1
|
Vashisth D, Mishra S. Unlocking the potential of Artemisia annua for artemisinin production: current insights and emerging strategies. 3 Biotech 2025; 15:164. [PMID: 40375936 PMCID: PMC12075056 DOI: 10.1007/s13205-025-04332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Malaria is a deadly disease, and the best effective treatments depend on artemisinin, a sesquiterpene lactone compound isolated from the plant Artemisia annua. However, artemisinin is produced in very small amount within the plant which is insufficient to meet the global demand. Although researchers have investigated synthetic and semi-synthetic approaches, they still face significant challenges, such as high costs and low efficiency, making A. annua the most viable source. Biotechnological advances in breeding and genetic engineering have developed new A. annua varieties with higher artemisinin content, and some varieties have achieved up to 3.2% of plant dry weight. Furthermore, researchers have identified the key genes and transcription factors that can be modified to boost production further. Environmental factors, such as light and specific plant hormones, play a crucial role in regulating this pathway. Also, tissue culture, hairy root systems, and natural elicitors have shown promising results, but need further refinement. Interestingly, the use of whole plants (such as dried leaf powder) instead of purified artemisinin alone has been found to improve drug absorption in the body, improve its effectiveness, and help combat artemisinin resistance. Beyond treating malaria, A. annua also demonstrates other therapeutic potential in treating other diseases, including cancer and viral infections. These findings highlight that A. annua is not just a source of artemisinin; it is a valuable medicinal plant that deserves continued research focus, primarily through approaches that improve artemisinin production directly in the plant.
Collapse
Affiliation(s)
- Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O-CIMAP, Lucknow, 226015 India
| | - Sudhanshu Mishra
- Department of Forensic Biology and Biotechnology, School of Forensic Sciences, National Forensic Sciences University (NFSU), An Institute of National Importance, Ministry of Home Affairs, Govt. of India, Delhi Campus, New Delhi, 110085 India
| |
Collapse
|
2
|
Willems A, Oertel T, Roepe PD. Redox Homeostasis within the Drug-Resistant Malarial Parasite Digestive Vacuole. Biochemistry 2025; 64:2247-2261. [PMID: 40311147 PMCID: PMC12096432 DOI: 10.1021/acs.biochem.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
We have developed a cost-effective strategy for the complete synthesis of azetidinyl coumarin fluorophore derivatives that report changes in physiologic levels of glutathione (GSH), which includes a more cost- effective synthesis of the probe precursor hydroxyl derivative and its subsequent derivatization to promote subcellular localization. We functionalize coumarin derivatives with a cyano side chain similar to a previous strategy (Jiang X. et al., Nature Communications 2017, 8; 16087) and validate the 7-azetidinyl conformation as an explanation for enhanced GSH-dependent coumarin fluorescence. We couple the azetidinyl probe to different mass dextrans using either no linker or a 6C linker and also synthesize a morpholino derivative. We titrate the fluorescence of the different functionalized probes vs [GSH] in vitro. We load one dextran-conjugated probe within the digestive vacuole (DV) of live intraerythrocytic P. falciparum malarial parasites and also measure cytosolic localization of the morpholino probe. Using significantly improved single-cell photometry (SCP) methods, we show that the morpholino probe faithfully reports [GSH] from the live parasite cytosol, while the 70 kDa dextran-conjugated probe reports DV redox homeostasis for control chloroquine-sensitive (CQS) and artemisinin-sensitive (ARTS) transfectant parasites vs their genetically matched chloroquine-resistant (CQR)/artemisinin-sensitive (CQR/ARTS) and CQR artemisinin-resistant (CQR/ARTR) strains, respectively. We quantify rapid changes in DV redox homeostasis for these parasites ± drug pulses under live-cell perfusion conditions. The results are important for understanding the pharmacology of antimalarial drugs and the molecular mechanisms underlying CQR and ARTR phenomena.
Collapse
Affiliation(s)
- Andreas Willems
- Depts. of Chemistry and of
Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia20057, United States
| | - Therese Oertel
- Depts. of Chemistry and of
Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia20057, United States
| | - Paul D. Roepe
- Depts. of Chemistry and of
Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia20057, United States
| |
Collapse
|
3
|
Zhang J, Chen Q, Gao X, Suo Z, Wu D, Zhou Y, Zeng Y, Li Y, Che Y, Chen Q. Study on a TCM evaluation method based on an MIP-modified MOF sensor with highly selective electrocatalytic activity-an Artemisia annua L. perspective. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3436-3445. [PMID: 40206013 DOI: 10.1039/d5ay00226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Quantitative analysis of artemisinin (ART) in Artemisia annua decoction samples is crucial for the quality assessment of Artemisia annua samples; however, no comprehensive solution currently exists for its rapid and sensitive quantification. This gap necessitates a novel method that accommodates the complex composition of traditional Chinese medicine samples. In this study, we developed an electrochemical sensor suitable for determining the ART content level in Artemisia annua. By introducing MIP-MOF composites, the sensor was endowed with selectivity based on spatial and electronic structures specific to particular molecules. This sensor, which mimics the in vivo pharmacological activation process of ART, could swiftly and selectively measure ART concentrations, thereby providing a reflection of the efficacy of the samples. The sensors' limit of detection and limit of quantification were determined to be 1.738 × 10-13 M and 4.764 × 10-9 M, respectively. Methodology validation confirmed the great selectivity and accuracy of the sensor. Tests conducted across various Artemisia annua decoction samples, including those from online and offline sources, as well as deteriorated samples, yielded results consistent with the expected ART content levels, demonstrating the sensor's potential for application in Artemisia annua sample quality assessment.
Collapse
Affiliation(s)
- Jingbo Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Quancheng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuemin Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ziqin Suo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Di Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yunxian Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yingying Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yanping Li
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yanyun Che
- China Engineering Research Center for Homology of Medicine and Food Beverage of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qing Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Hastings EM, Skora T, Carney KR, Fu HC, Bidone TC, Sigala PA. Chemical propulsion of hemozoin crystal motion in malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650681. [PMID: 40406465 PMCID: PMC12097498 DOI: 10.1101/2025.04.25.650681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Malaria parasites infect red blood cells where they digest host hemoglobin and release free heme inside a lysosome-like organelle called the food vacuole. To detoxify excess heme, parasites form hemozoin crystals that rapidly tumble inside this compartment. Hemozoin formation is critical for parasite survival and antimalarial drug activity, but crystal motion and its underlying mechanism are unexplored. We used quantitative image analysis to determine the timescale of motion, which requires the intact vacuole but does not require the parasite itself. Using single-particle tracking and Brownian dynamics simulations with experimentally derived interaction potentials, we found that hemozoin motion exhibits unexpectedly tight confinement but is much faster than thermal diffusion. Hydrogen peroxide, which is generated at high concentrations in the food vacuole, has been shown to stimulate metallic nanoparticle motion via surface-catalyzed peroxide decomposition that generates propulsive kinetic energy. We observed that peroxide stimulated the motion of isolated crystals in solution and that conditions that suppress peroxide formation slowed hemozoin motion inside parasites. These data suggest that surface-exposed metals on hemozoin catalyze peroxide decomposition to drive crystal motion and strengthen oxidative stress protection during blood-stage infection. This work reveals hemozoin motion in malaria parasites as a biological example of a self-propelled nanoparticle.
Collapse
Affiliation(s)
- Erica M. Hastings
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
- These authors contributed equally to this work
| | - Tomasz Skora
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- These authors contributed equally to this work
| | - Keith R. Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Henry C. Fu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Tamara C. Bidone
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Sui Y, Dong X, Tong E, Zhao C, Nie R, Meng X. Artemisinin regulates cell proliferation, apoptosis, and the inflammatory response of human dental pulp stem cells through the p53 signaling pathway under LPS-induced inflammation. Int Immunopharmacol 2025; 152:114396. [PMID: 40056514 DOI: 10.1016/j.intimp.2025.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/26/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects and mechanism of artemisinin (ART) on the proliferation, apoptosis, and inflammatory response of human dental pulp stem cells (HDPSCs) under lipopolysaccharide (LPS)-induced inflammation. METHODS HDPSCs were isolated, cultured, and identified by flow cytometry and three-directional differentiation induction. A suitable concentration of LPS was selected to mimic the inflammatory condition in vitro. After culturing with ART and LPS for 48 h, cell proliferation was observed by CCK-8 assay; cell apoptosis was observed by flow cytometry, western blot, and Caspase-3 activity; and the inflammatory response was observed by qRT-PCR and ELISA. Transcriptome sequencing, immunofluorescence staining, qRT-PCR, western blot, and RITA were used to explore the underlying mechanism. RESULTS HDPSCs were successfully isolated and exhibited the potential for multilineage differentiation. 0.1 μg/mL of LPS was utilized to mimic the inflammatory condition. ART promoted HDPSCs proliferation but repressed apoptosis and the inflammatory response under LPS-induced inflammation. Further, ART exerted its effect through the p53 signaling pathway. CONCLUSION ART inhibited the p53 signaling pathway to promote HDPSCs proliferation, but hinder apoptosis and the inflammatory response under LPS-induced inflammation. CLINICAL SIGNIFICANCE This study demonstrates that ART facilitates the alleviation of inflammation and preserves the viability of HDPSCs. Therefore, ART may serve as a promising therapeutic drug for the repair and regeneration of dental pulp in the treatment of deep caries and reversible pulpitis.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xiaofei Dong
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Enkang Tong
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Cuicui Zhao
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Rongrong Nie
- Department of Geriatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xiangfeng Meng
- Department of Prosthodontic Technology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
6
|
Mungo C, Sorgi K, Misiko B, Cheserem C, Rahangdale L, Githongo G, Ogollah C, Omoto J, Plesa M, Zamboni W. Phase I study on the pharmacokinetics of intravaginal, self-administered artesunate vaginal pessaries among women in Kenya. PLoS One 2025; 20:e0316334. [PMID: 40203246 PMCID: PMC11981651 DOI: 10.1371/journal.pone.0316334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/03/2024] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVES The primary objective of this study is to investigate the pharmacokinetics of Artesunate (AS) and its active metabolite, dihydroartemisinin (DHA) following intravaginal use at the dosing and frequency intended for cervical precancer treatment. A secondary objective is to assess safety among study participants. METHODS We are conducting a single-arm, phase I trial with a sample size of 12 female volunteers. Participants will self-administer artesunate vaginal pessaries in the study clinic daily for 5 consecutive days. Participants will have their blood drawn prior to receiving the first dose of artesunate on day one of the study and then will receive 8 blood draws on study day five, prior to artesunate administration and at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, and 8 hours after pessary administration. Pharmacokinetic parameters of artesunate and DHA will be calculated by way of quantitative analysis of with determination of maximum concentration (Cmax), time to Cmax (Tmax), area under the serum concentration versus time curve (AUC), apparent clearance, and elimination half-life (t1/2).
