1
|
Boraschi D, Toepfer E, Italiani P. Innate and germline immune memory: specificity and heritability of the ancient immune mechanisms for adaptation and survival. Front Immunol 2024; 15:1386578. [PMID: 38903500 PMCID: PMC11186993 DOI: 10.3389/fimmu.2024.1386578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The immune memory is one of the defensive strategies developed by both unicellular and multicellular organisms for ensuring their integrity and functionality. While the immune memory of the vertebrate adaptive immune system (based on somatic recombination) is antigen-specific, encompassing the generation of memory T and B cells that only recognize/react to a specific antigen epitope, the capacity of vertebrate innate cells to remember past events is a mostly non-specific mechanism of adaptation. This "innate memory" can be considered as germline-encoded because its effector tools (such as innate receptors) do not need somatic recombination for being active. Also, in several organisms the memory-related information is integrated in the genome of germline cells and can be transmitted to the progeny for several generations, but it can also be erased depending on the environmental conditions. Overall, depending on the organism, its environment and its living habits, innate immune memory appears to be a mechanism for achieving better protection and survival against repeated exposure to microbes/stressful agents present in the same environment or occurring in the same anatomical district, able to adapt to changes in the environmental cues. The anatomical and functional complexity of the organism and its lifespan drive the generation of different immune memory mechanisms, for optimal adaptation to changes in the living/environmental conditions. The concept of innate immunity being non-specific needs to be revisited, as a wealth of evidence suggests a significant degree of specificity both in the primary immune reaction and in the ensuing memory-like responses. This is clearly evident in invertebrate metazoans, in which distinct scenarios can be observed, with both non-specific (immune enhancement) or specific (immune priming) memory-like responses. In the case of mammals, there is evidence that some degree of specificity can be attained in different situations, for instance as organ-specific protection rather than microorganism-specific reaction. Thus, depending on the challenges and conditions, innate memory can be non-specific or specific, can be integrated in the germline and transmitted to the progeny or be short-lived, thereby representing an exceptionally plastic mechanism of defensive adaptation for ensuring individual and species survival.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Stazione Zoologica Anton Dorhn, Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Application, Shenzhen, China
| | | | - Paola Italiani
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Stazione Zoologica Anton Dorhn, Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Application, Shenzhen, China
| |
Collapse
|
2
|
Sułek M, Kordaczuk J, Mak P, Śmiałek-Bartyzel J, Hułas-Stasiak M, Wojda I. Immune priming modulates Galleria mellonella and Pseudomonas entomophila interaction. Antimicrobial properties of Kazal peptide Pr13a. Front Immunol 2024; 15:1358247. [PMID: 38469316 PMCID: PMC10925678 DOI: 10.3389/fimmu.2024.1358247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Galleria mellonella larvae repeatedly infected with Pseudomonas entomophila bacteria re-induced their immune response. Its parameters, i.e. the defence activities of cell-free hemolymph, the presence and activity of antimicrobial peptides, and the expression of immune-relevant genes were modulated after the re-challenge in comparison to non-primed infected larvae, resulting in better protection. No enhanced resistance was observed when the larvae were initially infected with other microorganisms, and larvae pre-infected with P. entomophila were not more resistant to further infection with other pathogens. Then, the peptide profiles of hemolymph from primed- and non-primed larvae infected with P. entomophila were compared by quantitative RP-HPLC (Reverse Phase - High Performance Liquid Chromatography). The level of carbonic anhydrase, anionic peptide-1, proline peptide-2, and finally, unknown so far, putative Kazal peptide Pr13a was higher in the primed infected animals than in the larvae infected with P. entomophila for the first time. The expression of the Pr13a gene increased two-fold after the infection, but only in the primed animals. To check whether the enhanced level of Pr13a could have physiological significance, the peptide was purified to homogeneity and checked for its defence properties. In fact, it had antibacterial activity: at the concentration of 15 µM and 7.5 µM it reduced the number of P. entomophila and Bacillus thuringiensis CFU, respectively, to about 40%. The antibacterial activity of Pr13a was correlated with changes observed on the surface of the peptide-treated bacteria, e.g. surface roughness and adhesion force. The presented results bring us closer to finding hemolymph constituents responsible for the effect of priming on the immune response in re-infected insects.
