1
|
Khurram OU, Sieck GC. An update on spinal cord injury and diaphragm neuromotor control. Expert Rev Respir Med 2025:1-17. [PMID: 40258801 DOI: 10.1080/17476348.2025.2495165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Understanding neuromotor control of the diaphragm muscle (DIAm) is the foundation for developing therapeutic approaches for functional recovery of ventilatory and non-ventilatory behaviors. Although the DIAm is the primary inspiratory pump, it plays a vital role in a wide variety of higher-force behaviors including airway clearance activities. After spinal cord injury (SCI), higher-force behaviors experience the greatest deficits. A classification scheme for SCI that incorporates this information would be clinically valuable. AREAS COVERED We begin by presenting foundational information about DIAm motor units. In addition, we introduce a classification scheme of SCI based on the impact it has on neural circuitry involved in breathing and other functions of the DIAm. Finally, we consider various promising therapeutic options available to improve DIAm motor function. Relevant literature was identified by searching PubMed and Google Scholar without specific limits on the dates. EXPERT OPINION Classification of SCI based on its impact on the neural circuitry involved in DIAm motor behaviors is an important part of developing effective therapeutics. An approach that considers the specific type of SCI and leverages a combination of interventions will likely yield the best outcomes for restoring both ventilatory and non-ventilatory functions.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Poliacek I, Veterník M, Martvon L, Simera M, Cibulkova L, Kotmanova Z, Berikova D, Bolser DC. Peripheral antitussives affect temporal features of tracheobronchial coughing in cats. J Appl Physiol (1985) 2025; 138:22-30. [PMID: 39561004 DOI: 10.1152/japplphysiol.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The influence of peripheral antitussive drugs on spatiotemporal features of coughing has not been reported. We hypothesized that this class of compounds would alter the cough motor pattern, in part, by lengthening cough phases. Peripherally acting antitussives, 3-aminopropylphosphinic acid (3APPi, 5 mg/kg) and levodropropizine (Levo, 3 mg/kg) were injected intravenously in anesthetized spontaneously breathing cats (13 males, 2 females; 4.38 ± 0.19 kg). Spatio-temporal analysis of cough induced by mechanical stimulation of the trachea showed significant reductions in cough number and expiratory cough efforts after the administration of each drug. A significant reduction in inspiratory cough efforts occurred after Levo. Both drugs induced temporal changes in the cough motor pattern, including prolongations of inspiratory phase, inspiratory-expiratory transition, total cough diaphragm activity, and total cough cycle duration. Levo also significantly lengthened the expiratory phase of cough. A shortening of the overlap between diaphragm and abdominal activity and cough abdominal electromyogram (EMG) activity was observed after the administration of 3APPi. No significant changes in cardiorespiratory data were seen, with the exception of prolonged expiratory phase after 3APPi and lower blood pressure after Levo. Peripherally induced cough suppression is accompanied with changes in cough temporal characteristics that are not observed after the administration of centrally acting antitussives. The motor output produced by the cough central pattern generator differs significantly when coughing is perturbed by peripherally and centrally acting antitussives.NEW & NOTEWORTHY In a study on anesthetized cats, peripherally acting antitussives 3-aminopropylphosphinic acid (3APPi) and levodropropizine (Levo) significantly reduced cough number and expiratory efforts, with Levo also reducing inspiratory efforts. Both antitussives altered the cough motor pattern, extending various cough phases. 3APPi shortened diaphragm-abdominal activity overlap, whereas Levo decreased the respiratory rate. These changes contrast with those induced by centrally acting antitussives.