Collapse
Affiliation(s)
- Chemtai Mungo
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine Sorgi
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | | - Lisa Rahangdale
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | | - Jackton Omoto
- Department of Obstetrics and Gynecology, Maseno University School of Medicine, Kisumu, Kenya
| | - Mihaela Plesa
- Frantz Medical Development Ltd, Mentor, Ohio, United States of America
| | - William Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
7
|
Oduro-Kwateng E, Kehinde IO, Ali M, Kasumbwe K, Mzozoyana V, Parinandi NL, Soliman MES. Computational Analysis of Plasmodium falciparum DNA Damage Inducible Protein 1 (PfDdi1): Insights into Binding of Artemisinin and its Derivatives and Implications for Antimalarial Drug Design. Cell Biochem Biophys 2025:10.1007/s12013-025-01709-2. [PMID: 40113723 DOI: 10.1007/s12013-025-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Human malaria remains a global health challenge, with Plasmodium falciparum responsible for the most severe cases. Despite global efforts, eradicating malaria has proven difficult, mainly because of the rise in drug resistance, particularly against artemisinin and its derivatives. One possible cause of this resistance is the activation of the unfolded protein response (UPR), which helps maintain cellular balance under stress. In P. falciparum, the UPR operates through the ubiquitin-proteasome system (UPS), which involves proteins such as Dsk2, Rad23, and Ddi1. Among these, Plasmodium falciparum DNA-damage-inducible protein 1 (PfDdi1) plays a crucial role in DNA repair and is present throughout the parasite life cycle, making it an attractive drug target. However, there is limited research on PfDdi1 as a therapeutic target. Recent in vitro studies have indicated that artemisinin (ART) and dihydroartemisinin (DHA) inhibit PfDdi1 activity. Building on this, we investigated whether ART and its derivatives could serve as inhibitors of PfDdi1 using computational modeling. Our study included clinically relevant ART derivatives such as artemether (ARM), arteether (AET), artemiside (AMD), and artesunate (ATS). All these compounds showed strong binding to PfDdi1, with free binding energies ranging from -20.75 kcal/mol for AET to -34.24 kcal/mol for ATS. ARM increased PfDdi1's structural rigidity and hydrophobic stability, whereas AMD improved its kinetic stability, resulting in the least residue motion. Unlike AET and AMD, the other ligands destabilize the PfDdi1 structure. Importantly, three key binding regions-Loop 1 (GLN 266 - ILE 269), Loop 2 (ILE 323 - TYR 326), and Loop 3 (ALA 292 - GLY 294)-were identified as potential targets for new antimalarial drugs against PfDdi1. This study highlights the potential of ART derivatives as PfDdi1 inhibitors, paving the way for further experimental validation.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Ibrahim Oluwatobi Kehinde
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Kabange Kasumbwe
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Steve Biko Campus, Durban, South Africa
| | - Vuyisa Mzozoyana
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Weber Medical Center, Columbus, OH, USA
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
8
|
Tebben K, Eng V, Seng D, Tat B, Feufack Donfack LB, Orban A, Yeat R, Salvador J, Sin S, Ko K, Khim N, Flamand C, Sommen C, Lek D, Serre D, Popovici J. Cambodian Plasmodium vivax parasites with reduced hemoglobin digestion display delayed clearance upon artesunate treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.09.25323469. [PMID: 40162245 PMCID: PMC11952599 DOI: 10.1101/2025.03.09.25323469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Artemisinin-based combination therapies are the frontline drugs for the treatment of malaria infections but, for Plasmodium falciparum, the efficacy of artemisinin is threatened by the spread of resistance . P. vivax is the second most common cause of human malaria but we have little information on its susceptibility to artemisinin due to the lack of in vitro cultures. Here, we analyze 161 P. vivax infections from Cambodian patients treated with 2 mg/kg/day of artesunate for seven days. All infections were successfully cleared by day 3. However, one third of the infections displayed a slow clearance after treatment, with nine infections (5.7%) with a parasite clearance time greater than 5 hours, meeting the WHO definition of artemisinin resistance. We observed no significant association between slow clearance and either patient- or infection characteristics (including stage composition). We used RNA-seq to characterize the gene expression of parasites from 15 fast- and 16 slow-clearing infections at baseline and 1, 2 and 4 hours after treatment. While fast-clearing parasites showed significant changes in gene expression immediately upon treatment, slow-clearing parasites displayed a significantly delayed gene expression response, with a downregulation of many genes associated with hemoglobin endocytosis and digestion. Overall, our results indicate that some Cambodian P. vivax parasites clear slowly after artesunate treatment, possibly due to a downregulation of hemoglobin metabolism that may reduce the efficiency of the artesunate. Research in context Evidence before this study: The WHO treatment guidelines recommend artemisinin-combination therapy (ACT) for treatment of blood-stage infections caused by Plasmodium vivax in all areas (with chloroquine recommended only in areas where P. vivax are still chloroquine-sensitive). In P. falciparum , partial resistance to artemisinin derivatives is defined in vivo as either detected parasitemia on day 3 post treatment or as a half-life of the parasite clearance slope of ≥ 5 hours. We searched Pubmed for studies containing the terms "vivax" AND "clearance" AND ("artesunate" OR "dihydroartemisinin" OR "artemether" OR "artemisinin") published between 1990 and February 2025, with no language restrictions. Our search retrieved 102 studies for which title and abstracts were screened to identify 21 studies reporting outcomes of P. vivax treatment with an artemisinin derivative. While all these studies concluded that artemisinin derivatives provided rapid clearance of P. vivax parasites, two studies reported a low frequency of day 3 positivity following artesunate-amodiaquine treatment (2.6% in Brazil) or dihydroartemisinin-piperaquine (0.6% in Indonesia). No study reported clearance slope half-life ≥ 5 hours. Added value of this study: This study used a cohort of Cambodian patients infected by P. vivax to rigorously examine the efficacy of artesunate monotherapy at clearing blood stage infections. Our study showed significant variations in clearance rates among infections, with 5.7% of the infections with a clearance slope half-life ≥ 5 hours, meeting the criteria for artemisinin partial resistance used for P. falciparum . Variations in clearance rate upon artesunate treatment were not associated with patient or infection characteristics. Gene expression analyses revealed that the slow-clearing parasites down-regulated upon treatment many genes involved in hemoglobin endocytosis and digestion, possibly resulting in a lesser activation of artesunate. Implications of all the available evidence: Our results confirm that 2 mg/kg of artesunate per day for seven days is effective at clearing P. vivax blood stage infections. However, a subset of the P. vivax parasites displayed a slow clearance following artesunate treatment meeting artemisinin partial resistance definition in P. falciparum . Gene expression analyses suggest that metabolic variations may underlie slow clearance. Increased monitoring of treatment efficacy and drug resistance in P. vivax is therefore recommended.
Collapse
|
9
|
do Nascimento Martinez L, da Silva MA, Fialho SN, Almeida ML, Dos Santos Ferreira A, de Jesus Gouveia A, do Nascimento WDSP, Dos Santos APDA, Rossi NRDLP, de Medeiros JF, Araújo NF, de Santana QLO, Kaiser CR, Ferreira SB, da Silva Araujo M, Teles CBG. In vitro and in silico evaluation of synthetic compounds derived from bi-triazoles against asexual and sexual forms of Plasmodium falciparum. Malar J 2025; 24:74. [PMID: 40038735 PMCID: PMC11881275 DOI: 10.1186/s12936-025-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/15/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Despite advances in malaria chemotherapy, the disease continues to claim thousands of lives annually. Addressing this issue requires the discovery of new compounds to counteract resistance threatening the current therapeutic arsenal. In this context, bi-triazoles are substances with diverse biological activities, showing promise as lead compound to fight malaria. Triazoles are heterocyclic structures composed of five members, including three nitrogen atoms and two double bonds. Bi-triazoles, the focus of this study, are derivatives of triazoles consisting of two triazole rings (nitrogen heterocyclic) with isolated nuclei lacking a spacer and two substituents at each end. The goal of the present study was to assess the in vitro and in silico, antimalarial activity of bi-triazole compounds 14c, 14d, 13c, and 13d against asexual and sexual forms of Plasmodium falciparum. METHODS For in silico predictions, the software OSIRIS, Molinspiration, and ADMETlab were employed. To determine the 50% inhibitory concentration (IC50) on the asexual forms, the W2 clone was used, while the strain NF54 was used to assess inhibition of sexual forms. Cytotoxicity was evaluated using the HepG2 cell line, and haemolysis tests were conducted. Additionally, the selectivity index (SI) of each compound was calculated. RESULTS In silico analyses of physicochemical properties revealed that all compounds have favorable potential for drug development. Pharmacokinetics predictions also provided important, novel insights into this chemical class. Antimalarial activity tests showed that compounds 14d and 13d exhibited promising activity, with IC50 values of 3.1 and 4.4 µM, respectively. Antimalarial activity of compounds 14d and 13d may be related to the presence of methyl acetate in substituent R2 conjugated to the bi-triazole. None of the compounds demonstrated cytotoxic or haemolytic activity, with SI values above 51 for the three most active compounds, highlighting their selectivity. For the sexual forms, compounds 14c and 14d were classified as having a high potential to block malaria transmission. CONCLUSION Overall, the in vitro and in silico results showed that bi-triazole compounds may guide new biological investigation for malaria, enabling the identification and development of more active and selective antimalarial agents.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil.
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil.
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil.
| | - Minelly Azevedo da Silva
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia - IFRO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Saara Neri Fialho
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Marcinete Latorre Almeida
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Aurileya de Jesus Gouveia
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Welington da Silva Paula do Nascimento
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | | | | | - Jansen Fernandes de Medeiros
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Plataforma de Infecção de Vetores da Malária (PIVEM/ Laboratório de Entomologia, Fundação Oswaldo Cruz, FIOCRUZ, UnidadeRondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| | - Natalie Ferreira Araújo
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Quelli Larissa Oliveira de Santana
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Carlos Roland Kaiser
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Maisa da Silva Araujo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
- Plataforma de Infecção de Vetores da Malária (PIVEM/ Laboratório de Entomologia, Fundação Oswaldo Cruz, FIOCRUZ, UnidadeRondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| | - Carolina Bioni Garcia Teles
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| |
Collapse
|
10
|
Wade A, Sene SD, Caspar E, Diallo F, Platon L, Thiebaut L, Pouye MN, Ba A, Thiam LG, Fall M, Sadio BD, Desamours I, Guerra N, Hagadorn K, Amambua-Ngwa A, Bei AK, Vigan-Womas I, Ménard D, Mbengue A. Monitoring molecular markers associated with antimalarial drug resistance in south-east Senegal from 2021 to 2023. J Antimicrob Chemother 2025; 80:828-839. [PMID: 39846779 PMCID: PMC11879165 DOI: 10.1093/jac/dkaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030. OBJECTIVE To assess the proportion of P. falciparum parasites carrying molecular signatures associated with antimalarial resistance (PfKelch13, Pfmdr1, Pfcrt, dhfr and dhps) in isolates collected at Kédougou using multiplex amplicon deep sequencing. METHODS Venous blood samples were collected from patients diagnosed with P. falciparum infection over a 3-year period (2021, 2022 and 2023). Parasite DNA was extracted, and multiplex amplicon sequencing was used to investigate gene polymorphisms. RESULTS Analysis of PfKelch13 did not reveal any non-synonymous mutations. Pfcrt mutations were present in 45% of the samples, mainly K76T (44%) and I356T (36%). The dominant Pfmdr-1 allele was Y184F (62%). The sextuple mutant 51I/59R/108N + 436A/437G/613S dhfr/dhps was observed in 10% of the samples. CONCLUSION The absence of PfKelch13 mutants suggests that ACT efficacy remains uncompromised, although clinical outcome studies are required to confirm this. Analysis of Pfcrt and Pfmdr-1 shows that CQ-R alleles, probably from previous CQ use, are slowly decreasing. Likewise, the detection of the dhfr/dhps sextuple mutant highlights the need to monitor sulfadoxine-pyrimethamine resistance and the emergence of 581G. There is therefore a need for continued antimalarial resistance surveillance in Senegal.