Collapse
Affiliation(s)
- Michał Sułek
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Śmiałek-Bartyzel
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
3
|
Ng TH, Harrison MC, Scharsack JP, Kurtz J. Disentangling specific and unspecific components of innate immune memory in a copepod-tapeworm system. Front Immunol 2024; 15:1307477. [PMID: 38348037 PMCID: PMC10859752 DOI: 10.3389/fimmu.2024.1307477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Evidence that the innate immune system can respond with forms of memory upon reinfection has been accumulating over the past few years. These phenomena of "immune priming" in invertebrates, and "trained immunity" in vertebrates, are contrary to previous belief that immune memory and specificity are restricted to the adaptive immune system. However, while trained immunity is usually a response with rather low specificity, immune priming has shown highly specific responses in certain species. To date, it is largely unknown how specificity in innate immune memory can be achieved in response to different parasite types. Here, we revisited a system where an exceptionally high degree of innate immune specificity had been demonstrated for the first time, consisting of the copepod Macrocyclops albidus and its natural parasite, the tapeworm Schistocephalus solidus. Using homologous (same family) vs. heterologous (different family) priming-challenge experiments, we first confirm that copepods exposed to the same parasite family benefit from reduced secondary infections. We further focused on exposed-but-not-infected copepods in primary exposure to employ a transcriptomic approach, distinguishing between immunity that was either specific or unspecific regarding the discrimination between tapeworm types. A weighted gene co-expression network (WGCN) revealed differences between specific and unspecific immunity; while both involved histone modification regulation, specific immunity involved gene-splicing factors, whereas unspecific immunity was primarily involved in metabolic shift. We found a functional enrichment in spliceosome in specific immunity, whereas oxidative phosphorylation and carbon metabolism were enriched in unspecific immunity. Our findings allow discrimination of specific and unspecific components of an innate immune memory, based on gene expression networks, and deepen our understanding of basic aspects of immune systems.
Collapse
Affiliation(s)
- Tze Hann Ng
- *Correspondence: Tze Hann Ng, ; Joachim Kurtz,
| | | | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BMC Biol 2024; 22:9. [PMID: 38233809 PMCID: PMC10795318 DOI: 10.1186/s12915-024-01814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Robin A Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
6
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552006. [PMID: 38014205 PMCID: PMC10680569 DOI: 10.1101/2023.08.04.552006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum has long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. The final assembled and filtered Berghia genome is comparable to other high quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes), and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A. Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Robin A. Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F. Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A. Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R. Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C. Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O. Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T. Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M. Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C. Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Cabrera K, Hoard DS, Gibson O, Martinez DI, Wunderlich Z. Drosophila immune priming to Enterococcus faecalis relies on immune tolerance rather than resistance. PLoS Pathog 2023; 19:e1011567. [PMID: 37566589 PMCID: PMC10446173 DOI: 10.1371/journal.ppat.1011567] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Innate immune priming increases an organism's survival of a second infection after an initial, non-lethal infection. We used Drosophila melanogaster and an insect-derived strain of Enterococcus faecalis to study transcriptional control of priming. In contrast to other pathogens, the enhanced survival in primed animals does not correlate with decreased E. faecalis load. Further analysis shows that primed organisms tolerate, rather than resist infection. Using RNA-seq of immune tissues, we found many genes were upregulated in only primed flies, suggesting a distinct transcriptional program in response to initial and secondary infections. In contrast, few genes continuously express throughout the experiment or more efficiently re-activate upon reinfection. Priming experiments in immune deficient mutants revealed Imd is largely dispensable for responding to a single infection but needed to fully prime. Together, this indicates the fly's innate immune response is plastic-differing in immune strategy, transcriptional program, and pathway use depending on infection history.
