1
|
Ahmed SA, Eltamany EE, Nafie MS, Elhady SS, Karanis P, Mokhtar AB. Anti- Cryptosporidium parvum activity of Artemisia judaica L. and its fractions: in vitro and in vivo assays. Front Microbiol 2023; 14:1193810. [PMID: 37476671 PMCID: PMC10354666 DOI: 10.3389/fmicb.2023.1193810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
Background This study investigates the toxic activity of Artemisia judaica ethanolic extract (ArEx) as well as its phenolic fraction (ArPh), and terpenoid fraction (ArT) against Cryptosporidium parvum (C. parvum) oocysts. Methods Over a 4 months period, estimation of the total phenolic (TPC), total flavonoids (TFC), and total terpenoids contents (TTC) in ArEx; investigation of the in vitro antioxidant activity of ArEx, ArPh, and ArT; evaluation of ArEx, ArPh, and ArT toxic activity against C. parvum oocysts using MTT assay; parasitological analysis on ArPh-treated C. parvum oocysts and comet assay were performed both in vitro and in vivo (infectivity). Results The ArEx TPC, TFC, and TTC was 52.6 ± 3.1 mgGAE/g, 64.5 ± 3.1 mg QE/g, and 9.5 ± 1.1 mg Linol/g, respectively. Regarding the phytochemical in vitro antioxidant activity, the ArPh exhibited the highest antioxidant activity compared to the ArEx and ArT. The ArPh showed promising free radical scavenging activity of DPPH and ABTS•+ with IC50 values of 47.27 ± 1.86 μg/mL and 66.89 ± 1.94 μg/mL, respectively. Moreover, the FRAP of ArPh was 2.97 ± 0.65 mMol Fe+2/g while its TAC was 46.23 ± 3.15 mg GAE/g. The ArPh demonstrated toxic activity against C. parvum oocysts with a potent IC50 value of 31.6 μg/mL compared to ArT (promising) and ArEx (non-effective). ArPh parasitological analysis demonstrated MIC90 at 1000 μg/ml and effective oocysts destruction on count and morphology. ArPh fragmented oocysts nuclear DNA in comet assay. Beginning at 200 μg/mL, ArPh-treated oocysts did not infect mice. Conclusion To combat C. parvum infection, the phenolic fraction of A. judaica L. shows promise as an adjuvant therapy or as a source of potentially useful lead structures for drug discovery.
Collapse
Affiliation(s)
- Shahira A. Ahmed
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany
- Department of Basic and Clinical SciencesUniversity of Nicosia Medical School, Nicosia, Cyprus
| | - Amira B. Mokhtar
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Multilocus Sequence Typing as a Useful Tool for the Study of the Genetic Diversity and Population Structure of Cryptosporidium Spp. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
One of the most important aquatic parasites in industrialized countries, Cryptosporidium spp., is a major cause of diarrheal disease in humans and animals worldwide. The contingent evolution of cryptosporidia with hosts, host adaptation, and geographic variation contributed to the creation of species subtypes, thereby shaping their population genetic structures. Multilocus typing tools for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes have played an important role in improving our understanding of the transmission of this parasite. However, to better understand the significance of different subtypes with clinical disease manifestations and transmission risks, a large number of samples and preferably from different geographical areas need to be analyzed. This review provides an analysis of genetic variation through multilocus sequence typing, provides an overview of subtypes, typing gene markers for Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium muris and Cryptosporidium andersoni genotypes and an overview of the hosts of these parasites.
Collapse
|
3
|
Mirdha BR. Evolving Patterns of Cryptosporidiosis: Issues and Implications in the Context of Public Health in India. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractCryptosporidiosis is one of the major causes of diarrhea in immune-compromised individuals and children besides causing sporadic water-borne, food-borne, and zoonotic outbreaks. In 2016, Cryptosporidium species infection was the fifth leading cause of diarrhea and acute infection causing more than 4.2 million disability-adjusted life years lost besides a decrease in childhood growth. Human cryptosporidiosis is primarily caused by two species/genotype: Cryptosporidium hominis (anthroponotic) and Cryptosporidium parvum (zoonotic) besides other six rare species/genotypes. Transmission intensity, genetic diversity, and occurrence of genetic recombination have shaped the genus Cryptosporidium population structures into palmitic, clonal, and epidemic. Genetic recombination is more in C. parvum compared with C. hominis. Furthermore, parasite–host co-evolution, host adaptation, and geographic segregation have led to the formation of “subtype- families.” Host-adapted subtype-families have distinct geographical distribution and host preferences. Genetic exchanges between subtypes played an important role throughout the evolution of the genus leading to “adaptation introgression” that led to emergence of virulent and hyper-transmissible subtypes. The population structure of C. hominis in India appears to be more complex where both transmission intensity and genetic diversity are much higher. Further, study based on “molecular strain surveillance” has resulted newer insights into the epidemiology and transmission of cryptosporidiosis in India. The identification at the species and genotype levels is essential for the assessment of infection sources in humans and the public health potential of the parasite at large. The results of the study over three decades on cryptosporidiosis in India, in the absence of a national surveillance data, were analyzed highlighting current situation on epidemiology, genetic diversity, and distribution particularly among vulnerable population. Despite creditable efforts, there are still many areas need to be explored; therefore, the intent of this article is to facilitate future research approaches for mitigating the burden associated with this disease.