Collapse
Affiliation(s)
- Alioune Wade
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Seynabou D Sene
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Emanuelle Caspar
- Malaria Genetics and Resistance Team (MEGATEAM), UR 3073—Pathogens Host Arthropods Vectors Interactions, Université de Strasbourg, Strasbourg F-67000, France
| | - Fatoumata Diallo
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Lucien Platon
- Malaria Genetics and Resistance Team (MEGATEAM), UR 3073—Pathogens Host Arthropods Vectors Interactions, Université de Strasbourg, Strasbourg F-67000, France
| | - Lucas Thiebaut
- Malaria Genetics and Resistance Team (MEGATEAM), UR 3073—Pathogens Host Arthropods Vectors Interactions, Université de Strasbourg, Strasbourg F-67000, France
| | - Mariama N Pouye
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Aboubacar Ba
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Laty Gaye Thiam
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Magal Fall
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
| | - Bacary Djilocalisse Sadio
- Virology Department, Institut Pasteur de Dakar, Arboviruses and Hemorrhagic Fever Viruses Unit, Dakar, Senegal
| | - Ife Desamours
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Noemi Guerra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Kelly Hagadorn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alfred Amambua-Ngwa
- London School of Hygiene and Tropical Medicine, MRC Unit the Gambia Department, GM-Gambia Clinical Services, Banjul, The Gambia
| | - Amy K Bei
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Ines Vigan-Womas
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
- Institut Pasteur, Direction Internationale, Paris 75015, France
| | - Didier Ménard
- Malaria Genetics and Resistance Team (MEGATEAM), UR 3073—Pathogens Host Arthropods Vectors Interactions, Université de Strasbourg, Strasbourg F-67000, France
- Malaria Parasite Biology and Vaccines, Institut Pasteur, Université Paris Cite, Paris 75015, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France, Paris, France
| | - Alassane Mbengue
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal
- Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, Dakar, Senegal
- Francis Crick Institute Network CAN Crick Fellow, Signalling in Apicomplexan Parasites Laboratory, London, UK
| |
Collapse
|
11
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2025; 23:178-191. [PMID: 39367132 PMCID: PMC11832322 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Mungo C, Sorgi K, Misiko B, Cheserem C, Rahangdale L, Githongo G, Ogollah C, Omoto J, Plesa M, Zamboni W. Phase I study on the pharmacokinetics of intravaginal, self-administered artesunate vaginal pessaries among women in Kenya. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.07.08.24309596. [PMID: 39148845 PMCID: PMC11326355 DOI: 10.1101/2024.07.08.24309596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cervical cancer remains a significant global health issue, especially in low- and middle-income countries (LMICs), where access to prevention and treatment is limited and women are at a higher risk of cervical cancer. Artesunate, a widely available drug used to treat malaria, has shown promise in treating human papillomavirus (HPV)-associated anogenital lesions including high-grade cervical precancer, in a recent Phase I studies in the United States. Data on the pharmacokinetics of artesunate following intravaginal use, and its implications on malaria resistance, are lacking. Objectives The primary objective of this study is to investigate the pharmacokinetics of Artesunate (AS) and its active metabolite, dihydroartemisinin (DHA) following intravaginal use at the dosing and frequency intended for cervical precancer treatment. A secondary objective is to assess safety among study participants. Methods We are conducting a single-arm, phase I trial with a sample size of 12 female volunteers. Participants will self-administer artesunate vaginal pessaries in the study clinic daily for 5 consecutive days. Participants will have their blood drawn prior to receiving the first dose of artesunate on day one of the study and then will receive 8 blood draws on study day five, prior to artesunate administration and at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, and 8 hours after pessary administration. Pharmacokinetic parameters of artesunate and DHA will be calculated by way of quantitative analysis of with determination of maximum concentration (Cmax), time to Cmax (Tmax), area under the serum concentration versus time curve (AUC), apparent clearance, and elimination half-life (t1/2).
Collapse
Affiliation(s)
- Chemtai Mungo
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, 321 S Columbia St, Chapel Hill, North Carolina, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 450 West Dr, Chapel Hill, North Carolina, 27599, USA
| | - Katherine Sorgi
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, 321 S Columbia St, Chapel Hill, North Carolina, 27599, USA
| | - Brenda Misiko
- Kenya Medical Research Institute, Busia Rd, Kisumu, Kenya
| | | | - Lisa Rahangdale
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, 321 S Columbia St, Chapel Hill, North Carolina, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 450 West Dr, Chapel Hill, North Carolina, 27599, USA
| | | | | | - Jackton Omoto
- Department of Obstetrics and Gynecology, Maseno University School of Medicine, P.O, Kisumu, Kenya
| | - Mihaela Plesa
- Frantz Medical Development Ltd, 7740 Metric Dr, Mentor, OH, 44060
| | - William Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, 450 West Dr, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
13
|
Nayak S, Peto TJ, Kucharski M, Tripura R, Callery JJ, Quang Huy DT, Gendrot M, Lek D, Nghia HDT, van der Pluijm RW, Dong N, Long LT, Vongpromek R, Rekol H, Hoang Chau N, Miotto O, Mukaka M, Dhorda M, von Seidlein L, Imwong M, Roca X, Day NPJ, White NJ, Dondorp AM, Bozdech Z. Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background. Nat Commun 2024; 15:10625. [PMID: 39639029 PMCID: PMC11621345 DOI: 10.1038/s41467-024-54915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of Plasmodium falciparum parasites resistant to artemisinins compromises the efficacy of Artemisinin Combination Therapies (ACTs), the global first-line malaria treatment. Artemisinin resistance is a complex genetic trait in which nonsynonymous SNPs in PfK13 cooperate with other genetic variations. Here, we present population genomic/transcriptomic analyses of P. falciparum collected from patients with uncomplicated malaria in Cambodia and Vietnam between 2018 and 2020. Besides the PfK13 SNPs, several polymorphisms, including nonsynonymous SNPs (N1131I and N821K) in PfRad5 and an intronic SNP in PfWD11 (WD40 repeat-containing protein on chromosome 11), appear to be associated with artemisinin resistance, possibly as new markers. There is also a defined set of genes whose steady-state levels of mRNA and/or splice variants or antisense transcripts correlate with artemisinin resistance at the base level. In vivo transcriptional responses to artemisinins indicate the resistant parasite's capacity to decelerate its intraerythrocytic developmental cycle (IDC), which can contribute to the resistant phenotype. During this response, PfRAD5 and PfWD11 upregulate their respective alternatively/aberrantly spliced isoforms, suggesting their contribution to the protective response to artemisinins. PfRAD5 and PfWD11 appear under selective pressure in the Greater Mekong Sub-region over the last decade, suggesting their role in the genetic background of the artemisinin resistance.
Collapse
Affiliation(s)
- Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James J Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Duong Tien Quang Huy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dysoley Lek
- Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- National Institute for Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Nguyen Dong
- Khanh Hoa Hospital for Tropical diseases, Ho Chi Minh City, Khanh Hoa province, Vietnam
| | - Le Thanh Long
- Phuoc Long Hospital, Ho Chi Minh City, Binh Phuoc province, Vietnam
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Huy Rekol
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
14
|
Nguyen GB, Cooper CA, McWhorter O, Sharma R, Elliot A, Ruberto A, Freitas R, Pathak AK, Kyle DE, Maher SP. Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol. Malar J 2024; 23:357. [PMID: 39580415 PMCID: PMC11585928 DOI: 10.1186/s12936-024-05155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Malaria, a disease caused by parasites of the genus Plasmodium, continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites. METHODS After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose-response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens' predictive value. RESULTS Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 103 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose-response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity. CONCLUSIONS This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
Collapse
Affiliation(s)
- Gia-Bao Nguyen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Olivia McWhorter
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anne Elliot
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anthony Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Rafael Freitas
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ashutosh K Pathak
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Zheng D, Liu T, Yu S, Liu Z, Wang J, Wang Y. Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Trop Med Infect Dis 2024; 9:223. [PMID: 39330912 PMCID: PMC11435542 DOI: 10.3390/tropicalmed9090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Artemisinin is an endoperoxide sesquiterpene lactone isolated from Artemisia annua and is often used to treat malaria. Artemisinin's peroxide bridge is the key structure behind its antimalarial action. Scientists have created dihydroartemisinin, artemether, artesunate, and other derivatives preserving artemisinin's peroxide bridge to increase its clinical utility value. Artemisinin compounds exhibit excellent efficacy, quick action, and minimal toxicity in malaria treatment and have greatly contributed to malaria control. With the wide and unreasonable application of artemisinin-based medicines, malaria parasites have developed artemisinin resistance, making malaria prevention and control increasingly challenging. Artemisinin-resistant Plasmodium strains have been found in many countries and regions. The mechanisms of antimalarials and artemisinin resistance are not well understood, making malaria prevention and control a serious challenge. Understanding the antimalarial and resistance mechanisms of artemisinin drugs helps develop novel antimalarials and guides the rational application of antimalarials to avoid the spread of resistance, which is conducive to malaria control and elimination efforts. This review will discuss the antimalarial mechanisms and resistance status of artemisinin and its derivatives, which will provide a reference for avoiding drug resistance and the research and development of new antimalarial drugs.
Collapse
Affiliation(s)
- Dan Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Zhilong Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
16
|
Oduor CI, Connelly SV, Cunningham C, Rustamzade N, Zuromski J, Chin DM, Nixon C, Kurtis J, Juliano JJ, Bailey JA. Single cell transcriptional changes across the blood stages of artemisinin resistant K13 580Y Plasmodium falciparum upon dihydroartemisinin exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570387. [PMID: 38105992 PMCID: PMC10723473 DOI: 10.1101/2023.12.06.570387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Artemisinins have been a cornerstone of malaria control, but resistance in Plasmodium falciparum, due to mutations in the Kelch13 (K13) protein, threaten these advances. Artemisinin exposure results in a dynamic transcriptional response across multiple pathways, but most work has focused on ring stages and ex vivo transcriptional analysis. We applied single cell RNAseq to two unsynchronized coisogenic parasite lines (K13C580 and K13580Y) over 6 hrs after a pulse exposure to dihydroartemisinin (DHA). Transcription was altered across all stages, with the greatest occurring at the trophozoite and ring stage in both lines. This response involved the arrest of metabolic processes, support for a dormancy phenomenon upon treatment, and the enhancement of protein trafficking and the unfolded protein response. While similar, the response was consistent across stages in K13580Y, with enhanced parasite survival to drug induced stress. Increased surface protein expression was seen in K13580Y parasites at baseline and upon drug exposure, highlighted by the increased expression of PfEMP1 and GARP, a potential therapeutic target. Antibody targeting GARP maintained anti-parasitic efficacy in K13580Y parasites. This work provides single cell insight of gene transcription across all life cycle stages revealing transcriptional changes that could initiate a dormancy state and mediate survival upon treatment.
