC-5 cell lines respectively. MATERIAL AND METHODS Different extracts were obtained by maceration of each plant part used with 80% methanol for 24h. The mixture was filtered and evaporated in vacuo to give corresponding dried extract. The activity against Trypanosoma brucei brucei and Trypanosoma cruzi were performed in 96 well tissue plates each containing 10 microl aqueous plant extract dilutions (100 to 0.01 microg/ml) with 10 microl of the parasite suspension cultured in Hirumi medium supplemented with 10% foetal calf serum, a solution of 2% penicillin/streptomycin (2% P/S) After 4 days incubation with Almar blueâ solution, fluorescence was measured at 500 nm emission and 530 nm excitation and results expressed as percentage reduction in parasite compared to control wells. The antiplasmodial activity of was assessed in vitro against the chloroquine-sensitive Ghanaian strain of Plasmodium falciparum cultured in RPMI-1640 medium by the lactate deshydrogenase assay in the presence of plant extracts (50 to 0.01 microg/ml). Cell-lines MRC-5 were cultured in MEM medium supplemented with 20mM l-glutamine, 16.5mM NaHCO(3), 5% foetal calf serum and 2% P/S solution. After 4h incubation, cell proliferation/viability was spectrophotomecally assessed at 540 nm after addition of MTT. In each assay, the IC50 value for each sample was derived by the drug concentration-response curves. RESULTS The extracts from Alcornea cordifolia leaves, Momordica charantia whole plant, Omphalocarpum glomerata, root bark and Piptadia africanum stem bark showed good antiprotozoal activity against Trypanosoma brucei brucei with IC50 values from 0.7 to 7 microg/ml. Only Piptadenia africanum extract showed a pronounced antiprotozoal activity against Trypanosoma cruzi (IC50=4.0+/-06 microg/ml). The extracts from Alchornea cordifolia, Polyathia swaveleons stem bark, Sapium cornutum stem bark and Triclisia giletii stem bark exhibited a pronounced antiplasmodial activity against P. falciparum Ghanaian strain with IC50 values ranging from 0.5 to 3.0 microg/ml. Piptadenia africanum extract was the most cytotoxic sample (CC50=0.25 microg/ml) with poor selectivity against all selected protozoa (SI<10) while other active extracts did not show a significant cytotoxic effect against MCR-5 cell-lines with good selectivity according to the case. CONCLUSION These active plant extracts are selected for extensive studies leading to the isolation of active constituents.
Collapse
Affiliation(s)
- G K Mesia
- University of Kinshasa, Faculty of Pharmaceutical Sciences, PO BOX 212, Kinshasa XI, People's Republic of Congo
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Holzmuller P, Biron DG, Courtois P, Koffi M, Bras-Gonçalves R, Daulouède S, Solano P, Cuny G, Vincendeau P, Jamonneau V. Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics. Microbes Infect 2008; 10:79-86. [DOI: 10.1016/j.micinf.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 09/19/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
|
34
|
Koffi M, Solano P, Barnabé C, de Meeûs T, Bucheton B, Cuny G, Jamonneau V. Genetic characterisation of Trypanosoma brucei s.l. using microsatellite typing: new perspectives for the molecular epidemiology of human African trypanosomiasis. INFECTION GENETICS AND EVOLUTION 2007; 7:675-84. [PMID: 17704009 DOI: 10.1016/j.meegid.2007.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/02/2007] [Accepted: 07/03/2007] [Indexed: 11/18/2022]
Abstract
The pathogenic agent of human African trypanosomiasis (HAT) is a trypanosome belonging to the species Trypanosoma brucei s.l. Molecular methods developed for typing T. brucei s.l. stocks are for the most part not polymorphic enough to study genetic diversity within T. brucei gambiense (T. b. gambiense) group 1, the main agent of HAT in West and Central Africa. Furthermore, these methods require high quantities of parasite material and consequently are hampered by a selection bias of the isolation and cultivation techniques. In this study, we evaluated the potential value of microsatellite markers (eight loci) in the genetic characterisation of T. brucei s.l. compared to the multi-locus enzyme electrophoresis reference technique. Stocks isolated in Ivory Coast and reference stocks were used for this purpose. Microsatellite markers were shown to be polymorphic enough to evidence the existence of genetic diversity within T. b. gambiense group 1 and to show the existence of mixed infections. Furthermore, they were able to amplify trypanosome DNA directly from field samples without the usual culturing stages. While the ability of microsatellite markers to detect mixed infections in such field samples is currently being discussed, they appear to be useful to study the parasite population's geographical structure and may provide new insight into their reproductive mode, a topic that is still under debate. Thus, use of microsatellite markers will contribute to the study of the influence of parasite genetics in the diversity of responses to HAT and may contribute to the improvement of HAT molecular diagnosis.
Collapse
Affiliation(s)
- Mathurin Koffi
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Programme Santé Animale, TA 207/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|