Collapse
Affiliation(s)
- Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
García-Gil Á, Abeledo-Lameiro MJ, Gómez-Couso H, Marugán J. Kinetic modeling of the synergistic thermal and spectral actions on the inactivation of Cryptosporidium parvum in water by sunlight. WATER RESEARCH 2020; 185:116226. [PMID: 32738603 DOI: 10.1016/j.watres.2020.116226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Water contamination with the enteroprotozoan parasite Cryptosporidium is a current challenge worldwide. Solar water disinfection (SODIS) has been proved as a potential alternative for its inactivation, especially at household level in low-income environments. This work presents the first comprehensive kinetic model for the inactivation of Cryptosporidium parvum oocysts by sunlight that, based on the mechanism of the process, is able to describe not only the individual thermal and spectral actions but also their synergy. Model predictions are capable of estimating the required solar exposure to achieve the desired level of disinfection under variable solar spectral irradiance and environmental temperature conditions for different locations worldwide. The thermal contribution can be successfully described by a modified Arrhenius equation while photoinactivation is based on a series-event mechanistic model. The wavelength-dependent spectral effect is modeled by means of the estimation of the C. parvum extinction coefficients and the determination of the quantum yield of the inactivation process. Model predictions show a 3.7% error with respect to experimental results carried out under a wide range of temperature (30 to 45 °C) and UV irradiance (0 to 50 W·m-2). Furthermore, the model was validated in three scenarios in which the spectral distribution radiation was modified using different plastic materials common in SODIS devices, ensuring accurate forecasting of inactivation rates for real conditions.
Collapse
Affiliation(s)
- Ángela García-Gil
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C / Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Jesús Abeledo-Lameiro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Research Institute on Chemical and Biological Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Research Institute on Chemical and Biological Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C / Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
5
|
Chique C, Hynds PD, Andrade L, Burke L, Morris D, Ryan MP, O'Dwyer J. Cryptosporidium spp. in groundwater supplies intended for human consumption - A descriptive review of global prevalence, risk factors and knowledge gaps. WATER RESEARCH 2020; 176:115726. [PMID: 32247994 DOI: 10.1016/j.watres.2020.115726] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidiosis is one of the leading causes of diarrhoeal illness and mortality induced by protozoan pathogens worldwide. As a largely waterborne disease, emphasis has been given to the study of Cryptosporidium spp. in surface waters, readily susceptible to pathogenic contamination. Conversely, the status of Cryptosporidium in potable groundwater sources, generally regarded as a pristine and "safe" drinking-water supply owing to (sub)-soil protection, remains largely unknown. As such, this investigation presents the first literature review aimed to ascertain the global prevalence of Cryptosporidium in groundwater supply sources intended for human consumption. Thirty-seven peer-reviewed studies were identified and included in the review. Groundwater sample and supply detection rates (estimated 10-20%) indicate Cryptosporidium is frequently present in domestic groundwater sources, representing a latent health concern for groundwater consumers. Specifically, sample (10.4%) and source (19.1%) detection rates deriving from comprehensive "temporal" investigations are put forward as representative of a contamination 'baseline' for Cryptosporidium in 'domestic' groundwater supplies. Proposed 'baseline' prevalence figures are largely applicable in preventive risk-based catchment and groundwater quality management including the formulation of Quantitative Microbial Risk Assessment (QMRA). Notwithstanding, a large geographical disparity in available investigations and lack of standardized reporting restrict the transferability of research findings. Overall, the mechanisms responsible for Cryptosporidium transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between groundwater and public-health sub-disciplines among investigations. Key recommendations and guidelines are provided for prospective studies directed at more integrative and multi-disciplinary research.
Collapse
Affiliation(s)
- C Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P D Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESIH), Technological University Dublin, Ireland.
| | - L Andrade
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland
| | - L Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - M P Ryan
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Ahmed SA, El-Mahallawy HS, Karanis P. Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts. Parasitol Res 2019; 118:2053-2063. [PMID: 31187224 DOI: 10.1007/s00436-019-06364-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
Cryptosporidium is a ubiquitous harsh protozoan parasite that resists many disinfectants. It remains viable and infective for a long time in water and food causing global outbreaks. Chitosan (the deacetylated chitin molecule) was used in its nanosuspension form to evaluate its effect against Cryptosporidium parvum. The experiments were performed in vitro in serial concentrations and confirmed in mice in vivo infectivity assay. Chitosan nanoparticles (Cs NPs) were toxic to Cryptosporidium oocysts. The effect appeared to decrease the number of Cryptosporidium oocysts and altered their content. The destruction rate of oocysts was dependent on the dose of chitosan and the time of exposure (P < 0.05). Higher doses of Cs NPs over a prolonged period exhibited a significantly higher destruction rate. Using staining and light microscopy, remarkable destructive changes were observed in the oocysts' morphology. The minimal lethal dose for > 90% of oocysts was 3000 μg/ml, no mice infections in vivo were observed. The results in this study elucidate Cs NPs as an effective anti-cryptosporidial agent.