Collapse
Affiliation(s)
- Cliff I. Oduor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Sean V. Connelly
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Clark Cunningham
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Nazrin Rustamzade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Jenna Zuromski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Deborah M. Chin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Chris Nixon
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| |
Collapse
|
17
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
18
|
Md. Yusuf N, Azman AN, Abdul Aziz AA, Ahmad Fuad FA, Nasarudin RN, Hisam S. Evaluation of the binding interactions between Plasmodium falciparum Kelch-13 mutant recombinant proteins with artemisinin. PLoS One 2024; 19:e0306975. [PMID: 39146276 PMCID: PMC11326563 DOI: 10.1371/journal.pone.0306975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Malaria, an ancient mosquito-borne illness caused by Plasmodium parasites, is mostly treated with Artemisinin Combination Therapy (ACT). However, Single Nucleotide Polymorphisms (SNPs) mutations in the P. falciparum Kelch 13 (PfK13) protein have been associated with artemisinin resistance (ART-R). Therefore, this study aims to generate PfK13 recombinant proteins incorporating of two specific SNPs mutations, PfK13-V494I and PfK13-N537I, and subsequently analyze their binding interactions with artemisinin (ART). The recombinant proteins of PfK13 mutations and the Wild Type (WT) variant were expressed utilizing a standard protein expression protocol with modifications and subsequently purified via IMAC and confirmed with SDS-PAGE analysis and Orbitrap tandem mass spectrometry. The binding interactions between PfK13-V494I and PfK13-N537I propeller domain proteins ART were assessed through Isothermal Titration Calorimetry (ITC) and subsequently validated using fluorescence spectrometry. The protein concentrations obtained were 0.3 mg/ml for PfK13-WT, 0.18 mg/ml for PfK13-V494I, and 0.28 mg/ml for PfK13-N537I. Results obtained for binding interaction revealed an increased fluorescence intensity in the mutants PfK13-N537I (83 a.u.) and PfK13-V494I (143 a.u.) compared to PfK13-WT (33 a.u.), indicating increased exposure of surface proteins because of the looser binding between PfK13 protein mutants with ART. This shows that the PfK13 mutations may induce alterations in the binding interaction with ART, potentially leading to reduced effectiveness of ART and ultimately contributing to ART-R. However, this study only elucidated one facet of the contributing factors that could serve as potential indicators for ART-R and further investigation should be pursued in the future to comprehensively explore this complex mechanism of ART-R.
Collapse
Affiliation(s)
- Noorazian Md. Yusuf
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
| | - Aisya Nazura Azman
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
- Department of Chemical Engineering & Sustainability, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Amirul Adli Abdul Aziz
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Chemical Engineering & Sustainability, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Ruhayatun Naimah Nasarudin
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
| | - Shamilah Hisam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
| |
Collapse
|
19
|
Kuldeep J, Chaturvedi N, Gupta D. Novel molecular inhibitor design for Plasmodium falciparum Lactate dehydrogenase enzyme using machine learning generated library of diverse compounds. Mol Divers 2024; 28:2331-2344. [PMID: 39162960 DOI: 10.1007/s11030-024-10960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Generative machine learning models offer a novel strategy for chemogenomics and de novo drug design, allowing researchers to streamline their exploration of the chemical space and concentrate on specific regions of interest. In cases with limited inhibitor data available for the target of interest, de novo drug design plays a crucial role. In this study, we utilized a package called 'mollib,' trained on ChEMBL data containing approximately 365,000 bioactive molecules. By leveraging transfer learning techniques with this package, we generated a series of compounds, starting from five initial compounds, which are potential Plasmodium falciparum (Pf) Lactate dehydrogenase inhibitors. The resulting compounds exhibit structural diversity and hold promise as potential novel Pf Lactate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Jitendra Kuldeep
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Neeraj Chaturvedi
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.
| |
Collapse
|
20
|
Milong Melong CS, Peloewetse E, Russo G, Tamgue O, Tchoumbougnang F, Paganotti GM. An overview of artemisinin-resistant malaria and associated Pfk13 gene mutations in Central Africa. Parasitol Res 2024; 123:277. [PMID: 39023630 DOI: 10.1007/s00436-024-08301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Malaria caused by Plasmodium falciparum is one of the deadliest and most common tropical infectious diseases. However, the emergence of artemisinin drug resistance associated with the parasite's Pfk13 gene, threatens the public health of individual countries as well as current efforts to reduce malaria burdens globally. It is of concern that artemisinin-resistant parasites may be selected or have already emerged in Africa. This narrative review aims to evaluate the published evidence concerning validated, candidate, and novel Pfk13 polymorphisms in ten Central African countries. Results show that four validated non-synonymous polymorphisms (M476I, R539T, P553L, and P574L), directly associated with a delayed therapy response, have been reported in the region. Also, two Pfk13 polymorphisms associated to artemisinin resistance but not validated (C469F and P527H) have been reported. Furthermore, several non-validated mutations have been observed in Central Africa, and one allele A578S, is commonly found in different countries, although additional molecular and biochemical studies are needed to investigate whether those mutations alter artemisinin effects. This information is discussed in the context of biochemical and genetic aspects of Pfk13, and related to the regional malaria epidemiology of Central African countries.
Collapse
Affiliation(s)
- Charlotte Sabine Milong Melong
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Private Bag, 0022, Gaborone, UB, Botswana
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Francois Tchoumbougnang
- Department of Processing and Quality Control of Aquatic Products, Institute of Fisheries and Aquatic Sciences, University of Douala, P.O. Box 7236, Douala, Cameroon
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana.
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
22
|
Rahman SU, Weng TN, Qadeer A, Nawaz S, Ullah H, Chen CC. Omega-3 and omega-6 polyunsaturated fatty acids and their potential therapeutic role in protozoan infections. Front Immunol 2024; 15:1339470. [PMID: 38633251 PMCID: PMC11022163 DOI: 10.3389/fimmu.2024.1339470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Protozoa exert a serious global threat of growing concern to human, and animal, and there is a need for the advancement of novel therapeutic strategies to effectively treat or mitigate the impact of associated diseases. Omega polyunsaturated fatty acids (ω-PUFAs), including Omega-3 (ω-3) and omega-6 (ω-6), are constituents derived from various natural sources, have gained significant attention for their therapeutic role in parasitic infections and a variety of essential structural and regulatory functions in animals and humans. Both ω-3 and ω-6 decrease the growth and survival rate of parasites through metabolized anti-inflammatory mediators, such as lipoxins, resolvins, and protectins, and have both in vivo and in vitro protective effects against various protozoan infections. The ω-PUFAs have been shown to modulate the host immune response by a commonly known mechanism such as (inhibition of arachidonic acid (AA) metabolic process, production of anti-inflammatory mediators, modification of intracellular lipids, and activation of the nuclear receptor), and promotion of a shift towards a more effective immune defense against parasitic invaders by regulation the inflammation like prostaglandins, leukotrienes, thromboxane, are involved in controlling the inflammatory reaction. The immune modulation may involve reducing inflammation, enhancing phagocytosis, and suppressing parasitic virulence factors. The unique properties of ω-PUFAs could prevent protozoan infections, representing an important area of study. This review explores the clinical impact of ω-PUFAs against some protozoan infections, elucidating possible mechanisms of action and supportive therapy for preventing various parasitic infections in humans and animals, such as toxoplasmosis, malaria, coccidiosis, and chagas disease. ω-PUFAs show promise as a therapeutic approach for parasitic infections due to their direct anti-parasitic effects and their ability to modulate the host immune response. Additionally, we discuss current treatment options and suggest perspectives for future studies. This could potentially provide an alternative or supplementary treatment option for these complex global health problems.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tzu-Nin Weng
- Department of Stomatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Abdul Qadeer
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China Hospital, School of Nursing, Sichuan University, Chengdu, China
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Gao P, Wang J, Qiu C, Zhang H, Wang C, Zhang Y, Sun P, Chen H, Wong YK, Chen J, Zhang J, Tang H, Shi Q, Zhu Y, Shen S, Han G, Xu C, Dai L, Wang J. Photoaffinity probe-based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of Plasmodium falciparum. IMETA 2024; 3:e176. [PMID: 38882489 PMCID: PMC11170969 DOI: 10.1002/imt2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Jianyou Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine Jinan China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Peng Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Yin Kwan Wong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Lingyun Dai
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
- Shandong Academy of Chinese Medicine Jinan China
| |
Collapse
|
24
|
Stofberg ML, Muzenda FL, Achilonu I, Strauss E, Zininga T. In silico screening of selective ATP mimicking inhibitors targeting the Plasmodium falciparum Grp94. J Biomol Struct Dyn 2024:1-12. [PMID: 38498364 DOI: 10.1080/07391102.2024.2329304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Plasmodium falciparum parasites export more than 400 proteins to remodel the host cell environment and increase its chances of surviving and reproducing. The endoplasmic reticulum (ER) plays a central role in protein export by facilitating protein sorting and folding. The ER resident member of the Hsp90 family, glucose-regulated protein 94 (Grp94), is a molecular chaperone that facilitates the proper folding of client proteins in the ER lumen. In P. falciparum, Grp94 (PfGrp94) is essential for parasite survival, rendering it a promising anti-malarial drug target. Despite this, its druggability has not been fully explored. Consequently, this study sought to identify small molecule inhibitors targeting the PfGrp94. Potential small molecule inhibitors of PfGrp94 were designed and screened using in silico studies. Molecular docking studies indicate that two novel compounds, Compound S and Compound Z selectively bind to PfGrp94 over its human homologues. Comparatively, Compound Z had a higher affinity for PfGrp94 than Compound S. Further interrogation of the inhibitor binding using molecular dynamics (MD) analysis confirmed that Compound Z formed stable binding poses within the ATP-binding pocket of the PfGrp94 N-terminal domain (NTD) during the 250 ns simulation run. PfGrp94 interacted with Compound Z through hydrogen bonding and hydrophobic interactions with residues Asp 148, Asn 106, Gly 152, Ile 151 and Lys 113. Based on the findings of this study, Compound Z could serve as a competitive and selective inhibitor of PfGrp94 and may be useful as a starting point for the development of a potential drug for malaria.