Collapse
Affiliation(s)
- Kevin Cabrera
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Duncan S. Hoard
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Olivia Gibson
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Daniel I. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Zeba Wunderlich
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Prigot-Maurice C, Depeux C, Paulhac H, Braquart-Varnier C, Beltran-Bech S. Immune priming in Armadillidiumvulgare against Salmonellaenterica: direct or indirect costs on life history traits? Zookeys 2022; 1101:131-158. [PMID: 36760973 PMCID: PMC9848923 DOI: 10.3897/zookeys.1101.77216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Invertebrate immune priming is defined as an enhanced protection against secondary pathogenic infections when individuals have been previously exposed to the same or a different pathogen. Immune priming can be energetically costly for individuals, thus impacting trade-offs between life-history traits, like reproduction, growth, and lifetime. Here, the reproductive cost(s) and senescence patterns of immune priming against S.enterica in the common woodlouse A.vulgare (Crustacea, Isopoda) were investigated. Four different groups of females were used that either (1) have never been injected (control), (2) were injected twice with S.enterica (7 days between infections), (3) were firstly injected with LB-broth, then with S.enterica, and (4) females injected only once with S.enterica. All females were allowed to breed with one non-infected male and were observed for eight months. Then, the number of clutches produced, the time taken to produce the clutch(es), the number of offspring in each clutch, the senescence biomarkers of females, and parameters of their haemocytes were compared. The result was that immune priming did not significantly impact reproductive abilities, senescence patterns, and haemocyte parameters of female A.vulgare, but had an indirect effect through body weight. The lighter immune primed females took less time to produce the first clutch, which contained less offspring, but they were more likely to produce a second clutch. The opposite effects were observed in the heavier immune primed females. By highlighting that immune priming was not as costly as expected in A.vulgare, these results provide new insights into the adaptive nature of this immune process.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Charlotte Depeux
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Hélène Paulhac
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Christine Braquart-Varnier
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Sophie Beltran-Bech
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| |
Collapse
|
9
|
Kanno AI, Boraschi D, Leite LCC, Rodriguez D. Recombinant BCG Expressing the Subunit 1 of Pertussis Toxin Induces Innate Immune Memory and Confers Protection against Non-Related Pathogens. Vaccines (Basel) 2022; 10:vaccines10020234. [PMID: 35214691 PMCID: PMC8879706 DOI: 10.3390/vaccines10020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
BCG has shown the ability to induce protection against unrelated pathogens, which likely depends on an immune mechanism known as innate immune memory or trained immunity. In this study, we evaluated the induction of innate memory by a recombinant BCG strain expressing the genetically detoxified S1 subunit of the pertussis toxin (rBCG-S1PT). In vitro pre-exposure of naïve murine macrophages to rBCG-S1PT increased their innate/inflammatory response (IL-6, TNF-α, and IL-10) to a subsequent challenge with unrelated pathogens, as compared to pre-exposure to wild-type BCG. Following LPS challenge, mice immunized with rBCG-S1PT produced higher levels of IFN-γ, while the release of other inflammatory cytokines was comparable to that measured after BCG immunization. SCID mice previously immunized with rBCG-S1PT and challenged with pathogenic Candida albicans displayed a similar survival curve as BCG-immunized mice but a lower CFU burden in the kidneys, suggesting an innate memory-dependent control of C. albicans infection. This study highlights the potential of recombinant BCG to increase innate immune memory and, ultimately, non-specific protection, more effectively than wild-type BCG. To our knowledge, this is the first report describing the potential of a recombinant BCG strain to strengthen innate immune memory responses.
Collapse
Affiliation(s)
- Alex I. Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.I.K.); (L.C.C.L.)
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China;
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.I.K.); (L.C.C.L.)
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.I.K.); (L.C.C.L.)
- Correspondence:
| |
Collapse
|
10
|
Liu QX, Su ZP, Liu HH, Lu SP, Zhao Y, Ma B, Hou YM, Shi ZH. Current understanding and perspectives on the potential mechanisms of immune priming in beetles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104305. [PMID: 34718077 DOI: 10.1016/j.dci.2021.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Beetles are the most diverse group of insects in Insecta which can be found in almost every habitat and environment on Earth. The possessing of the rapid and effective immune defenses is one of the important factors for their success. It is generally recognized that beetles only rely on the non-specific innate immune defense, without immunological memory, to fight against pathogens. However, there was cumulative evidence for the innate immune memory in invertebrates, including beetles, over the last decades, implying that insect innate immunity is more complex and has more features than previously thought. In beetles, it has been well documented that the specific or nonspecific enhanced immunocompetence can persist throughout development within generations and can even be transferred to the descendents in the next generation. Although insect immune priming might be shaped by epigenetic modifications and transferring effectors, mRNA and microbial signals, the solid experimental evidence to support the causal relationship between any of them and immune priming is still scarce. The combined usage of 'omics' approaches and CRISPR/Cas9 in the appropriate insect models with well-known genetic background, Tribolium castaneum and Tenebrio molitor, will help us to decipher the molecular mechanisms by which immune priming occurs in beetles in depth.