Collapse
Affiliation(s)
- Shahira A Ahmed
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Heba S El-Mahallawy
- Department of Animal Hygiene, Zoonoses and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50937, Cologne, Germany
| |
Collapse
|
7
|
Adeyemo FE, Singh G, Reddy P, Bux F, Stenström TA. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One 2019; 14:e0216040. [PMID: 31083664 PMCID: PMC6513095 DOI: 10.1371/journal.pone.0216040] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/13/2019] [Indexed: 01/05/2023] Open
Abstract
Wastewater from different sources is contaminated by protozoan parasites including Cryptosporidium and Giardia. Many protozoan parasites are becoming resistant to chemical treatment. The challenge of finding alternatives is presented to researchers by exploring other methods of eliminating protozoan parasites from wastewater. The aim of this study was to assess the speciation and the viability of Cryptosporidium and Giardia in environmental samples with the specific objective of evaluating if effluent chlorination and UV affect the viability. Different doses of chlorine with different exposure times were experimented with both distilled water and waste water spiked with (oo)cysts derived from environmental samples. UV irradiation at different doses was also experimented using the same spiked samples. Two methods of quantification and detection, namely, microscopy and flow cytometry, were used in the experiment. Two vital dyes, Syto-9+PI and DAPI+PI, were the used for staining the collected wastewater samples. It was found that the (oo)cysts responded to chlorination and UV treatments with Giardia responding better than Cryptosporidium. Giardia responded very well to UV irradiations with almost 0 percent remaining viable after a low dose of UV. Cryptosporidium was found to be resistant to chlorination even at high doses but responded well to high UV doses. DAPI+PI dye gave a lower mean percentage viability values than Syto-9+PI. Flow cytometry gave higher mean percentage than microscopy from the results. It is concluded that UV is a promising alternative to Chlorine in removing Cryptosporidium and Giardia from waste water. Appropriate treatment method for wastewater is necessary to minimize water resources pollution when wastewater is released into water systems.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
- * E-mail: ,
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| |
Collapse
|
8
|
Abeledo-Lameiro MJ, Ares-Mazás E, Goméz-Couso H. Use of ultrasound irradiation to inactivate Cryptosporidium parvum oocysts in effluents from municipal wastewater treatment plants. ULTRASONICS SONOCHEMISTRY 2018; 48:118-126. [PMID: 30080534 DOI: 10.1016/j.ultsonch.2018.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Water reuse is currently considered an innovative way to addressing water shortage that can provide significant economic, social and environmental benefits, particularly -but not exclusively- in water deficient areas. The potential transmission of infectious diseases is the most common concern in relation to water reclamation. Cryptosporidium is an important genus of protozoan enteropathogens that infect a wide range of vertebrate hosts, including humans. The infective form (oocyst) is highly resistant to the environmental conditions and disinfection treatments. Consequently, Cryptosporidium is the most common etiological agent identified in waterborne outbreaks attributed to parasitic protozoa worldwide. The present study evaluates the efficacy of ultrasound disinfection, at three power levels (60, 80 and 100 W), pulsed at 50% or in continuous mode, for inactivating the waterborne protozoan parasite Cryptosporidium parvum in simulated and real effluents from municipal wastewater treatment plants (MWTPs). Overall interpretation of the results shows that the application of ultrasound irradiation at 80 W power in continuous mode for an exposure time of 10 min drastically reduced the viability of C. parvum. Thus, oocyst viabilities of 4.16 ± 1.93%; 1.29 ± 0.86%; 3.16 ± 0.69%; and 3.15 ± 0.87% were obtained in distilled water, simulated, real and filtered MWTP effluents, respectively (vs 98.57 ± 0.01%, initial oocyst viability), as determined using inclusion/exclusion of the fluorogenic vital dye propidium iodide, an indicator of the integrity of the oocyst wall. Independently of the mode used (pulsed/continuous) and at 80 W power, higher level of oocyst inactivation was detected in MWTP effluents than in distilled water used as a control solution, may be due to the differences in the chemical composition of the samples. Comparison of the results obtained in both modes showed that use of the continuous mode yielded significantly lower oocyst viability. However, when the Dose parameter was considered (energy per volume unit), no statistically significant differences in oocyst viability were observed in relation to the type of mode used. The results demonstrate that ultrasound technology represents a promising alternative to the disinfection methods (ultraviolet irradiation and chlorine products) currently used in water reclamation as it drastically reduces the survival of Cryptosporidium oocysts, without changing the chemical composition of the water or producing toxic by-products.
Collapse
Affiliation(s)
- María Jesús Abeledo-Lameiro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Goméz-Couso
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Institute of Food Research and Analysis, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
9
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
10
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
11
|
Daniels ME, Smith WA, Jenkins MW. Estimating Cryptosporidium and Giardia disease burdens for children drinking untreated groundwater in a rural population in India. PLoS Negl Trop Dis 2018; 12:e0006231. [PMID: 29377884 PMCID: PMC5805363 DOI: 10.1371/journal.pntd.0006231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/08/2018] [Accepted: 01/10/2018] [Indexed: 01/26/2023] Open
Abstract
Background In many low-income settings, despite improvements in sanitation and hygiene, groundwater sources used for drinking may be contaminated with enteric pathogens such as Cryptosporidium and Giardia, which remain important causes of childhood morbidity. In this study, we examined the contribution of diarrhea caused by Cryptosporidium and Giardia found in groundwater sources used for drinking to the total burden of diarrheal disease among children < 5 in rural India. Methodology/Principal findings We studied a population of 3,385 children < 5 years of age in 100 communities of Puri District, Odisha, India. We developed a coupled quantitative microbial risk assessment (QMRA) and susceptible-infected-recovered (SIR) population model based on observed levels of Cryptosporidium and Giardia in improved groundwater sources used for drinking and compared the QMRA-SIR estimates with independently measured all-cause (i.e., all fecal-oral enteric pathogens and exposure pathways) child diarrhea prevalence rates observed in the study population during two monsoon seasons (2012 and 2013). We used site specific and regional studies to inform assumptions about the human pathogenicity of the Cryptosporidium and Giardia species present in local groundwater. In all three human pathogenicity scenarios evaluated, the mean daily risk of Cryptosporidium or Giardia infection (0.06–1.53%), far exceeded the tolerable daily risk of infection from drinking water in the US (< 0.0001%). Depending on which protozoa species were present, median estimates of daily child diarrhea prevalence due to either Cryptosporidium or Giardia infection from drinking water was as high as 6.5% or as low as < 1% and accounted for at least 2.9% and as much as 65.8% of the all-cause diarrhea disease burden measured in children < 5 during the study period. Cryptosporidium tended to account for a greater share of estimated waterborne protozoa infections causing diarrhea than did Giardia. Diarrhea prevalence estimates for waterborne Cryptosporidium infection appeared to be most sensitive to assumptions about the probability of infection from ingesting a single parasite (i.e. the rate parameter in dose-response model), while Giardia infection was most sensitive to assumptions about the viability of parasites detected in groundwater samples. Conclusions/Significance Protozoa in groundwater drinking sources in rural India, even at low concentrations, especially for Cryptosporidium, may account for a significant portion of child diarrhea morbidity in settings were tubewells are used for drinking water and should be more systematically monitored. Preventing diarrheal disease burdens in Puri District and similar settings will benefit from ensuring water is microbiologically safe for consumption and consistent and effective household water treatment is practiced. Water, sanitation, and hygiene (WASH) interventions aimed at reducing exposure to enteric pathogens have produced mixed health impacts, with some interventions finding no significant difference in health outcomes between intervention and control groups. While there are many explanations why individual WASH interventions may not achieve improved health outcomes, one reason is an incomplete understanding of the conditions that favor perpetuation and transmission of enteric pathogens in a given population and region. In this study, we developed a set of diarrhea-causing disease transmission models using measurements of drinking water contamination and child diarrhea over the same time period in the same study population. Using the disease transmission models, we examined how much of the observed diarrhea in children was due to waterborne transmission of enteric pathogens in a program in rural India that improved household sanitation but failed to produce improvements in child health. We focused on the role of two enteric protozoal pathogens, Cryptosporidium and Giardia, and diarrhea rates among children < 5 years of age in these communities. We found that Cryptosporidium and Giardia infections from drinking water contaminated with these enteric protozoa may have together caused as much as 65.8% (IQR 63.4–68.2%) or as little as 2.9% (IQR 2.3–3.4%) of the observed diarrhea in children depending on modeling assumptions about which protozoa species were present. These findings suggest implementing a single barrier, such as only sanitation, to disrupt the multiple pathways of fecal-oral transmission of enteric pathogens, rather than multiple barriers, such as sanitation and safe drinking water, may lead some interventions to fall short of achieving measurable health improvements. Finally, our research suggests that Cryptosporidium and Giardia may cause significant amounts of child diarrhea morbidity even at low levels of concentration when present in improved drinking water sources and their measurement should be including in community drinking water quality monitoring programs.