Collapse
Affiliation(s)
| | | | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Erick Strauss
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
25
|
Kieffer C, Primas N, Hutter S, Merckx A, Reininger L, Bach S, Ruchaud S, Gaillard F, Laget M, Amrane D, Hervé L, Castera-Ducros C, Renault J, Dumètre A, Rault S, Doerig C, Rathelot P, Vanelle P, Azas N, Verhaeghe P. Target fishing reveals PfPYK-1 and PfRab6 as potential targets of an antiplasmodial 4-anilino-2-trichloromethylquinazoline hit compound. Bioorg Med Chem 2024; 102:117654. [PMID: 38452406 DOI: 10.1016/j.bmc.2024.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
We present investigations about the mechanism of action of a previously reported 4-anilino-2-trichloromethylquinazoline antiplasmodial hit-compound (Hit A), which did not share a common mechanism of action with established commercial antimalarials and presented a stage-specific effect on the erythrocytic cycle of P. falciparum at 8 < t < 16 h. The target of Hit A was searched by immobilising the molecule on a solid support via a linker and performing affinity chromatography on a plasmodial lysate. Several anchoring positions of the linker (6,7 and 3') and PEG-type linkers were assessed, to obtain a linked-hit molecule displaying in vitro antiplasmodial activity similar to that of unmodified Hit A. This allowed us to identify the PfPYK-1 kinase and the PfRab6 GTP-ase as potential targets of Hit A.
Collapse
Affiliation(s)
- C Kieffer
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France
| | - N Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille 13005, France
| | - S Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, Marseille, France
| | - A Merckx
- Université Paris Cité, MERIT, IRD, Paris, France
| | - L Reininger
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - S Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - S Ruchaud
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - F Gaillard
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - M Laget
- Aix Marseille Univ, INSERMN, SSA, MCT, Marseille, France
| | - D Amrane
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Marseille, France
| | - L Hervé
- Université Paris Cité, MERIT, IRD, Paris, France
| | - C Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille 13005, France
| | - J Renault
- Université de Rennes - Faculté de Pharmacie, ISCR UMR CNRS 6226, Equipe CORINT, Rennes, France
| | - A Dumètre
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, Marseille, France
| | - S Rault
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France
| | - C Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - P Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille 13005, France
| | - P Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille 13005, France
| | - N Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, Marseille, France.
| | - P Verhaeghe
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041 Grenoble, France; LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France; Service de Pharmacie, CHU de Nîmes, Place R. Debré, Nîmes, France.
| |
Collapse
|
26
|
Ferreira AM, Sales I, Santos SAO, Santos T, Nogueira F, Mattedi S, Pinho SP, Coutinho JA, Freire MG. Enhanced Antimalarial Activity of Extracts of Artemisia annua L. Achieved with Aqueous Solutions of Salicylate Salts and Ionic Liquids. CHEM & BIO ENGINEERING 2024; 1:44-52. [PMID: 38434799 PMCID: PMC10906083 DOI: 10.1021/cbe.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 12/06/2023] [Indexed: 03/05/2024]
Abstract
Artemisinin, a drug used to treat malaria, can be chemically synthesized or extracted from Artemisia annua L. However, the extraction method for artemisinin from biomass needs to be more sustainable while maintaining or enhancing its bioactivity. This work investigates the use of aqueous solutions of salts and ionic liquids with hydrotropic properties as alternative solvents for artemisinin extraction from Artemisia annua L. Among the investigated solvents, aqueous solutions of cholinium salicylate and sodium salicylate were found to be the most promising. To optimize the extraction process, a response surface method was further applied, in which the extraction time, hydrotrope concentration, and temperature were optimized. The optimized conditions resulted in extraction yields of up to 6.50 and 6.44 mg·g-1, obtained with aqueous solutions of sodium salicylate and cholinium salicylate, respectively. The extracts obtained were tested for their antimalarial activity, showing a higher efficacy against the Plasmodium falciparum strain compared with pure (synthetic) artemisinin or extracts obtained with conventional organic solvents. Characterization of the extracts revealed the presence of artemisinin together with other compounds, such as artemitin, chrysosplenol D, arteannuin B, and arteannuin J. These compounds act synergistically with artemisinin and enhance the antimalarial activity of the obtained extracts. Given the growing concern about artemisinin resistance, the results here obtained pave the way for the development of sustainable and biobased antimalarial drugs.
Collapse
Affiliation(s)
- Ana M. Ferreira
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabela Sales
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Escola
Politécnica, Universidade Federal
da Bahia, Bahia 40210-630, Brazil
| | - Sónia A. O. Santos
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Santos
- Global
Health and Tropical Medicine, GHTM, Associate Laboratory in Translation
and Innovation towards Global Health, LA-REAL, Instituto de Higiene
e Medicina Tropical, IHMT, Universidade
Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Global
Health and Tropical Medicine, GHTM, Associate Laboratory in Translation
and Innovation towards Global Health, LA-REAL, Instituto de Higiene
e Medicina Tropical, IHMT, Universidade
Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE,
MolSyn, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Silvana Mattedi
- Escola
Politécnica, Universidade Federal
da Bahia, Bahia 40210-630, Brazil
| | - Simão P. Pinho
- Mountain
Research Center − CIMO, Polytechnic
Institute of Bragança, Bragança 5300-253, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança 5300-253, Portugal
| | - João A.
P. Coutinho
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Dar A, Godara P, Prusty D, Bashir M. Plasmodium falciparum topoisomerases: Emerging targets for anti-malarial therapy. Eur J Med Chem 2024; 265:116056. [PMID: 38171145 DOI: 10.1016/j.ejmech.2023.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Different metabolic pathways like DNA replication, transcription, and recombination generate topological constrains in the genome. These topological constraints are resolved by essential molecular machines known as topoisomerases. To bring changes in DNA topology, the topoisomerases create a single or double-stranded nick in the template DNA, hold the nicked ends to let the tangled DNA pass through, and finally re-ligate the breaks. The DNA nicking and re-ligation activities as well as ATPase activities (when present) in topoisomerases are subjected to inhibition by several anticancer and antibacterial drugs, thus establishing these enzymes as successful targets in anticancer and antibacterial therapies. The anti-topoisomerase drugs interfere with the functioning of these enzymes and result in the accumulation of DNA tangles or lethal genomic breaks, thereby promoting host cell (or organism) death. The potential of topoisomerases in the human malarial parasite, Plasmodium falciparum in antimalarial drug development has received little attention so far. Interestingly, the parasite genome encodes orthologs of topoisomerases found in eukaryotes, prokaryotes, and archaea, thus, providing an enormous opportunity for investigating these enzymes for antimalarial therapeutics. This review focuses on the features of Plasmodium falciparum topoisomerases (PfTopos) with respect to their closer counterparts in other organisms. We will discuss overall advances and basic challenges with topoisomerase research in Plasmodium falciparum and our attempts to understand the interaction of PfTopos with classical and new-generation topoisomerase inhibitors using in silico molecular docking approach. The recent episodes of parasite resistance against artemisinin, the only effective antimalarial drug at present, further highlight the significance of investigating new drug targets including topoisomerases in antimalarial therapeutics.
Collapse
Affiliation(s)
- Ashraf Dar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| | - Priya Godara
- Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Masarat Bashir
- COTS, Sheri-Kashmir University of Agricultural Sciences and Technology, Mirgund, Srinagar, India
| |
Collapse
|
28
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
29
|
Platon L, Ménard D. Plasmodium falciparum ring-stage plasticity and drug resistance. Trends Parasitol 2024; 40:118-130. [PMID: 38104024 DOI: 10.1016/j.pt.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Malaria is a life-threatening tropical disease caused by parasites of the genus Plasmodium, of which Plasmodium falciparum is the most lethal. Malaria parasites have a complex life cycle, with stages occurring in both the Anopheles mosquito vector and human host. Ring stages are the youngest form of the parasite in the intraerythrocytic developmental cycle and are associated with evasion of spleen clearance, temporary growth arrest (TGA), and drug resistance. This formidable ability to survive and develop into mature, sexual, or growth-arrested forms demonstrates the inherent population heterogeneity. Here we highlight the role of the ring stage as a crossroads in parasite development and as a reservoir of surviving cells in the human host via TGA survival mechanisms.
Collapse
Affiliation(s)
- Lucien Platon
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France.
| | - Didier Ménard
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France; CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, F-67000 Strasbourg, France.
| |
Collapse
|
30
|
Giroud M, Kuhn B, Haap W. Drug Discovery Efforts to Identify Novel Treatments for Neglected Tropical Diseases - Cysteine Protease Inhibitors. Curr Med Chem 2024; 31:2170-2194. [PMID: 37916489 DOI: 10.2174/0109298673249097231017051733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Neglected tropical diseases are a severe burden for mankind, affecting an increasing number of people around the globe. Many of those diseases are caused by protozoan parasites in which cysteine proteases play a key role in the parasite's pathogenesis. OBJECTIVE In this review article, we summarize the drug discovery efforts of the research community from 2017 - 2022 with a special focus on the optimization of small molecule cysteine protease inhibitors in terms of selectivity profiles or drug-like properties as well as in vivo studies. The cysteine proteases evaluated by this methodology include Cathepsin B1 from Schistosoma mansoni, papain, cruzain, falcipain, and rhodesain. METHODS Exhaustive literature searches were performed using the keywords "Cysteine Proteases" and "Neglected Tropical Diseases" including the years 2017 - 2022. Overall, approximately 3'000 scientific papers were retrieved, which were filtered using specific keywords enabling the focus on drug discovery efforts. RESULTS AND CONCLUSION Potent and selective cysteine protease inhibitors to treat neglected tropical diseases were identified, which progressed to pharmacokinetic and in vivo efficacy studies. As far as the authors are aware of, none of those inhibitors reached the stage of active clinical development. Either the inhibitor's potency or pharmacokinetic properties or safety profile or a combination thereof prevented further development of the compounds. More efforts with particular emphasis on optimizing pharmacokinetic and safety properties are needed, potentially by collaborations of academic and industrial research groups with complementary expertise. Furthermore, new warheads reacting with the catalytic cysteine should be exploited to advance the research field in order to make a meaningful impact on society.