Collapse
Affiliation(s)
- Qian-Xia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi-Ping Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui-Hui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sheng-Ping Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bing Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhang-Hong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
12
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J Anim Ecol 2021; 91:101-111. [PMID: 34626485 DOI: 10.1111/1365-2656.13604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
The terminal investment hypothesis predicts that as an organism's prospects for survival decrease, through age or when exposed to a pathogenic infection, it will invest more in reproduction, which should trade-off against somatic maintenance (including immunity) and therefore future survival. Attempts to test this hypothesis have produced mixed results, which, in addition, mainly rely on the assessment of changes in reproductive effort and often overlooking its impact on somatic defences and survival. Alternatively, animals may restrain current reproduction to sustain somatic protection, increasing the chance of surviving for additional reproductive opportunities. We tested both of these hypotheses in females of the yellow mealworm beetle, Tenebrio molitor, an iteroparous insect with reproductive tactics similar to that of long-lived organisms. To achieve this, we mimicked pathogenic bacterial infections early or late in the life of breeding females by injecting them with a suspension of inactivated Bacillus cereus, a known natural pathogen of T. molitor, and measured female age-specific fecundity, survival, body mass and immunity. Inconsistent with a terminal investment, females given either an early or late-life immune challenge did not exhibit reduced survival or enhance their reproductive output. Female fecundity declined with age and was reduced by the early but not the late immune challenge. Both early and late-life fecundity correlated positively with life expectancy. Finally, young and old females exhibited similar antibacterial immune responses, suggesting that they both restrained reproduction to sustain immunity. Our results clearly demonstrate that age-specific reproduction of T. molitor females under pathogenic threat is inconsistent with a terminal investment. In contrast, our results instead suggest that females used a reproductive restraint strategy to sustain immunity and therefore subsequent reproductive opportunities. However, as infections were mimicked only, the fitness benefit of this reproductive restraint could not be shown.
Collapse
Affiliation(s)
- Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Camille Sabarly
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
13
|
Trained Immunity as an Adaptive Branch of Innate Immunity. Int J Mol Sci 2021; 22:ijms221910684. [PMID: 34639025 PMCID: PMC8508929 DOI: 10.3390/ijms221910684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The concept of trained immunity has become one of the most interesting and potentially commercially and clinically relevant ideas of current immunology. Trained immunity is realized by the epigenetic reprogramming of non-immunocompetent cells, primarily monocytes/macrophages and natural killer (NK) cells, and is less specific than adaptive immunity; therefore, it may cross-protect against other infectious agents. It remains possible, however, that some of the observed changes are simply caused by increased levels of immune reactions resulting from supplementation with immunomodulators, such as glucan. In addition, the question of whether we can talk about trained immunity in cells with a life span of only few days is still unresolved.
Collapse
|
14
|
Sułek M, Kordaczuk J, Wojda I. Current understanding of immune priming phenomena in insects. J Invertebr Pathol 2021; 185:107656. [PMID: 34464656 DOI: 10.1016/j.jip.2021.107656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
It may seem that the most important issues related to insect immunity have already been described. However, novel phenomena observed in recent years shed new light on the understanding of the immune response in insects.The adaptive abilities of insects helped them to populate all ecological land niches.One important adaptive ability of insects that facilitates their success is the plasticity of their immune system. Although they only have innate immune mechanisms, insects can increase their resistance after the first encounter with the pathogen. In recent years, this phenomenon,namedimmunepriming, has become a "hot topic" in immunobiology.Priming can occur within or across generations. In the first case, the resistance of a given individual can increase after surviving a previous infection. Transstadial immune priming occurs when infection takes place at one of the initial developmental stages and increased resistance is observed at the pupal or imago stages. Priming across generations (transgenerationalimmune priming, TGIP) relies on the increased resistance of the offspring when one or both parents are infected during their lifetime.Despite the attention that immune priming has received, basic questions remain to be answered, such as regulation of immune priming at the molecular level. Research indicates that pathogen recognition receptors (PRRs) can be involved in the priming phenomenon. Recent studies have highlighted the special role of microRNAs and epigenetics, which can influence expression of genes that can be transmitted through generations although they are not encoded in the nucleotide sequence. Considerable amounts of research are required to fully understand the mechanisms that regulate priming phenomena. The aim of our work is to analyse thoroughly the most important information on immune priming in insects and help raise pertinent questions such that a greater understanding of this phenomenon can be obtained in the future.
Collapse
Affiliation(s)
- Michał Sułek
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, Lublin 20-033, Poland.
| | - Jakub Kordaczuk
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, Lublin 20-033, Poland
| | - Iwona Wojda
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, Lublin 20-033, Poland.