Collapse
Affiliation(s)
- Miles E. Daniels
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, Davis, California United States of America
- Department of Institute of Marine Sciences, University of California at Santa Cruz, Santa Cruz, California, United States of America, Affiliated with: Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
- * E-mail:
| | - Woutrina A. Smith
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, Davis, California United States of America
| | - Marion W. Jenkins
- Department of Civil and Environmental Engineering, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
12
|
Petersen HH, Enemark HL. Viability Assessment of Cryptosporidium parvum Oocysts by Vital Dyes: Dry Mounts Overestimate the Number of "Ghost" Oocysts. Foodborne Pathog Dis 2017; 15:141-144. [PMID: 29185793 DOI: 10.1089/fpd.2017.2348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Viability assessment of Cryptosporidium parvum oocysts is crucial for evaluation of the public health significance of this important zoonotic protozoon. Viability is commonly assessed in wet mounts after acid pretreatment and staining with fluorogenic vital dyes. However, in some studies, oocyst viability is evaluated in dry mounts after staining in suspension. Here, we evaluate the effect of acid pretreatment in nine replicate samples and compare the assessment of oocyst viability after evaluation in wet and dry mounts, respectively. Although acid pretreatment had no significant effect on the viability scores, data obtained by scoring oocysts in dry mounts resulted in ∼25% underestimation of the proportion of viable oocyst (82.5% ± 0.9% [wet mount +acid], 57.7% ± 2.3% [dry mount, ÷ acid], 76.0% ± 1.7% [wet mount, ÷ acid]), while the proportions of nonviable oocysts (DAPI+/PI+) were comparable for wet and dry mounts (9.7% ± 0.4% [wet mount +acid], 12.1 ± 1.5% [dry mount, ÷ acid], 15.5% ± 1.1% [wet mount, ÷ acid]).
Collapse
Affiliation(s)
- Heidi H Petersen
- 1 Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark , Lyngby, Denmark
| | - Heidi L Enemark
- 2 Department of Animal Health and Food Safety, Norwegian Veterinary Institute , Oslo, Norway
| |
Collapse
|
13
|
Abeledo-Lameiro MJ, Reboredo-Fernández A, Polo-López MI, Fernández-Ibáñez P, Ares-Mazás E, Gómez-Couso H. Photocatalytic inactivation of the waterborne protozoan parasite Cryptosporidium parvum using TiO 2 /H 2 O 2 under simulated and natural solar conditions. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.05.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Yadav P, Mirdha BR, Makharia GK, Chaudhry R. Multilocus sequence typing of Cryptosporidium hominis from northern India. Indian J Med Res 2017; 145:102-111. [PMID: 28574022 PMCID: PMC5460555 DOI: 10.4103/ijmr.ijmr_1064_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Human cryptosporidiosis is endemic worldwide, and at least eight species have been reported in humans; the most common being Cryptosporidium hominis and C. parvum. Detailed understanding of the epidemiology of Cryptosporidium is increasingly facilitated using standardized universal technique for species differentiation and subtyping. In this study micro- and minisatellite targets in chromosome 6 were used to assess genetic diversity of C. hominis by sequence length polymorphisms along with single nucleotide polymorphisms (SNPs). METHODS A total of 84 Cryptosporidium positive stool specimens were subjected to speciation and genotyping using small subunit (SSU) ribosomal RNA (rRNA) as the target gene. Genetic heterogeneity amongst C. hominis isolates was assessed by sequencing minisatellites, microsatellites and polymorphic markers including genes encoding the 60 kDa glycoprotein (GP60), a 47 kDa protein (CP47), a mucin-like protein (Mucin-1), a serine repeat antigen (MSC6-7) and a 56 kDa transmembrane protein (CP56). RESULTS Of the 84 Cryptosporidium positive stool specimens, 77 (92%) were positive by SSU rRNA gene polymerase chain reaction (PCR) assay. Of these 77 isolates, 54 were identified as C. hominis and 23 as C. parvum. Of all the loci studied by multilocus sequence typing (MLST), GP60 gene could reveal the highest genetic diversity. Population substructure analysis of C. hominis performed by combined sequence length and nucleotide polymorphism showed nine multilocus subtypes, all of which were distinct groups in the study population. INTERPRETATION & CONCLUSIONS MLST, a powerful discriminatory test, demonstrated both variations and distribution pattern of Cryptosporidium species and its subtypes.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Govind K. Makharia
- Department of Gastroenterology & Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Headd B, Bradford SA. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies. WATER RESEARCH 2016; 90:185-202. [PMID: 26734779 DOI: 10.1016/j.watres.2015.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 05/06/2023]
Abstract
Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport.