Collapse
Affiliation(s)
- Maude Giroud
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| | - Wolfgang Haap
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| |
Collapse
|
31
|
Pal K, Lala S, Agarwal P, Patel TS, Legac J, Rahman MA, Ahmedi S, Shahid N, Singh S, Kumari K, Madhav H, Sen A, Manzoor N, Dixit BC, Van Zyl R, Rosenthal PJ, Hoda N. Naphthyl bearing 1,3,4-thiadiazoleacetamides targeting the parasitic folate pathway as anti-infectious agents: in silico, synthesis, and biological approach. RSC Med Chem 2023; 14:2768-2781. [PMID: 38107179 PMCID: PMC10718588 DOI: 10.1039/d3md00423f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023] Open
Abstract
Malaria is still a complex and lethal parasitic infectious disease, despite the availability of effective antimalarial drugs. Resistance of malaria parasites to current treatments necessitates new antimalarials targeting P. falciparum proteins. The present study reported the design and synthesis of a series of a 2-(4-substituted piperazin-1-yl)-N-(5-((naphthalen-2-yloxy)methyl)-1,3,4-thiadiazol-2-yl)acetamide hybrids for the inhibition of Plasmodium falciparum dihydrofolate reductase (PfDHFR) using computational biology tools followed by chemical synthesis, structural characterization, and functional analysis. The synthesized compounds were evaluated for their in vitro antimalarial activity against CQ-sensitive PfNF54 and CQ-resistant PfW2 strain. Compounds T5 and T6 are the most active compounds having anti-plasmodial activity against PfNF54 with IC50 values of 0.94 and 3.46 μM respectively. Compound T8 is the most active against the PfW2 strain having an IC50 of 3.91 μM. Further, these active hybrids (T5, T6, and T8) were also evaluated for enzyme inhibition assay against PfDHFR. All the tested compounds were non-toxic against the Hek293 cell line with good selectivity indices. Hemolysis assay also showed non-toxicity of these compounds on normal uninfected human RBCs. In silico molecular docking studies were carried out in the binding pocket of both the wild-type and quadruple mutant Pf-DHFR-TS to gain further insights into probable modes of action of active compounds. ADME prediction and physiochemical properties support their drug-likeness. Additionally, they were screened for antileishmanial activity against L. donovani promastigotes to explore broader applications. Thus, this study provides molecular frameworks for developing potent antimalarials and antileishmanial agents.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| | - Sahil Lala
- Pharmacology Division, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand South Africa
- Wits Institute for Research Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand South Africa
| | - Priyanka Agarwal
- Pharmacology Division, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand South Africa
- Wits Institute for Research Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand South Africa
| | - Tarosh S Patel
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat India
| | - Jenny Legac
- Department of Medicine, University of California San Francisco CA USA
| | - Md Ataur Rahman
- Chemistry Program, New York University Abu Dhabi (NYUAD) Saadiyat Island Abu Dhabi United Arab Emirates
| | - Saiema Ahmedi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia New Delhi 110025 India
| | - Nida Shahid
- Department of Chemistry, Jamia Millia Islamia New Delhi India
| | - Sneha Singh
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences Bihar India
| | - Kajal Kumari
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences Bihar India
| | - Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| | - Abhik Sen
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences Bihar India
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia New Delhi 110025 India
| | - Bharat C Dixit
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat India
| | - Robyn Van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand South Africa
- Wits Institute for Research Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand South Africa
| | | | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| |
Collapse
|
32
|
Pandit K, Surolia N, Bhattacharjee S, Karmodiya K. The many paths to artemisinin resistance in Plasmodium falciparum. Trends Parasitol 2023; 39:1060-1073. [PMID: 37833166 DOI: 10.1016/j.pt.2023.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Emerging resistance against artemisinin (ART) poses a major challenge in controlling malaria. Parasites with mutations in PfKelch13, the major marker for ART resistance, are known to reduce hemoglobin endocytosis, induce unfolded protein response (UPR), elevate phosphatidylinositol-3-phosphate (PI3P) levels, and stimulate autophagy. Nonetheless, PfKelch13-independent resistance is also reported, indicating extensive complementation by reconfiguration in the parasite metabolome and transcriptome. These findings implicate that there may not be a single 'universal identifier' of ART resistance. This review sheds light on the molecular, transcriptional, and metabolic pathways associated with ART resistance, while also highlighting the interplay between cellular heterogeneity, environmental stress, and ART sensitivity.
Collapse
Affiliation(s)
- Kushankur Pandit
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
33
|
Parikesit AA, Hermantara R, Gregorius K, Siddharta E. Designing hybrid CRISPR-Cas12 and LAMP detection systems for treatment-resistant Plasmodium falciparum with in silico method. NARRA J 2023; 3:e301. [PMID: 38455618 PMCID: PMC10919703 DOI: 10.52225/narra.v3i3.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 03/09/2024]
Abstract
Genes associated with drug resistance of first line drugs for Plasmodium falciparum have been identified and characterized of which three genes most commonly associated with drug resistance are P. falciparum chloroquine resistance transporter gene (PfCRT), P. falciparum multidrug drug resistance gene 1 (PfMDR1), and P. falciparum Kelch protein K13 gene (PfKelch13). Polymorphism in these genes could be used as molecular markers for identifying drug resistant strains. Nucleic acid amplification test (NAAT) along with DNA sequencing is a powerful diagnostic tool that could identify these polymorphisms. However, current NAAT and DNA sequencing technologies require specific instruments which might limit its application in rural areas. More recently, a combination of isothermal amplification and CRISPR detection system showed promising results in detecting mutations at a nucleic acid level. Moreover, the Loop-mediated isothermal amplification (LAMP)-CRISPR systems offer robust and straightforward detection, enabling it to be deployed in rural and remote areas. The aim of this study was to develop a novel diagnostic method, based on LAMP of targeted genes, that would enable the identification of drug-resistant P. falciparum strains. The methods were centered on sequence analysis of P. falciparum genome, LAMP primers design, and CRISPR target prediction. Our designed primers are satisfactory for identifying polymorphism associated with drug resistant in PfCRT, PfMDR1, and PfKelch13. Overall, the developed system is promising to be used as a detection method for P. falciparum treatment-resistant strains. However, optimization and further validation the developed CRISPR-LAMP assay are needed to ensure its accuracy, reliability, and feasibility.
Collapse
Affiliation(s)
- Arli A. Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Rio Hermantara
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Kevin Gregorius
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Elizabeth Siddharta
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| |
Collapse
|
34
|
Atul, Chaudhary P, Gupta S, Shoaib R, Pasupureddy R, Goyal B, Kumar B, Singh OP, Dixit R, Singh S, Akhter M, Kapoor N, Pande V, Chakraborti S, Vashisht K, Pandey KC. Artemisinin resistance in P. falciparum: probing the interacting partners of Kelch13 protein in parasite. J Glob Antimicrob Resist 2023; 35:67-75. [PMID: 37633420 DOI: 10.1016/j.jgar.2023.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
OBJECTIVES Artemisinin (ART) resistance in Plasmodium is threatening the artemisinin combination therapies-the first line of defence against malaria. ART resistance has been established to be mediated by the Plasmodium Kelch13 (PfK13) protein. For the crucial role of PfK13 in multiple pathways of the Plasmodium life cycle and ART resistance, it is imperative that we investigate its interacting partners. METHODS We recombinantly expressed PfK13-p (Bric a brac/Poxvirus and zinc finger and propeller domains), generating anti-PfK13-p antibodies to perform co-immunoprecipitation assays and probed PfK13 interacting partners. Surface plasmon resonance and pull-down assays were performed to establish physical interactions of representative proteins with PfK13-p. RESULTS The co-immunoprecipitation assays identified 17 proteins with distinct functions in the parasite life cycle- protein folding, cellular metabolism, and protein binding and invasion. In addition to the overlap with previously identified proteins, our study identified 10 unique proteins. Fructose-biphosphate aldolase and heat shock protein 70 demonstrated strong biophysical interaction with PfK13-p, with KD values of 6.6 µM and 7.6 µM, respectively. Additionally, Plasmodium merozoite surface protein 1 formed a complex with PfK13-p, which is evident from the pull-down assay. CONCLUSION This study adds to our knowledge of the PfK13 protein in mediating ART resistance by identifying new PfK13 interacting partners. Three representative proteins-fructose-biphosphate aldolase, heat shock protein 70, and merozoite surface protein 1-demonstrated clear evidence of biophysical interactions with PfK13-p. However, elucidation of the functional relevance of these physical interactions are crucial in context of PfK13 role in ART resistance.
Collapse
Affiliation(s)
- Atul
- ICMR-National Institute of Malaria Research, New Delhi, India; Kumaun University, Nainital, Uttarakhand, India
| | - Preeti Chaudhary
- ICMR-National Institute of Malaria Research, New Delhi, India; Department of Life Sciences, IGNOU, Delhi, India
| | - Swati Gupta
- International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Rumaisha Shoaib
- School of Molecular Medicine, Jawaharlal Nehru University, Delhi, India
| | | | - Bharti Goyal
- ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovation Research, Uttar Pradesh, India
| | - Bhumika Kumar
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Rajnikant Dixit
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- School of Molecular Medicine, Jawaharlal Nehru University, Delhi, India
| | | | - Neera Kapoor
- Department of Life Sciences, IGNOU, Delhi, India
| | - Veena Pande
- Kumaun University, Nainital, Uttarakhand, India
| | - Soumyananda Chakraborti
- ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovation Research, Uttar Pradesh, India
| | - Kapil Vashisht
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovation Research, Uttar Pradesh, India.
| |
Collapse
|
35
|
Dieng CC, Morrison V, Donu D, Cui L, Amoah L, Afrane Y, Lo E. Distribution of Plasmodium falciparum K13 gene polymorphisms across transmission settings in Ghana. BMC Infect Dis 2023; 23:801. [PMID: 37974079 PMCID: PMC10652499 DOI: 10.1186/s12879-023-08812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Malaria is a significant global health concern, with a majority of cases in Sub-Saharan African nations. Numerous antimalarial drugs have been developed to counter the rampant prevalence of Plasmodium falciparum malaria. Artemisinin-based Combination Therapy (ACT) has served as the primary treatment of uncomplicated malaria in Ghana since 2005. However, a growing concern has emerged due to the escalating reports of ACT resistance, particularly in Southeast Asia, and its encroachment into Africa. Specifically, mutations in the Kelch propeller domain on chromosome 13 (Pfk13) have been linked to ACT resistance. Yet, our understanding of mutation prevalence in Africa remains largely uncharted. In this study, we compared Pfk13 sequences obtained from 172 P. falciparum samples across three ecological and transmission zones in Ghana. We identified 27 non-synonymous mutations among these sequences, of which two of the mutations, C580Y (found in two samples from the central region) and Y493H (found in one sample from the north), had previously been validated for their association with artemisinin resistance, a phenomenon widespread in Southeast Asia. The Pfk13 gene diversity was most pronounced in the northern savannah than the central forest and south coastal regions, where transmission rates are lower. The observed mutations were not significantly associated with geographical regions, suggesting a frequent spread of mutations across the country. The ongoing global surveillance of artemisinin resistance remains pivotal, and our findings provides insights into the potential spread of resistant parasites in West Africa. Furthermore, the identification of novel codon mutations in this study raises their potential association to ACT resistance, warranting further investigation through in vitro assays to ascertain their functional significance.