| |
Collapse
|
15
|
Prigot-Maurice C, de Cerqueira De Araujo A, Beltran-Bech S, Braquart-Varnier C. Immune priming depends on age, sex and Wolbachia in the interaction between Armadillidium vulgare and Salmonella. J Evol Biol 2020; 34:256-269. [PMID: 33108676 DOI: 10.1111/jeb.13721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
The protection conferred by a first infection upon a second pathogenic exposure (i.e. immune priming) is an emergent research topic in the field of invertebrate immunity. Immune priming has been demonstrated in various species, but little is known about the intrinsic factors that may influence this immune process. In this study, we tested whether age, gender and the symbiotic bacterium Wolbachia affect the protection resulting from immune priming in A. vulgare against S. enterica. We firstly primed young and old, symbiotic and asymbiotic males and females, either with a non-lethal low dose of S. enterica, LB broth or without injection (control). Seven days post-injection, we performed a LD50 injection of S. enterica in all individuals and we monitored their survival rates. We demonstrated that survival capacities depend on these three factors: young and old asymbiotic individuals (males and females) expressed immune priming (S. enterica-primed individuals survived better than LB-primed and non-primed), with a general decline in the strength of protection in old females, but not in old males, compared to young. When Wolbachia is present, the immune priming protection was observed in old, but not in young symbiotic individuals, even if the Wolbachia load on entire individuals is equivalent regardless to age. Our overall results showed that the immune priming protection in A. vulgare depends on individuals' states, highlighting the need to consider these factors both in mechanistical and evolutionary studies focusing on invertebrate's immunity.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Poitiers Cedex 9, France
| | - Alexandra de Cerqueira De Araujo
- Institut de Recherche sur la Biologie de l'Insecte - UMR CNRS 7261, Université François-Rabelais - UFR Sciences et Techniques, Tours, France
| | - Sophie Beltran-Bech
- Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Poitiers Cedex 9, France
| | - Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Poitiers Cedex 9, France
| |
Collapse
|
16
|
Low CF, Chong CM. Peculiarities of innate immune memory in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2020; 104:605-612. [PMID: 32619624 DOI: 10.1016/j.fsi.2020.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Classical characteristic of the innate immune system is the lack of ability to build up immunological memory, contrast to the adaptive immune system that is capable of "remembering" antigens, and rapidly mount a greater magnitude of immune response upon subsequent exposure to the same antigens. Peculiarly, immunological memory of innate immunity is evidenced in invertebrates. At least three different memory phenomena have been described, namely sustained unique response, recalled response, and immune shift. Studies attended to decipher the mechanistic biology of the innate immune memory reveals the role of epigenetics, which modulates the response of immune memory, and the heritability of immune memory to subsequent generations. A parthenogenetic Artemia model demonstrated successful transgenerational epigenetic inheritance of resistance trait against Vibrio campbellii. Following, the role of invertebrate hemocytes and Down syndrome cell adhesion molecule (Dscam) in innate immune memory is reviewed. While there is no vertebrate antibody homolog found in invertebrates, Dscam was found to resemble the functionality of vertebrate antibody. Insight of Dscam as immune factor was illustrated further in the current review.
Collapse
Affiliation(s)
- Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Chou Min Chong
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Cole EL, Bayne H, Rosengaus RB. Young but not defenceless: antifungal activity during embryonic development of a social insect. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191418. [PMID: 32968491 PMCID: PMC7481685 DOI: 10.1098/rsos.191418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/27/2020] [Indexed: 05/16/2023]
Abstract
Termites live in environments heavily colonized by diverse microorganisms, including pathogens. Eggs laid within the nest are likely to experience similar pathogenic pressures as those experienced by older nest-mates. Consequently, eggs may be under selective pressures to be immune-competent. Through in vitro experiments using developing embryos of the dampwood termite, Zootermopsis angusticollis, we tested the ontogeny, location and strength of their antifungal activity against the fungus, Metarhizium brunneum. Exterior washes of the chorion (extra-chorionic) and components within the chorion (intra-chorionic) were incubated with fungal conidia, which were then scored for viability. The fungistatic activity was location and developmental stage dependent. Extra-chorionic washes had relatively weak antifungal activity. Intra-chorionic homogenates were highly antifungal, exhibiting increased potency through development. The positive correlation between intra-chorionic fungistasis and developmental stage is probably due to the expression of endogenous proteins during embryogenesis. Boiling of both the extra-chorionic washes and the intra-chorionic contents rescued conidia viability, indicating the antifungal agent(s) is (are) heat-sensitive and probably proteinaceous. This study is the first to address embryonic antifungal activity in a hemimetabolous, eusocial taxon. Our results support the hypothesis that microbes have been significant agents of selection in termites, fostering the evolution of antifungal properties even in the most immature stage of development.
Collapse
|
18
|
A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas. mBio 2020; 11:mBio.02777-19. [PMID: 32156821 PMCID: PMC7064767 DOI: 10.1128/mbio.02777-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.