Collapse
Affiliation(s)
- Brendan Headd
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA
| | - Scott A Bradford
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA.
| |
Collapse
|
16
|
Bradford SA, Kim H, Headd B, Torkzaban S. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1295-1303. [PMID: 26720840 DOI: 10.1021/acs.est.5b05296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The U.S. Environmental Protection Agency has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a range of physicochemical conditions, and compared with reported information for C. parvum oocysts. Interaction energy calculations predicted a much larger energy barrier and a shallower secondary minimum for spores than oocysts when the solution ionic strength (IS) equaled 0.1, 1, and 10 mM, and no energy barrier when the IS = 100 mM. Spores and oocysts exhibited similar trends of increasing retention with IS and decreasing Darcy water velocity (qw), and the predicted setback distance to achieve a six log removal was always larger for spores than oocysts. However, low levels of observed spore and oocyst release significantly influenced the predicted setback distance, especially when the fraction of reversibly retained microbes (Frev) was high. An estimate for Frev was obtained from large release pulses of spore and oocyst when the IS was reduced to deionized water. The value of Frev always increased with qw, whereas an opposition trend for Frev with IS was observed for spores (decreasing) and oocysts (increasing).
Collapse
Affiliation(s)
- Scott A Bradford
- U.S. Salinity Laboratory USDA, ARS, 450 W. Big Springs Road, Riverside, California 92507-4617, United States
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University , 664-14 Duckjin, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Brendan Headd
- U.S. Salinity Laboratory USDA, ARS, 450 W. Big Springs Road, Riverside, California 92507-4617, United States
| | | |
Collapse
|
17
|
Silver Nanoparticles Decrease the Viability of Cryptosporidium parvum Oocysts. Appl Environ Microbiol 2016. [PMID: 26497464 DOI: 10.1128/aem.02806‐15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocysts of the waterborne protozoan parasite Cryptosporidium parvum are highly resistant to chlorine disinfection. We show here that both silver nanoparticles (AgNPs) and silver ions significantly decrease oocyst viability, in a dose-dependent manner, between concentrations of 0.005 and 500 μg/ml, as assessed by an excystation assay and the shell/sporozoite ratio. For percent excystation, the results are statistically significant for 500 μg/ml of AgNPs, with reductions from 83% for the control to 33% with AgNPs. For Ag ions, the results were statistically significant at 500 and 5,000 μg/ml, but the percent excystation values were reduced only to 66 and 62%, respectively, from 86% for the control. The sporozoite/shell ratio was affected to a greater extent following AgNP exposure, presumably because sporozoites are destroyed by interaction with NPs. We also demonstrated via hyperspectral imaging that there is a dual mode of interaction, with Ag ions entering the oocyst and destroying the sporozoites while AgNPs interact with the cell wall and, at high concentrations, are able to fully break the oocyst wall.
Collapse
|
18
|
Silver Nanoparticles Decrease the Viability of Cryptosporidium parvum Oocysts. Appl Environ Microbiol 2015; 82:431-7. [PMID: 26497464 DOI: 10.1128/aem.02806-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Oocysts of the waterborne protozoan parasite Cryptosporidium parvum are highly resistant to chlorine disinfection. We show here that both silver nanoparticles (AgNPs) and silver ions significantly decrease oocyst viability, in a dose-dependent manner, between concentrations of 0.005 and 500 μg/ml, as assessed by an excystation assay and the shell/sporozoite ratio. For percent excystation, the results are statistically significant for 500 μg/ml of AgNPs, with reductions from 83% for the control to 33% with AgNPs. For Ag ions, the results were statistically significant at 500 and 5,000 μg/ml, but the percent excystation values were reduced only to 66 and 62%, respectively, from 86% for the control. The sporozoite/shell ratio was affected to a greater extent following AgNP exposure, presumably because sporozoites are destroyed by interaction with NPs. We also demonstrated via hyperspectral imaging that there is a dual mode of interaction, with Ag ions entering the oocyst and destroying the sporozoites while AgNPs interact with the cell wall and, at high concentrations, are able to fully break the oocyst wall.
Collapse
|
19
|
Robertson LJ, Casaert S, Valdez-Nava Y, Ehsan MA, Claerebout E. Drying of Cryptosporidium oocysts and Giardia cysts to slides abrogates use of vital dyes for viability staining. J Microbiol Methods 2014; 96:68-9. [DOI: 10.1016/j.mimet.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022]
|
20
|
Beale DJ, Marney D, Marlow DR, Morrison PD, Dunn MS, Key C, Palombo EA. Metabolomic analysis of Cryptosporidium parvum oocysts in water: a proof of concept demonstration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:201-203. [PMID: 23274448 DOI: 10.1016/j.envpol.2012.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 11/25/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Affiliation(s)
- David J Beale
- Division of Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, Victoria 3190, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs). Acta Trop 2012; 124:235-42. [PMID: 22944729 DOI: 10.1016/j.actatropica.2012.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/11/2012] [Accepted: 08/24/2012] [Indexed: 11/22/2022]
Abstract
Water samples of 0, 5, and 100 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight in 2.5l static borosilicate solar reactors fitted with two different compound parabolic concentrators (CPCs), CPC1 and CPC1.89, with concentration factors of the solar radiation of 1 and 1.89, respectively. The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. Thus, the initial global oocyst viability of the C. parvum isolate used was 95.3 ± 1.6%. Using the solar reactors fitted with CPC1, the global viability of oocysts after 12h of exposure was zero in the most turbid water samples (100 NTU) and almost zero in the other water samples (0.3 ± 0.0% for 0 NTU and 0.5 ± 0.2% for 5 NTU). Employing the solar reactors fitted with CPC1.89, after 10h exposure, the global oocyst viability was zero in the non-turbid water samples (0 NTU), and it was almost zero in the 5 NTU water samples after 8h of exposure (0.5 ± 0.5%). In the most turbid water samples (100 NTU), the global viability was 1.9 ± 0.6% after 10 and 12h of exposure. In conclusion, the use of these 2.5l static solar reactors fitted with CPCs significantly improved the efficacy of the SODIS technique as these systems shorten the exposure times to solar radiation, and also minimize the negative effects of turbidity. This technology therefore represents a good alternative method for improving the microbiological quality of household drinking water in developing countries.