Collapse
Affiliation(s)
- Cheikh Cambel Dieng
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| | - Victoria Morrison
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dickson Donu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Liwang Cui
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Linda Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Yaw Afrane
- Department of Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Shafi S, Gupta S, Jain R, Shoaib R, Munjal A, Maurya P, Kumar P, Kalam Najmi A, Singh S. Tackling the emerging Artemisinin-resistant malaria parasite by modulation of defensive oxido-reductive mechanism via nitrofurantoin repurposing. Biochem Pharmacol 2023; 215:115756. [PMID: 37598974 DOI: 10.1016/j.bcp.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress-mediated cell death has remained the prime parasiticidal mechanism of front line antimalarial, artemisinin (ART). The emergence of resistant Plasmodium parasites characterized by oxidative stress management due to impaired activation of ART and enhanced reactive oxygen species (ROS) detoxification has decreased its clinical efficacy. This gap can be filled by development of alternative chemotherapeutic agents to combat resistance defense mechanism. Interestingly, repositioning of clinically approved drugs presents an emerging approach for expediting antimalarial drug development and circumventing resistance. Herein, we evaluated the antimalarial potential of nitrofurantoin (NTF), a clinically used antibacterial drug, against intra-erythrocytic stages of ART-sensitive (Pf3D7) and resistant (PfKelch13R539T) strains of P. falciparum, alone and in combination with ART. NTF exhibited growth inhibitory effect at submicro-molar concentration by arresting parasite growth at trophozoite stage. It also inhibited the survival of resistant parasites as revealed by ring survival assay. Concomitantly, in vitro combination assay revealed synergistic association of NTF with ART. NTF was found to enhance the reactive oxygen and nitrogen species, and induced mitochondrial membrane depolarization in parasite. Furthermore, we found that exposure of parasites to NTF disrupted redox balance by impeding Glutathione Reductase activity, which manifests in enhanced oxidative stress, inducing parasite death. In vivo administration of NTF, alone and in combination with ART, in P. berghei ANKA-infected mice blocked parasite multiplication and enhanced mean survival time. Overall, our results indicate NTF as a promising repurposable drug with therapeutic potential against ART-sensitive as well as resistant parasites.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
37
|
Skorokhod O, Valente E, Mandili G, Ulliers D, Schwarzer E. Micromolar Dihydroartemisinin Concentrations Elicit Lipoperoxidation in Plasmodium falciparum-Infected Erythrocytes. Antioxidants (Basel) 2023; 12:1468. [PMID: 37508006 PMCID: PMC10376682 DOI: 10.3390/antiox12071468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria is still the most important parasitic infectious disease. Numerous substances are known to have antimalarial activity; among them, artemisinin is the most widely used one, and artemisinin-based combination therapy (ACT) is recommended for the treatment of Plasmodium falciparum (P.f.) malaria. Antitumor, immunomodulatory, and other therapeutic applications of artemisinin are under extensive study. Several different mechanisms of action were proposed for dihydroartemisinin (DHA), the active metabolite of artemisinin, such as eliciting oxidative stress in target cells. The goal of this study is to monitor the generation of reactive oxygen species (ROS) and lipid peroxidation product 4-hydroxynonenal (4-HNE) by DHA in P.f.-infected human erythrocytes. Checking ROS and 4-HNE-protein adducts kinetics along the maturation of the parasite, we detected the highest level of 4-HNE in ring forms of P.f. due to DHA treatment. Low micromolar concentrations of DHA quickly induced levels of 4-HNE-adducts which are supposed to be damaging. Mass spectrometry identified the P.f. protein cysteine proteinase falcipain-1 as being heavily modified by 4-HNE, and plausibly, 4-HNE conjugation with vital P.f. proteins might contribute to DHA-elicited parasite death. In conclusion, significant 4-HNE accumulation was detectable after DHA treatment, though, at concentrations well above pharmacologically effective ranges in malaria treatment, but at concentrations described for antitumor activity. Thus, lipid peroxidation with consequent 4-HNE conjugation of functionally relevant proteins might be considered as a uniform mechanism for how DHA potentiates antimalarials' action in ACT and controls the progression of tumors.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina, 13, 10123 Torino, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Giorgia Mandili
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Daniela Ulliers
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| |
Collapse
|
38
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
39
|
Asahi H, Niikura M, Inoue SI, Sendo F, Kobayashi F, Wada A. Dihydroartemisinin Disrupts Zinc Homeostasis in Plasmodium falciparum To Potentiate Its Antimalarial Action via Pyknosis. ACS Infect Dis 2023; 9:1303-1309. [PMID: 37321567 PMCID: PMC10353546 DOI: 10.1021/acsinfecdis.3c00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Artemisinins have been used as first-line drugs worldwide to treat malaria caused by Plasmodium falciparum; however, its underlying mechanism is still unclear. This study aimed to identify the factors inducing growth inhibition via pyknosis, a state of intraerythrocytic developmental arrest, when exposing the parasite to dihydroartemisinin (DHA). Changes in the expression of genome-wide transcripts were assessed in the parasites treated with antimalarials, revealing the specific downregulation of zinc-associated proteins by DHA. The quantification of zinc levels in DHA-treated parasite indicated abnormal zinc depletion. Notably, the zinc-depleted condition in the parasite produced by a zinc chelator induced the generation of a pyknotic form and the suppression of its proliferation. The evaluation of the antimalarial activity of DHA or a glutathione-synthesis inhibitor in the zinc-depleted state showed that the disruption of zinc and glutathione homeostasis synergistically potentiated the growth inhibition of P. falciparum through pyknosis. These findings could help further understand the antimalarial actions of artemisinins for advancing malaria therapy.
Collapse
Affiliation(s)
- Hiroko Asahi
- Laboratory
for Nonnatural Amino Acid Technology, RIKEN
Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mamoru Niikura
- Division
of Tropical Diseases and Parasitology, Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shin-Ichi Inoue
- Division
of Immunology, Department of Molecular Microbiology and Immunology,
Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Fujiro Sendo
- Kojunosato,
Geriatric Health Service Facilities, 8-1 Azahonmaru, Oazamizonobe, Kahoku-cho, Yamagata 999-3522, Japan
| | - Fumie Kobayashi
- Department
of Environmental Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Akira Wada
- Laboratory
for Nonnatural Amino Acid Technology, RIKEN
Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
40
|
Fitri LE, Pawestri AR, Winaris N, Endharti AT, Khotimah ARH, Abidah HY, Huwae JTR. Antimalarial Drug Resistance: A Brief History of Its Spread in Indonesia. Drug Des Devel Ther 2023; 17:1995-2010. [PMID: 37431492 PMCID: PMC10329833 DOI: 10.2147/dddt.s403672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Malaria remains to be a national and global challenge and priority, as stated in the strategic plan of the Indonesian Ministry of Health and Sustainable Development Goals. In Indonesia, it is targeted that malaria elimination can be achieved by 2030. Unfortunately, the development and spread of antimalarial resistance inflicts a significant risk to the national malaria control programs which can lead to increased malaria morbidity and mortality. In Indonesia, resistance to widely used antimalarial drugs has been reported in two human species, Plasmodium falciparum and Plasmodium vivax. With the exception of artemisinin, resistance has surfaced towards all classes of antimalarial drugs. Initially, chloroquine, sulfadoxine-pyrimethamine, and primaquine were the most widely used antimalarial drugs. Regrettably, improper use has supported the robust spread of their resistance. Chloroquine resistance was first reported in 1974, while sulfadoxine-pyrimethamine emerged in 1979. Twenty years later, most provinces had declared treatment failures of both drugs. Molecular epidemiology suggested that variations in pfmdr1 and pfcrt genes were associated with chloroquine resistance, while dhfr and dhps genes were correlated with sulfadoxine-pyrimethamine resistance. Additionally, G453W, V454C and E455K of pfk13 genes appeared to be early warning sign to artemisinin resistance. Here, we reported mechanisms of antimalarial drugs and their development of resistance. This insight could provide awareness toward designing future treatment guidelines and control programs in Indonesia.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease and Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aulia Rahmi Pawestri
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease and Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nuning Winaris
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease and Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Alif Raudhah Husnul Khotimah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Hafshah Yasmina Abidah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - John Thomas Rayhan Huwae
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Study Program Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
41
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
42
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
43
|
Guo Y, Cheng Y, Li H, Guan H, Xiao H, Li Y. The Potential of Artemisinins as Novel Treatment for Thyroid Eye Disease by Inhibiting Adipogenesis in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37326592 DOI: 10.1167/iovs.64.7.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Purpose Thyroid eye disease (TED) causes cosmetic defect and even threatens eyesight due to tissue remodeling in which orbital fibroblast (OF) plays a central role mainly by differentiating into adipocytes. Repurposing old drugs to novel applications is of particular interest. Here, we aimed to evaluate the effects of the antimalarials artemisinin (ARS) and the derivatives on the OFs isolated from patients with TED and their counterparts. Methods OFs isolated from patients with TED or their counterparts were cultured and passaged in proliferation medium (PM) and stimulated by differentiation medium (DM) for adipogenesis. OFs were treated with or without ARS, dihydroartemisinin (DHA), and artesunate (ART) at different concentrations, before being examined in vitro. CCK-8 were used to assess cellular viability. Cell proliferation was determined by EdU incorporation and flow cytometry. Lipid accumulation within the cells was evaluated by Oil Red O staining. Hyaluronan production was determined by ELISA. RNAseq, qPCR, and Western blot analysis were performed to illustrate the underlying mechanisms. Results ARSs dose-dependently interfered with lipid accumulation of TED-OFs, rather than non-TED-OFs. Meanwhile, the expression of key adipogenic markers, such as PLIN1, PPARG, FABP4, and CEBPA, was suppressed. During adipogenesis as being cultivated in DM, instead of PM, ARSs also inhibited cell cycle, hyaluronan production and the expression of hyaluronan synthase 2 (HAS2) in a concentration-dependent manner. Mechanically, the favorable effects were potentially mediated by the repression of IGF1R-PI3K-AKT signaling by dampening IGF1R expression. Conclusions Collectedly, our data evidenced that the conventional antimalarials ARSs were potentially therapeutic for TED.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Choubey D, Deshmukh B, Rao AG, Kanyal A, Hati AK, Roy S, Karmodiya K. Genomic analysis of Indian isolates of Plasmodium falciparum: Implications for drug resistance and virulence factors. Int J Parasitol Drugs Drug Resist 2023; 22:52-60. [PMID: 37269630 PMCID: PMC10248731 DOI: 10.1016/j.ijpddr.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
The emergence of drug resistance to frontline treatments such as Artemisinin-based combination therapy (ACT) is a major obstacle to the control and eradication of malaria. This problem is compounded by the inherent genetic variability of the parasites, as many established markers of resistance do not accurately predict the drug-resistant status. There have been reports of declining effectiveness of ACT in the West Bengal and Northeast regions of India, which have traditionally been areas of drug resistance emergence in the country. Monitoring the genetic makeup of a population can help to identify the potential for drug resistance markers associated with it and evaluate the effectiveness of interventions aimed at reducing the spread of malaria. In this study, we performed whole genome sequencing of 53 isolates of Plasmodium falciparum from West Bengal and compared their genetic makeup to isolates from Southeast Asia (SEA) and Africa. We found that the Indian isolates had a distinct genetic makeup compared to those from SEA and Africa, and were more similar to African isolates, with a high prevalence of mutations associated with antigenic variation genes. The Indian isolates also showed a high prevalence of markers of chloroquine resistance (mutations in Pfcrt) and multidrug resistance (mutations in Pfmdr1), but no known mutations associated with artemisinin resistance in the PfKelch13 gene. Interestingly, we observed a novel L152V mutation in PfKelch13 gene and other novel mutations in genes involved in ubiquitination and vesicular transport that have been reported to support artemisinin resistance in the early stages of ACT resistance in the absence of PfKelch13 polymorphisms. Thus, our study highlights the importance of region-specific genomic surveillance for artemisinin resistance and the need for continued monitoring of resistance to artemisinin and its partner drugs.
Collapse
Affiliation(s)
- Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Anjani Gopal Rao
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Amiya Kumar Hati
- Department of Medical Entomology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Somenath Roy
- Department of Human Physiology, Vidyasagar University, Paschim Medinipur, West Bengal, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
45
|
Deni I, Stokes BH, Ward KE, Fairhurst KJ, Pasaje CFA, Yeo T, Akbar S, Park H, Muir R, Bick DS, Zhan W, Zhang H, Liu YJ, Ng CL, Kirkman LA, Almaliti J, Gould AE, Duffey M, O'Donoghue AJ, Uhlemann AC, Niles JC, da Fonseca PCA, Gerwick WH, Lin G, Bogyo M, Fidock DA. Mitigating the risk of antimalarial resistance via covalent dual-subunit inhibition of the Plasmodium proteasome. Cell Chem Biol 2023; 30:470-485.e6. [PMID: 36963402 PMCID: PMC10198959 DOI: 10.1016/j.chembiol.2023.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic β2 and β5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the β5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.