Collapse
Affiliation(s)
- Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marcel Veterník
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lukas Martvon
- Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Cibulkova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Denisa Berikova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
3
|
Osbourne A, Melliza A, Dudley SK, da Silva GSF, Zoccal DB, Revill AL. Cholinergic modulation of upper airway control: maturational changes and mechanisms at cellular and synaptic levels. J Neurophysiol 2025; 133:46-59. [PMID: 39607299 DOI: 10.1152/jn.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Respiration is governed by a central rhythm and pattern generator, which has the pre-Bötzinger complex as the inspiratory oscillator initiating the coordinated activity of several respiratory muscles, including the diaphragm, intercostals, and upper airway muscles. The diaphragm is the main inspiratory pump muscle driving inflow, whereas dilator upper airway muscles, such as tongue muscles, reduce airway resistance during inspiration. Breathing exhibits a marked state-dependent pattern attributed to changes in neuromodulatory tone in respiratory-related brain regions, including decreases in noradrenaline and serotonin and increases in acetylcholine levels during rapid eye movement (REM) sleep. Here, we discuss respiratory modulation by acetylcholine acting on its metabotropic muscarinic receptors, focusing on the regulation of upper airway muscle activity during sleep and wakefulness and its changing effects with postnatal maturation. We focus on experimental data examining muscarinic receptor distribution patterns, the ion channels they modulate, and how these distribution patterns change with postnatal maturation. We also consider experimental data highlighting cholinergic cellular and synaptic effects on hypoglossal motoneurons and pre-Bötzinger complex neurons and how they might explain changes in the effects of cholinergic modulation with development. Overall, this discussion is critical to comprehending the postnatal maturation in the cholinergic modulation of the respiratory control system leading to opposing effects of muscarinic receptors on upper airway muscle activity in neonate (excitatory) and adult (inhibitory) preparations. The changes in cholinergic pathways associated with dysfunctional upper airway patency control are also discussed in the context of pathologies such as sleep-disordered breathing.
Collapse
Affiliation(s)
- Alexis Osbourne
- Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Aleanna Melliza
- Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Sydney K Dudley
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Science Federal, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ann L Revill
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| |
Collapse
|
4
|
Lu H, Chen G, Zhao M, Gu H, Zheng W, Li X, Huang M, Geng D, Yu M, Guan X, Zhang L, Song H, Li Y, Wu M, Zhang F, Li D, Wu Q, Shang C, Xie Z, Cao P. Brainstem opioid peptidergic neurons regulate cough reflexes in mice. Innovation (N Y) 2024; 5:100721. [PMID: 39529953 PMCID: PMC11551472 DOI: 10.1016/j.xinn.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Cough is a vital defensive reflex for expelling harmful substances from the airway. The sensory afferents for the cough reflex have been intensively studied. However, the brain mechanisms underlying the cough reflex remain poorly understood. Here, we developed a paradigm to quantitatively measure cough-like reflexes in mice. Using this paradigm, we found that prodynorphin-expressing (Pdyn+) neurons in the nucleus of the solitary tract (NTS) are critical for capsaicin-induced cough-like reflexes. These neurons receive cough-related neural signals from Trpv1+ vagal sensory neurons. The activation of Pdyn+ NTS neurons triggered respiratory responses resembling cough-like reflexes. Among the divergent projections of Pdyn+ NTS neurons, a glutamatergic pathway projecting to the caudal ventral respiratory group (cVRG), the canonical cough center, was necessary and sufficient for capsaicin-induced cough-like reflexes. These results reveal that Pdyn+ NTS neurons, as a key neuronal population at the entry point of the vagus nerve to the brainstem, initiate cough-like reflexes in mice.
Collapse
Affiliation(s)
- Haicheng Lu
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Guoqing Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Miao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenxuan Zheng
- National Institute of Biological Sciences, Beijing 102206, China
- Peking University–Tsinghua University–NIBS Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiating Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Meizhu Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dandan Geng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Minhui Yu
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuyan Guan
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huimeng Song
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yaning Li
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Menghua Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fan Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Zhiyong Xie
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Lowell ER, Borders JC, Perry SE, Dakin AE, Sevitz JS, Kuo SH, Troche MS. Sensorimotor Cough Dysfunction in Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1338-1347. [PMID: 38032397 PMCID: PMC11145628 DOI: 10.1007/s12311-023-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Cerebellar ataxias are neurological conditions with a high prevalence of aspiration pneumonia and dysphagia. Recent research shows that sensorimotor cough dysfunction is associated with airway invasion and dysphagia in other neurological conditions and may increase the risk of pneumonia. Therefore, this study aimed to characterize sensorimotor cough function and its relationship with ataxia severity. Thirty-seven participants with cerebellar ataxia completed voluntary and/or reflex cough testing. Ataxia severity was assessed using the Scale for the Assessment and Rating of Ataxia (SARA). Linear multilevel models revealed voluntary cough peak expiratory flow rate (PEFR) estimates of 2.61 L/s and cough expired volume (CEV) estimates of 0.52 L. Reflex PEFR (1.82 L/s) and CEV (0.34 L) estimates were lower than voluntary PEFR and CEV estimates. Variability was higher for reflex PEFR (15.74% coefficient of variation [CoV]) than voluntary PEFR (12.13% CoV). 46% of participants generated at least two, two-cough responses following presentations of reflex cough stimuli. There was a small inverse relationship between ataxia severity and voluntary PEFR (β = -0.05, 95% CI: -0.09 - -0.01 L) and ataxia severity and voluntary CEV (β = -0.01, 95% CI: -0.02 - -0.004 L/s). Relationships between reflex cough motor outcomes (PEFR β = 0.03, 95% CI: -0.007-0.07 L/s; CEV β = 0.007, 95% CI: -0.004-0.02 L) and ataxia severity were not statistically robust. Results indicate that voluntary and reflex cough sensorimotor dysfunction is present in cerebellar ataxias and that increased severity of ataxia symptoms may impact voluntary cough function.