Collapse
|
22
|
Zhang H, Guo F, Zhou H, Zhu G. Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. BMC Genomics 2012; 13:647. [PMID: 23171372 PMCID: PMC3542205 DOI: 10.1186/1471-2164-13-647] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/24/2012] [Indexed: 01/08/2023] Open
Abstract
Background Cryptosporidium parvum is a globally distributed zoonotic parasite and an important opportunistic pathogen in immunocompromised patients. Little is known on the metabolic dynamics of the parasite, and study is hampered by the lack of molecular and genetic tools. Here we report the development of the first Agilent microarray for C. parvum (CpArray15K) that covers all predicted ORFs in the parasite genome. Global transcriptome analysis using CpArray15K coupled with real-time qRT-PCR uncovered a number of unique metabolic features in oocysts, the infectious and environmental stage of the parasite. Results Oocyst stage parasites were found to be highly active in protein synthesis, based on the high transcript levels of genes associated with ribosome biogenesis, transcription and translation. The proteasome and ubiquitin associated components were also highly active, implying that oocysts might employ protein degradation pathways to recycle amino acids in order to overcome the inability to synthesize amino acids de novo. Energy metabolism in oocysts was featured by the highest level of expression of lactate dehydrogenase (LDH) gene. We also studied parasite responses to UV-irradiation, and observed complex and dynamic regulations of gene expression. Notable changes included increased transcript levels of genes involved in DNA repair and intracellular trafficking. Among the stress-related genes, TCP-1 family members and some thioredoxin-associated genes appear to play more important roles in the recovery of UV-induced damages in the oocysts. Our observations also suggest that UV irradiation of oocysts results in increased activities in cytoskeletal rearrangement and intracellular membrane trafficking. Conclusions CpArray15K is the first microarray chip developed for C. parvum, which provides the Cryptosporidium research community a needed tool to study the parasite transcriptome and functional genomics. CpArray15K has been successfully used in profiling the gene expressions in the parasite oocysts as well as their responses to UV-irradiation. These observations shed light on how the parasite oocysts might adapt and respond to the hostile external environment and associated stress such as UV irradiation.
Collapse
Affiliation(s)
- Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
23
|
Comparison of different solar reactors for household disinfection of drinking water in developing countries: evaluation of their efficacy in relation to the waterborne enteropathogen Cryptosporidium parvum. Trans R Soc Trop Med Hyg 2012; 106:645-52. [PMID: 23032082 DOI: 10.1016/j.trstmh.2012.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022] Open
Abstract
Solar water disinfection (SODIS) is a type of treatment that can significantly improve the microbiological quality of drinking water at household level and therefore prevent waterborne diseases in developing countries. Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrhoeal disease cryptosporidiosis in humans and animals. Recently, this parasite has been selected by the WHO as a reference pathogen for protozoan parasites in the evaluation of household water treatment options. In this study, the field efficacy of different static solar reactors [1.5 l transparent plastic polyethylene terephthalate (PET) bottles as well as 2.5 l borosilicate glass and 25 l methacrylate reactors fitted with compound parabolic concentrators (CPC)] for solar disinfection of turbid waters experimentally contaminated with C. parvum oocysts was compared. Potential oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. The results demonstrate that static solar reactors fitted with CPCs are an excellent alternative to the conventional SODIS method with PET bottles. These reactors improved the efficacy of the SODIS method by enabling larger volumes of water to be treated and, in some cases, the C. parvum oocysts were rendered totally unviable, minimising the negative effects of turbidity.
Collapse
|
24
|
Bridle H, Kersaudy-Kerhoas M, Miller B, Gavriilidou D, Katzer F, Innes EA, Desmulliez MPY. Detection of Cryptosporidium in miniaturised fluidic devices. WATER RESEARCH 2012; 46:1641-1661. [PMID: 22305660 DOI: 10.1016/j.watres.2012.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 05/28/2023]
Abstract
Contamination of drinking water with the protozoan pathogen, Cryptosporidium, represents a serious risk to human health due to the low infectious dose and the resistance of this parasite to chlorine disinfection. Therefore, several countries have legislated for the frequent monitoring of drinking water for Cryptosporidium presence. Existing approved monitoring protocols are however time-consuming and do not provide essential information on the species, virulence or viability of detected oocysts. Rapid, more information-rich and automatable systems for Cryptosporidium detection are highly sought-after, and numerous miniaturised devices have been developed to address this need. This review article aims to summarise the state-of-the-art and compare the performance of these systems in terms of detection limit, ability to determine species, viability and performance in the presence of interferents. Finally, conclusions are drawn with regard to the most promising methods and directions of future research.