Collapse
Affiliation(s)
- Ioanna Deni
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E Ward
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kate J Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shirin Akbar
- School of Molecular Biosciences, University of Glasgow, Glasgow, Scotland, UK
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniella S Bick
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenhu Zhan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Jing Liu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Caroline L Ng
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biology, University of Nebraska Omaha, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura A Kirkman
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
| | | | | | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
46
|
Zhan W, Li D, Subramanyaswamy SB, Liu YJ, Yang C, Zhang H, Harris JC, Wang R, Zhu S, Rocha H, Sherman J, Qin J, Herring M, Simwela NV, Waters AP, Sukenick G, Cui L, Rodriguez A, Deng H, Nathan CF, Kirkman LA, Lin G. Dual-pharmacophore artezomibs hijack the Plasmodium ubiquitin-proteasome system to kill malaria parasites while overcoming drug resistance. Cell Chem Biol 2023; 30:457-469.e11. [PMID: 37148884 PMCID: PMC10240386 DOI: 10.1016/j.chembiol.2023.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
Artemisinins (ART) are critical anti-malarials and despite their use in combination therapy, ART-resistant Plasmodium falciparum is spreading globally. To counter ART resistance, we designed artezomibs (ATZs), molecules that link an ART with a proteasome inhibitor (PI) via a non-labile amide bond and hijack parasite's own ubiquitin-proteasome system to create novel anti-malarials in situ. Upon activation of the ART moiety, ATZs covalently attach to and damage multiple parasite proteins, marking them for proteasomal degradation. When damaged proteins enter the proteasome, their attached PIs inhibit protease function, potentiating the parasiticidal action of ART and overcoming ART resistance. Binding of the PI moiety to the proteasome active site is enhanced by distal interactions of the extended attached peptides, providing a mechanism to overcome PI resistance. ATZs have an extra mode of action beyond that of each component, thereby overcoming resistance to both components, while avoiding transient monotherapy seen when individual agents have disparate pharmacokinetic profiles.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Daqiang Li
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | | - Yi Jing Liu
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jacob C Harris
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hedy Rocha
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Julian Sherman
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mikayla Herring
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Nelson V Simwela
- School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P Waters
- School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ana Rodriguez
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Laura A Kirkman
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA.
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
47
|
Imlay LS, Lawong AK, Gahalawat S, Kumar A, Xing C, Mittal N, Wittlin S, Churchyard A, Niederstrasser H, Crespo-Fernandez B, Posner BA, Gamo FJ, Baum J, Winzeler EA, LALEU B, Ready JM, Phillips MA. Fast-Killing Tyrosine Amide (( S)-SW228703) with Blood- and Liver-Stage Antimalarial Activity Associated with the Cyclic Amine Resistance Locus ( PfCARL). ACS Infect Dis 2023; 9:527-539. [PMID: 36763526 PMCID: PMC10053980 DOI: 10.1021/acsinfecdis.2c00527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified (S)-SW228703 ((S)-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to (S)-SW703 is associated with mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) and P. falciparum acetyl CoA transporter (PfACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of (S)-SW703 is shared with some reported PfCARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of (S)-SW703, suggesting differences in the mechanism of action or binding mode. (S)-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.
Collapse
Affiliation(s)
- Leah S. Imlay
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aloysus K. Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland
- University of Basel, 4002, Basel, Switzerland
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Elizabeth A. Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Benoît LALEU
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Margaret A. Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
48
|
Maniga JN, Samuel M, John O, Rael M, Muchiri JN, Bwogo P, Martin O, Sankarapandian V, Wilberforce M, Albert O, Onkoba SK, Adebayo IA, Adeyemo RO, Akinola SA. Novel Plasmodium falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of artemisinin-based combination therapy deployment. Malar J 2023; 22:87. [PMID: 36894982 PMCID: PMC9996564 DOI: 10.1186/s12936-023-04517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Currently, chemotherapy stands out as the major malaria intervention strategy, however, anti-malarial resistance may hamper global elimination programs. Artemisinin-based combination therapy (ACT) stands as the drug of choice for the treatment of Plasmodium falciparum malaria. Plasmodium falciparum kelch13 gene mutations are associated with artemisinin resistance. Thus, this study was aimed at evaluating the circulation of P. falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of ACT deployment. METHODS Participants suspected to have malaria were recruited. Plasmodium falciparum was confirmed using the microscopy method. Malaria-positive patients were treated with artemether-lumefantrine (AL). Blood from participants who tested positive for parasites after day 3 was kept on filter papers. DNA was extracted using chelex-suspension method. A nested polymerase chain reaction (PCR) was conducted and the second-round products were sequenced using the Sanger method. Sequenced products were analysed using DNAsp 5.10.01 software and then blasted on the NCBI for k13 propeller gene sequence identity using the Basic Local Alignment Search Tool (BLAST). To assess the selection pressure in P. falciparum parasite population, Tajima' D statistic and Fu & Li's D test in DnaSP software 5.10.01 was used. RESULTS Out of 275 enrolled participants, 231 completed the follow-up schedule. 13 (5.6%) had parasites on day 28 hence characterized for recrudescence. Out of the 13 samples suspected of recrudescence, 5 (38%) samples were positively amplified as P. falciparum, with polymorphisms in the k13-propeller gene detected. Polymorphisms detected in this study includes R539T, N458T, R561H, N431S and A671V, respectively. The sequences have been deposited in NCBI with bio-project number PRJNA885380 and accession numbers SAMN31087434, SAMN31087433, SAMN31087432, SAMN31087431 and SAMN31087430 respectively. CONCLUSIONS WHO validated polymorphisms in the k13-propeller gene previously reported to be associated with ACT resistance were not detected in the P. falciparum isolates from Kisii County, Kenya. However, some previously reported un-validated k13 resistant single nucleotide polymorphisms were reported in this study but with limited occurrences. The study has also reported new SNPs. More studies need to be carried out in the entire country to understand the association of reported mutations if any, with ACT resistance.
Collapse
Affiliation(s)
- Josephat Nyabayo Maniga
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda.
| | | | - Odda John
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Pharmacology and Therapeutics, Makerere University, Kampala, Uganda.,Department of Pharmacology and Toxicology, School of Medicine, King Caesor University, Kampala, Uganda
| | - Masai Rael
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | - Pacifica Bwogo
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Odoki Martin
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Medical Microbiology and Immunology, School of Medicine, King Ceasor University, Kampala, Uganda.,Department of Applied Sciences, School of Sciences, Nkumba University, Entebbe, Uganda
| | - Vidya Sankarapandian
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mfitundinda Wilberforce
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Pharmacology and Toxicology, School of Medicine, King Caesor University, Kampala, Uganda
| | - Ochweri Albert
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Sarah Kemuma Onkoba
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda
| | - Ismail Abiola Adebayo
- Department of Medical Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Rasheed Omotayo Adeyemo
- Department of Medical Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Saheed Adekunle Akinola
- Department of Medical Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
49
|
Taubenschmid-Stowers J, Orthofer M, Laemmerer A, Krauditsch C, Rózsová M, Studer C, Lötsch D, Gojo J, Gabler L, Dyczynski M, Efferth T, Hagelkruys A, Widhalm G, Peyrl A, Spiegl-Kreinecker S, Hoepfner D, Bian S, Berger W, Knoblich JA, Elling U, Horn M, Penninger JM. A whole-genome scan for Artemisinin cytotoxicity reveals a novel therapy for human brain tumors. EMBO Mol Med 2023; 15:e16959. [PMID: 36740985 DOI: 10.15252/emmm.202216959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 02/07/2023] Open
Abstract
The natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive. Using yeast and haploid stem cell screening, we demonstrate that a single cellular pathway, namely porphyrin (heme) biosynthesis, is required for the cytotoxicity of Artemisinins. Genetic or pharmacological modulation of porphyrin production is sufficient to alter its cytotoxicity in eukaryotic cells. Using multiple model systems of human brain tumor development, such as cerebral glioblastoma organoids, and patient-derived tumor spheroids, we sensitize cancer cells to dihydroartemisinin using the clinically approved porphyrin enhancer and surgical fluorescence marker 5-aminolevulinic acid, 5-ALA. A combination treatment of Artemisinins and 5-ALA markedly and specifically killed brain tumor cells in all model systems tested, including orthotopic patient-derived xenografts in vivo. These data uncover the critical molecular pathway for Artemisinin cytotoxicity and a sensitization strategy to treat different brain tumors, including drug-resistant human glioblastomas.
Collapse
Affiliation(s)
- Jasmin Taubenschmid-Stowers
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Anna Laemmerer
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christian Krauditsch
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | | | - Daniela Lötsch
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University Linz, Linz, Austria
| | | | - Shan Bian
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
| | - Juergen A Knoblich
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Yu J, Sheng S, Zou X, Shen Z. Dihydroartemisinin-ursodeoxycholic acid conjugate is a potential treatment agent for inflammatory bowel disease. Int Immunopharmacol 2023; 117:109918. [PMID: 36842236 DOI: 10.1016/j.intimp.2023.109918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND A novel artemisinin derivative, dihydroartemisinin-ursodeoxycholic acid conjugate (4), was found to exhibit strong immunosuppressive activity. Various methods were used to evaluate the immunosuppressive activity and mechanism of action of the compound to explore its potential applications. METHODS T cell proliferation, mixed lymphocyte reaction (MLR), and Th1/Th17 differentiation assays were used to evaluate the immunosuppressive activity of the compound. Differentially expressed genes from RNA sequencing were analysed with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, while enriched signalling pathways were further validated by western blotting (WB). In vivo efficacy was validated with delayed-type hypersensitivity (DTH) mouse models and dextran sodium sulphate (DSS)-induced inflammatory bowel disease (IBD) mouse model. RESULTS Compound 4 inhibited concanavalin A -induced mouse splenic T cell proliferation (IC50 = 15 nM) and anti-CD3/CD28-induced human primary T cell proliferation (IC50 = 30 nM) while also reducing the secretion of hIFN-γ. Compound 4 exhibited similar inhibitory activity in MLR assay. Compound 4 dose-dependently inhibited human Th1/Th17 differentiation. The KEGG pathway enrichment analysis indicated that the genes related to T cell activation signalling pathways PI3K-AKT, MAPK, and NF-κB were significantly enriched. WB confirmed that compound 4 inhibited the AKT/MAPK and NF-κB signalling pathways. Compound 4 dose-dependently inhibited ear and foot pad swelling in DTH mouse models. In the DSS-induced IBD mouse model, compound 4 significantly decreased the disease activity index and colon density, and inhibited splenomegaly of the mice. CONCLUSION The in vitro and in vivo results indicated that compound 4 has the potential to be developed into an anti-IBD drug.
Collapse
Affiliation(s)
- Jingfeng Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Sihan Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|