Collapse
|
19
|
Survival capacity of the common woodlouse Armadillidium vulgare is improved with a second infection of Salmonella enterica. J Invertebr Pathol 2019; 168:107278. [DOI: 10.1016/j.jip.2019.107278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
|
20
|
Wang J, Yang B, Wang W, Song X, Jiang Q, Qiu L, Wang L, Song L. The Enhanced Immune Protection in Chinese Mitten Crab Eriocheir sinensis Against the Second Exposure to Bacteria Aeromonas hydrophila. Front Immunol 2019; 10:2041. [PMID: 31555272 PMCID: PMC6722218 DOI: 10.3389/fimmu.2019.02041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidences suggest that the enhanced immune responses and increased protection against bacteria-induced mortality can be initiated after the primary exposure to various microbial communities and their components in various organisms including commercially valuable crustaceans. In the present study, the survival rate and immune responses of Chinese mitten crab Eriocheir sinensis were determined after an immune priming (IP) with formalin-killed Aeromonas hydrophila and an immune challenge (ICH) with the same but live pathogen (Ah group). A group in which the animals received a salt injection prior to challenge was maintained as control (Ns group). In the present study, it was shown that an IP with killed A. hydrophila can significantly protect the crabs against the ICH with a lethal dose of the live pathogen. The increased survival was associated with elevated rate and duration of phagocytosis. The antibacterial activity of the serum was significantly increased in Ah group compared to that in Ns group. Significant changes of phenoloxidase (PO) activities were also found between Ah and Ns group but not in Ah group between IP and ICH. No significant changes of lysozyme were found in Ah and NS group during the whole experiment except 3 h after IP. In addition, the levels of transcripts and protein of Dscam were increased in hemocytes of the crabs from Ah group. All the results suggested that a primary immune priming with a particular killed pathogen could induce an enhanced immunity in crabs when they were encountered secondly with the same live pathogen. The evidences of elevated immune protections in crabs would contribute to better understand the mechanism of immune priming in invertebrates.
Collapse
Affiliation(s)
- Jingjing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
21
|
Bouallegui Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. FISH & SHELLFISH IMMUNOLOGY 2019; 89:158-169. [PMID: 30930277 DOI: 10.1016/j.fsi.2019.03.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Bivalves' immunity has received much more attention in the last decade, which resulted to a valuable growth in the availability of its molecular components. Such data availability coupled with the economical importance of these organisms aimed to shift the increase in the number of immunological and stress-related studies. Unfortunately, the crowd of generated data deciphering the involved physiological processes, investigators' differential conceptualization and the aimed objectives, has complicated the sensu stricto outlining of immune-related mechanisms. Overall, this review tried to compiles a summary about the molecular components of the mussels' immune response, surveying an overview of the mussels' functional immunity through gathering the most recent-related topics of bivalves' immunity as apoptosis and autophagy which deserves a great attention as stress-related mechanisms, the disseminated neoplasia as outbreak transmissible disease, not only within the same specie but also among different species, the hematopoiesis as topic that still generating interesting debate in the scientific community, the mucosal immunity described as the interface where host-pathogen interactions would occurs and determinate the late immune response, and innate immune memory and transgenerational priming, which described as very recent research topic with extensive applications in shellfish farming industry.
Collapse
Affiliation(s)
- Younes Bouallegui
- University of Carthage, Faculty of Sciences Bizerte, LR01ES14 Laboratory of Environmental Biomonitoring, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|
22
|
Wang X, Zhang Y, Zhang R, Zhang J. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. CURRENT OPINION IN INSECT SCIENCE 2019; 33:105-110. [PMID: 31358188 DOI: 10.1016/j.cois.2019.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 05/23/2023]
Abstract
Through evolution, selection pressures cause both insects and the pathogens attacking them to adapt so that they will both survive and this has been called the co-evolutionary 'arms race'. Insects expand their repertoire of pattern recognition receptors (PRRs), a fundamental and core component of their immune systems, to adapt to the constantly changing and unpredictable diversity of pathogens. In this review, we discuss the diversity of PRRs based on studies conducted in recent years. The strategies associated with PRR diversity summarized here are genetic evolution, isoform diversity based on alternative splicing, 'part-time' PRRs, PRRs with opsonin function, and regulation of complex signaling pathways. Taken together, these data indicate that the function of PRRs in insect immunity is far more complex and possesses more features than originally thought.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Yueqi Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, China.
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, China.
| |
Collapse
|
23
|
Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor. Front Physiol 2019; 10:138. [PMID: 30914960 PMCID: PMC6422893 DOI: 10.3389/fphys.2019.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mealworm beetle, Tenebrio molitor, is currently considered as a pest when infesting stored grains or grain products. However, mealworms are now being promoted as a beneficial insect because their high nutrient content makes them a viable food source and because they are capable of degrading polystyrene and plastic waste. These attributes make T. molitor attractive for mass rearing, which may promote disease transmission within the insect colonies. Disease resistance is of paramount importance for both the control and the culture of mealworms, and several biotic and abiotic environmental factors affect the success of their anti-parasitic defenses, both positively and negatively. After providing a detailed description of T. molitor's anti-parasitic defenses, we review the main biotic and abiotic environmental factors that alter their presentation, and we discuss their implications for the purpose of controlling the development and health of this insect.