Collapse
Affiliation(s)
- Helen Bridle
- University of Edinburgh, King's Buildings, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
25
|
Heaselgrave W, Kilvington S. The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium. Acta Trop 2011; 119:138-43. [PMID: 21635868 DOI: 10.1016/j.actatropica.2011.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
The antimicrobial activity of simulated solar disinfection (SODIS) in the presence and absence of riboflavin against various protozoa and helminth organisms was investigated in this study. Assays were conducted in transparent 12 well microtitre plates containing a suspension of test organisms in the presence or absence of 250 μM riboflavin. Plates were exposed to simulated sunlight at an optical irradiance of 550 Wm(-2) (watts per square metre) delivered from a SUNTEST™ CPS+ solar simulator. Aliquots of the test suspensions were taken at set time points and the viability of the test organisms was determined by either culture, microscopy or flow cytometry where applicable. With Acanthamoeba, Naegleria, Entamoeba and Giardia exposure to SODIS at an optical irradiance of 550 Wm(-2) for up to 6h resulted in significant inactivation of these organisms. The addition of riboflavin to this system significantly increased the level of inactivation observed with cysts of A. castellanii. With Cryptosporidium oocysts and Ascaris ova exposure to SODIS in the presence and absence of riboflavin for 6-8h resulted in a negligible reduction in viability of both organisms. In this present study we have been able to show that SODIS is effective against a variety of previously untested waterborne organisms and with A. castellanii cysts the addition of micro-molar concentrations of riboflavin can enhance cyst inactivation. However, care must be taken as Ascaris larvae continue to develop inside the ova after exposure to SODIS and Cryptosporidium remain impermeable to propidium iodide staining indicating they may still be infectious.
Collapse
|
26
|
Bouzid M, Tyler KM, Christen R, Chalmers RM, Elwin K, Hunter PR. Multi-locus analysis of human infective Cryptosporidium species and subtypes using ten novel genetic loci. BMC Microbiol 2010; 10:213. [PMID: 20696051 PMCID: PMC2928199 DOI: 10.1186/1471-2180-10-213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/09/2010] [Indexed: 01/27/2023] Open
Abstract
Background Cryptosporidium is a protozoan parasite that causes diarrheal illness in a wide range of hosts including humans. Two species, C. parvum and C. hominis are of primary public health relevance. Genome sequences of these two species are available and show only 3-5% sequence divergence. We investigated this sequence variability, which could correspond either to sequence gaps in the published genome sequences or to the presence of species-specific genes. Comparative genomic tools were used to identify putative species-specific genes and a subset of these genes was tested by PCR in a collection of Cryptosporidium clinical isolates and reference strains. Results The majority of the putative species-specific genes examined were in fact common to C. parvum and C. hominis. PCR product sequence analysis revealed interesting SNPs, the majority of which were species-specific. These genetic loci allowed us to construct a robust and multi-locus analysis. The Neighbour-Joining phylogenetic tree constructed clearly discriminated the previously described lineages of Cryptosporidium species and subtypes. Conclusions Most of the genes identified as being species specific during bioinformatics in Cryptosporidium sp. are in fact present in multiple species and only appear species specific because of gaps in published genome sequences. Nevertheless SNPs may offer a promising approach to studying the taxonomy of closely related species of Cryptosporidia.
Collapse
Affiliation(s)
- Maha Bouzid
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
27
|
Gómez-Couso H, Fontán-Sainz M, Ares-Mazás E. Thermal contribution to the inactivation of Cryptosporidium in plastic bottles during solar water disinfection procedures. Am J Trop Med Hyg 2010; 82:35-9. [PMID: 20064992 DOI: 10.4269/ajtmh.2010.09-0284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To determine the thermal contribution, independent of ultraviolet radiation, on the inactivation of Cryptosporidium parvum during solar water disinfection procedures (SODIS), oocysts were exposed for 4, 8, and 12 hours to temperatures recorded in polyethylene terephthalate bottles in previous SODIS studies carried out under field conditions. Inclusion/exclusion of the fluorogenic vital dye propidium iodide, spontaneous excystation, and infectivity studies were used to determine the inactivation of oocysts. There was a significant increase in the percentage of oocysts that took up propidium iodide and in the number of oocysts that excysted spontaneously. There was also a significant decrease in the intensity of infection elicited in suckling mice at the end of all exposure times. The results of the study demonstrate the importance of temperature in the inactivation of C. parvum oocysts during application of SODIS under natural conditions.
Collapse
Affiliation(s)
- Hipólito Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | | |
Collapse
|
28
|
Gómez-Couso H, Fontán-Sainz M, McGuigan KG, Ares-Mazás E. Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water. Acta Trop 2009; 112:43-8. [PMID: 19539587 DOI: 10.1016/j.actatropica.2009.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/28/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The solar disinfection (SODIS) technique is a highly effective process that makes use of solar energy to inactivate pathogenic microorganisms in drinking water in developing countries. The pathogenic protozoan parasite Cryptosporidium parvum is often found in surface waters and is associated with waterborne outbreaks of cryptosporidiosis. In the present study, a complete multi-factorial mathematical model was used to investigate the combined effects of the intensity of solar radiation (200, 600 and 900W/m(2) in the 320nm to 10microm range), water turbidity (5, 100 and 300 NTU) and exposure time (4, 8 and 12h) on the viability and infectivity of C. parvum oocysts during simulated SODIS procedures at a constant temperature of 30 degrees C. All three factors had significant effects (p<0.05) on C. parvum survival, as did the interactions of water turbidity with radiation intensity and radiation intensity with exposure time. However, the parameter with the greatest effect was the intensity of radiation; levels > or =600W/m(2) and times of exposure between 8 and 12h were required to reduce the oocyst infectivity in water samples with different degrees of turbidity.