Collapse
Affiliation(s)
- Emilie R Lowell
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, 525 W 120th St, New York, NY, 10027, USA
| | - James C Borders
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, 525 W 120th St, New York, NY, 10027, USA
| | - Sarah E Perry
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- University of Canterbury Rose Centre for Stroke Recovery & Research at St. George's Medical Centre, Christchurch, New Zealand
| | - Avery E Dakin
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, 525 W 120th St, New York, NY, 10027, USA
| | - Jordanna S Sevitz
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, 525 W 120th St, New York, NY, 10027, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- The Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Michelle S Troche
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, 525 W 120th St, New York, NY, 10027, USA.
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|
6
|
Guilleminault L, Grassin-Delyle S, Mazzone SB. Drugs Targeting Cough Receptors: New Therapeutic Options in Refractory or Unexplained Chronic Cough. Drugs 2024; 84:763-777. [PMID: 38904926 DOI: 10.1007/s40265-024-02047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/22/2024]
Abstract
Refractory chronic cough is a disabling disease with very limited therapeutic options. A better understanding of cough pathophysiology has led to the development of emerging drugs targeting cough receptors. Recent strides have illuminated novel therapeutic avenues, notably centred on modulating transient receptor potential (TRP) channels, purinergic receptors, and neurokinin receptors. By modulating these receptors, the goal is to intervene in the sensory pathways that trigger cough reflexes, thereby providing relief without compromising vital protective mechanisms. These innovative pharmacotherapies hold promise for improvement of refractory chronic cough by offering improved efficacy and potentially mitigating adverse effects associated with current recommended treatments. A deeper comprehension of their precise mechanisms of action and clinical viability is imperative for optimising therapeutic interventions and elevating patient care standards in respiratory health. This review delineates the evolving landscape of drug development in this domain, emphasising the significance of these advancements in reshaping the paradigm of cough management.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024, Toulouse, France.
- Department of Respiratory Medicine, Faculty of Medicine, Hôpital Larrey, Toulouse University Hospital, 24 chemin de Pouvourville, 31059, Toulouse, France.
| | - Stanislas Grassin-Delyle
- Exhalomics®, Hôpital Foch, Suresnes, France
- Département de Biotechnologie de la Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Montigny le Bretonneux, France
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Kim JY, Davenport PW, Mou Y, Hegland K. Primary site of constriction during the compression phase of cough in healthy young adults. Respir Physiol Neurobiol 2023; 311:104033. [PMID: 36764504 PMCID: PMC10067529 DOI: 10.1016/j.resp.2023.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Glottal closure has been considered as the primary constriction point during the compression phase (CP); however, vocal fold adduction alone cannot resist the high pressures, providing motivation to explore other mechanisms contributing to that resistance. The goal of this study was to identify site(s) and degree of constriction during the CP of cough of varying types in healthy young adults. Twenty-five healthy young participants participated in this study. The experimental protocol was comprised of: 1) baseline pulmonary function measures; 2) cough practice to establish weak, moderate and strong coughs; 3) voluntary and reflex cough assessments with fluoroscopy and airflow measures. We used a repeated measures ANOVA to identify whether there are differences in constriction ratio between cough types. There was a significant difference in constriction of varying cough types. Degree of constriction in all cough strengths showed that the glottis was the most constricted area, followed by the laryngeal vestibule, nasopharynx, hypopharynx, oropharynx, and cervical trachea, in order, but stronger cough resulted in more constriction in all areas compared to weaker cough. Degree of constriction in reflex cough showed a similar pattern though there was greater constriction in the oropharynx than the hypopharynx. Airflow measures in voluntary cough were consistent with previous findings. Differences in upper airway constriction during the compression phase of cough may be attributed to differences in motor control between reflex and voluntary cough, and the increased constriction seen during strong cough may reflect increased muscle recruitment during that task. In the future, we can use this knowledge to develop novel methods for cough rehabilitation.