Collapse
Affiliation(s)
- Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
24
|
Pinaud S, Portet A, Allienne JF, Belmudes L, Saint-Beat C, Arancibia N, Galinier R, Du Pasquier L, Duval D, Gourbal B. Molecular characterisation of immunological memory following homologous or heterologous challenges in the schistosomiasis vector snail, Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:238-252. [PMID: 30529491 DOI: 10.1016/j.dci.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 05/16/2023]
Abstract
Invertebrate immune response may be primed by a current infection in a sustained manner, leading to the failure of a secondary infection with the same pathogen. The present study focuses on the Schistosomiasis vector snail Biomphalaria glabrata, in which a specific genotype-dependent immunological memory was demonstrated as a shift from a cellular to a humoral immune response. Herein, we investigate the complex molecular bases associated with this genotype-dependant immunological memory response. We demonstrate that Biomphalaria regulates a polymorphic set of immune recognition molecules and immune effector repertoires to respond to different strains of Schistosoma parasites. These results suggest a combinatorial usage of pathogen recognition receptors (PRRs) that distinguish different strains of parasites during the acquisition of immunological memory. Immunizations also show that snails become resistant after exposure to parasite extracts. Hemolymph transfer and a label-free proteomic analysis proved that circulating hemolymph compounds can be produced and released to more efficiently kill the newly encountered parasite of the same genetic lineage.
Collapse
Affiliation(s)
- Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Lucid Belmudes
- CEA-Grenoble, Exploring the Dynamics of Proteomes (EDyP), F-38054, Grenoble, Cedex 9, France.
| | - Cécile Saint-Beat
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Louis Du Pasquier
- University of Basel, Zoological Institute, Department of Zoology and Evolutionary Biology Vesalgasse 1, Basel, Switzerland.
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
25
|
Melillo D, Marino R, Italiani P, Boraschi D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Front Immunol 2018; 9:1915. [PMID: 30186286 PMCID: PMC6113390 DOI: 10.3389/fimmu.2018.01915] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
The ability of developing immunological memory, a characteristic feature of adaptive immunity, is clearly present also in innate immune responses. In fact, it is well known that plants and invertebrate metazoans, which only have an innate immune system, can mount a faster and more effective response upon re-exposure to a stimulus. Evidence of immune memory in invertebrates comes from studies in infection immunity, natural transplantation immunity, individual, and transgenerational immune priming. These studies strongly suggest that environment and lifestyle take part in the development of immunological memory. However, in several instances the formal correlation between the phenomenon of immune memory and molecular and functional immune parameters is still missing. In this review, we have critically examined the cellular and humoral aspects of the invertebrate immune memory responses. In particular, we have focused our analysis on studies that have addressed immune memory in the most restrictive meaning of the term, i.e., the response to a challenge of a quiescent immune system that has been primed in the past. These studies highlight the central role of an increase in the number of immune cells and of their epigenetic re-programming in the establishment of sensu stricto immune memory in invertebrates.
Collapse
Affiliation(s)
- Daniela Melillo
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Naples, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Naples, Italy.,Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
26
|
Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective. Immunol Rev 2018; 283:21-40. [DOI: 10.1111/imr.12647] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin Gourbal
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | - Silvain Pinaud
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | | | - Jos W. M. Van Der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
| | - Uwe Conrath
- Department of Plant Physiology; RWTH Aachen University; Aachen Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES); University of Bonn; Bonn Germany
| |
Collapse
|
27
|
Penagos-Tabares F, Lange MK, Seipp A, Gärtner U, Mejer H, Taubert A, Hermosilla C. Novel approach to study gastropod-mediated innate immune reactions against metastrongyloid parasites. Parasitol Res 2018; 117:1211-1224. [PMID: 29441415 DOI: 10.1007/s00436-018-5803-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
The anthropozoonotic metastrongyloid nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis, as well as Angiostrongylus vasorum, Crenosoma vulpis, Aelurostrongylus abstrusus and Troglostrongylus brevior are currently considered as emerging gastropod-borne parasites and have gained growing scientific attention in the last years. However, the knowledge on invertebrate immune responses and on how metastrongyloid larvae are attacked by gastropod immune cells is still limited. This work aims to describe an in vitro system to investigate haemocyte-derived innate immune responses of terrestrial gastropods induced by vital axenic metastrongyloid larvae. We also provide protocols on slug/snail management and breeding under standardized climate conditions (circadian cycle, temperature and humidity) for the generation of parasite-free F0 stages which are essential for immune-related investigations. Adult slug species (Arion lusitanicus, Limax maximus) and giant snails (Achatina fulica) were maintained in fully automated climate chambers until mating and production of fertilized eggs. Newly hatched F0 juvenile specimens were kept under parasite-free conditions before experimental use. An improved protocol for gastropod haemolymph collection and haemocyte isolation was established. Giemsa-stained haemolymph preparations showed adequate haemocyte isolation in all three gastropod species. Additionally, a protocol for the production of axenic first and third stage larvae (L1, L3) was established. Haemocyte functionality was tested in haemocyte-nematode-co-cultures. Scanning electron microscopy (SEM) and light microscopy analyses revealed that gastropod-derived haemocytes formed clusters as well as DNA-rich extracellular aggregates catching larvae and decreasing their motility. These data confirm the usefulness of the presented methods to study haemocyte-mediated gastropod immune responses to better understand the complex biology of gastropod-borne diseases.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany. .,CIBAV Research Group, Veterinary Medicine School, University of Antioquia, Medellín, Colombia.