Collapse
|
29
|
Rivas L, Luque-Ortega JR, Andreu D. Amphibian antimicrobial peptides and Protozoa: Lessons from parasites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1570-81. [DOI: 10.1016/j.bbamem.2008.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 02/06/2023]
|
30
|
Gómez-Couso H, Fontán-Saínz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás E. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated withCryptosporidium parvumoocysts under real field conditions. Trop Med Int Health 2009; 14:620-7. [DOI: 10.1111/j.1365-3156.2009.02281.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Giangaspero A, Cirillo R, Lacasella V, Lonigro A, Marangi M, Cavallo P, Berrilli F, Di Cave D, Brandonisio O. Giardia and Cryptosporidium in inflowing water and harvested shellfish in a Lagoon in Southern Italy. Parasitol Int 2009; 58:12-7. [DOI: 10.1016/j.parint.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 07/22/2008] [Accepted: 07/25/2008] [Indexed: 11/29/2022]
|
32
|
Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection. Parasitology 2009; 136:393-9. [PMID: 19195413 DOI: 10.1017/s0031182009005563] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Species belonging to the genera Cryptosporidium are recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated with Cryptosporidium parvum oocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37-50 degrees C), on the excystation of C. parvum in the absence of other stimuli. In samples exposed to 40-48 degrees C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53.81% of excystation was obtained on exposure of the water to a temperature of 46 degrees C for 12 h (versus 8.80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19.38% versus 100%). The results demonstrate the important effect of the temperature on the excystation of C. parvum and therefore on its viability and infectivity.
Collapse
|
33
|
Robertson LJ, Gjerde B. Development and use of a pepsin digestion method for analysis of shellfish for Cryptosporidium oocysts and Giardia cysts. J Food Prot 2008; 71:959-66. [PMID: 18522030 DOI: 10.4315/0362-028x-71.5.959] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Investigation of shellfish for Cryptosporidium oocysts and Giardia cysts is of public health interest because shellfish may concentrate these pathogens in their bodies, and because shellfish are frequently eaten raw or lightly cooked. To date, the methods used for the analysis of shellfish for these parasites are based on those originally designed for water concentrates or fecal samples; the reported recovery efficiencies are frequently relatively low and the amount of sample examined is small. Here, we describe the development and use of a pepsin digestion method for analyzing shellfish samples for these parasites. The conditions of the isolation method did not affect subsequent parasite detection by immunofluorescent antibody test, and allowed examination of 3-g samples of shellfish homogenate, with recovery efficiencies from blue mussel homogenates of between 70 and 80%, and similar recoveries from horse mussel and oyster homogenates. Although exposure of the parasites to the conditions used in the technique affected their viability, as assessed by vital dyes, the maximum reduction in viability after 1-h incubation in digestion solution was 20%. In a preliminary survey of shellfish collected from the Norwegian coast, Cryptosporidium oocysts were detected in blue mussel homogenates in 6 (43%) of 14 batches and Giardia cysts in 7 (50%) of these batches. However, this relatively high occurrence, compared with other surveys, may be due to the higher recovery efficiency of the new method, and the relatively large sample size analyzed. A more comprehensive study of the occurrence of these parasites in shellfish would be of pertinence to the Norwegian shellfish industry.
Collapse
Affiliation(s)
- L J Robertson
- Parasitology Laboratory, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, 0033 Oslo, Norway.
| | | |
Collapse
|
34
|
Neumayerová H, Koudela B. Effects of low and high temperatures on infectivity of Cryptosporidium muris oocysts suspended in water. Vet Parasitol 2008; 153:197-202. [PMID: 18372114 DOI: 10.1016/j.vetpar.2008.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 11/30/2022]
Abstract
Cryptosporidium muris oocysts suspended in 200 microl of water were pipetted into plastic microcentrifuge tubes which were stored at 4 degrees C or frozen at -5 degrees C for 1, 3, 5, 7, and 10 days and at -20 degrees C for 1, 3, 5, and 8h, respectively. Other samples of C. muris oocysts suspended in water were heated in the metal block of a thermal DNA cycler. Block temperatures were set at 5 degrees C incremental temperatures from 40 to 70 degrees C. At each high temperature setting microcentrifuge tubes containing C. muris oocysts were exposed for 1 min. Both, frozen and heated oocyst suspensions as well as untreated control oocyst suspensions were then inoculated into each of four ICR mice by gastric intubation. Untreated, freeze-thawed or heated oocysts were considered infectious when oocysts of C. muris were found microscopically in the faeces of mice after inoculation. All inoculated mice that received oocysts frozen at -5 degrees C for 3, 5, 7, and 10 days and -20 degrees C for 1, 3, 5, and 8h had no oocysts in faeces. In contrast, C. muris oocysts frozen at -5 degrees C for 1 day remained infective for inoculated mice. Our results also indicated that when water containing C. muris oocysts was exposed at a temperature of 55 degrees C or higher for 1 min, the infectivity of oocysts was lost.
Collapse
Affiliation(s)
- Helena Neumayerová
- Department of Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | | |
Collapse
|
35
|
The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: a review. Int J Food Microbiol 2007; 120:201-16. [PMID: 17928081 DOI: 10.1016/j.ijfoodmicro.2007.07.058] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/03/2007] [Accepted: 07/22/2007] [Indexed: 11/22/2022]
Abstract
Most marine molluscan bivalve shellfish feed on suspended phytoplankton which are trapped from water pumped across the gills by ciliary action. Pathogenic microorganisms in the water may be filtered by the gills during feeding, and become concentrated in the digestive glands/tract. If these pathogens are not excreted or inactivated by the shellfish, or in subsequent preparatory processes, they may be ingested by consumers, the shellfish thereby acting as vehicles of infection. The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii have the potential to be transmitted in this way, and here we review the accumulating knowledge on the occurrence and survival of the transmission stages of these parasites in shellfish, whilst also emphasising the considerable gaps in our knowledge. Relevant information is particularly lacking for T. gondii, which, in comparison with Cryptosporidium spp. and G. duodenalis, has been relatively under-researched in this context. Although it seems evident that these shellfish can accumulate and concentrate all three of these parasites from the surrounding water, whether Giardia cysts remain viable and infectious is unknown, and some evidence suggests that they may be inactivated by the shellfish. Although both Toxoplasma and Cryptosporidium apparently retain their infectivity for prolonged periods in shellfish, the actual public health threat posed by these parasites via these shellfish is unclear, largely because there is minimal evidence of infection transmission. Reasons for this apparent lack of infection transmission are discussed and it is recommended that the potential for transmission via shellfish consumption is recognised by those concerned with investigating transmission of these infections.
Collapse
|