| | - Malin K Lange
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anika Seipp
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Lafont M, Petton B, Vergnes A, Pauletto M, Segarra A, Gourbal B, Montagnani C. Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci Rep 2017; 7:13143. [PMID: 29030632 PMCID: PMC5640609 DOI: 10.1038/s41598-017-13564-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
In the last decade, a paradigm shift has emerged in comparative immunology. Invertebrates can no longer be considered to be devoid of specific recognition and immune memory. However, we still lack a comprehensive view of these phenomena and their molecular mechanisms across phyla, especially in terms of duration, specificity, and efficiency in a natural context. In this study, we focused on a Lophotrochozoan/virus interaction, as antiviral priming is mostly overlooked in molluscs. Juvenile Crassostrea gigas oysters experience reoccurring mass mortalities events from Ostreid herpes virus 1 with no existing therapeutic treatment. Our results showed that various nucleic acid injections can prime oysters to trigger an antiviral state ultimately protecting them against a subsequent viral infection. Focusing on poly(I:C) as elicitor, we evidenced that it protected from an environmental infection, by mitigating viral replication. That protection seemed to induce a specific antiviral response as poly(I:C) fails to protect against a pathogenic bacteria. Finally, we showed that this phenomenon was long-lasting, persisting for at least 5 months thus suggesting for the first time the existence of innate immune memory in this invertebrate species. This study strengthens the emerging hypotheses about the broad conservation of innate immune priming and memory mechanisms in Lophotrochozoans.
Collapse
Affiliation(s)
- Maxime Lafont
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.,Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR6539, F-29840, Argenton-en-Landunvez, France
| | - Agnès Vergnes
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Amélie Segarra
- Univ. Brest Occidentale, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, F-29280, Plouzané, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.
| |
Collapse
|
29
|
Greenwood JM, Milutinović B, Peuß R, Behrens S, Esser D, Rosenstiel P, Schulenburg H, Kurtz J. Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. BMC Genomics 2017; 18:329. [PMID: 28446171 PMCID: PMC5405463 DOI: 10.1186/s12864-017-3705-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Background The phenomenon of immune priming, i.e. enhanced protection following a secondary exposure to a pathogen, has now been demonstrated in a wide range of invertebrate species. Despite accumulating phenotypic evidence, knowledge of its mechanistic underpinnings is currently very limited. Here we used the system of the red flour beetle, Tribolium castaneum and the insect pathogen Bacillus thuringiensis (Bt) to further our molecular understanding of the oral immune priming phenomenon. We addressed how ingestion of bacterial cues (derived from spore supernatants) of an orally pathogenic and non-pathogenic Bt strain affects gene expression upon later challenge exposure, using a whole-transcriptome sequencing approach. Results Whereas gene expression of individuals primed with the orally non-pathogenic strain showed minor changes to controls, we found that priming with the pathogenic strain induced regulation of a large set of distinct genes, many of which are known immune candidates. Intriguingly, the immune repertoire activated upon priming and subsequent challenge qualitatively differed from the one mounted upon infection with Bt without previous priming. Moreover, a large subset of priming-specific genes showed an inverse regulation compared to their regulation upon challenge only. Conclusions Our data demonstrate that gene expression upon infection is strongly affected by previous immune priming. We hypothesise that this shift in gene expression indicates activation of a more targeted and efficient response towards a previously encountered pathogen, in anticipation of potential secondary encounter. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3705-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenny M Greenwood
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.,Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.,Current Address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Sarah Behrens
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Daniela Esser
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|