Collapse
Affiliation(s)
- Ja Young Kim
- Graduate Program in Speech-Language Pathology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea 03722.
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| | - Yuhan Mou
- Department of Rehabilitation Science, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA.
| | - Karen Hegland
- Department of Speech, Language, and Hearing Sciences, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA.
| |
Collapse
|
8
|
A Primer on Hypotussic Cough: Mechanisms and Assessment. CURRENT OTORHINOLARYNGOLOGY REPORTS 2023. [DOI: 10.1007/s40136-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Musselwhite MN, Shen TY, Rose MJ, Iceman KE, Poliacek I, Pitts T, Bolser DC. THE INFLUENCE OF CO 2 ON SPATIOTEMPORAL FEATURES OF MECHANICALLY INDUCED COUGH IN ANESTHETIZED CATS. Respir Physiol Neurobiol 2022; 307:103964. [PMID: 36174962 DOI: 10.1016/j.resp.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO2. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex. We hypothesized that decreased CO2 would enhance coughing. In 12 spontaneously breathing adult male cats, we compared bouts of prolonged mechanically stimulated cough, in which cough induced hyperventilation (CHV) was allowed to occur, with isocapnic cough trials where we maintained eupneic end-tidal CO2 by adding CO2 to the inspired gas. Isocapnia slightly increased cough number and decreased esophageal pressures with no change in EMG magnitudes or phase durations. The cough-to-eupnea transition was also analyzed between CHV, isocapnia, and a third group of animals that were mechanically hyperventilated to apnea. The transition to eupnea was highly sensitive to added CO2, and CHV apneas were much shorter than those produced by mechanical hyperventilation. We suggest that the cough pattern generator is relatively insensitive to CHV. In the immediate post-cough period, the appearance of breathing while CO2 is very low suggests a transient reduction in apneic threshold following a paroxysmal cough bout.
Collapse
Affiliation(s)
- M Nicholas Musselwhite
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America.
| | - Tabitha Y Shen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| | - Kimberly E Iceman
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville. 511 S Floyd St, MDR 616, Louisville, Kentucky, 40202, United States of America
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics. Malá hora 4A, 036 01 Martin-Záturčie, Slovakia
| | - Teresa Pitts
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville. 511 S Floyd St, MDR 616, Louisville, Kentucky, 40202, United States of America.
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| |
Collapse
|
10
|
Matloobi A, Buday T, Brozmanova M, Konarska M, Poliacek I, Martvon L, Plevkova J. The effect of stimulation and unloading of baroreceptors on cough in experimental conditions. Respir Physiol Neurobiol 2022; 303:103921. [PMID: 35595217 DOI: 10.1016/j.resp.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Cough, the main airway defensive process, is modulated by multiple sensory inputs from the respiratory system and outside of it. This modulation is one of the mechanisms that contributes to the sensitization of cough pathways at the peripheral and/or central level via neuroplasticity and it manifests most often as augmented coughing. Cardiorespiratory coupling is an important mechanism responsible for a match between oxygenation and cardiac output and bidirectional relationships exist between respiration and cardiovascular function. While the impact of cough with the robust swings of the intrathoracic pressure on haemodynamic parameters and heart electrophysiology are well characterized, little is known about the modulation of cough by haemodynamic parameters - mainly the blood pressure. Some circumstantial findings from older animal studies and more recent sophisticated analysis confirm that baroreceptor stimulation and unloading alters coughing evoked in experiments. Clinical relevance of such findings is not presently known.
Collapse
Affiliation(s)
- A Matloobi
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - T Buday
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - M Brozmanova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - M Konarska
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - I Poliacek
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - L Martvon
- Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - J Plevkova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic; Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Martvon L, Veternik M, Simera M, Kotmanova Z, Babalova L, Morris KF, Pitts T, Bolser DC, Poliacek I. Modeling and simulation of vagal afferent input of the cough reflex. Respir Physiol Neurobiol 2022; 301:103888. [PMID: 35307565 DOI: 10.1016/j.resp.2022.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
We employed computational modeling to investigate previously conducted experiments of the effect of vagal afferent modulation on the cough reflex in an anesthetized cat animal model. Specifically, we simulated unilateral cooling of the vagus nerve and analyzed characteristics of coughs produced by a computational model of brainstem cough/respiratory neuronal network. Unilateral vagal cooling was simulated by a reduction of cough afferent input (corresponding to unilateral vagal cooling) to the cough network. All these attempts resulted in only mild decreases in investigated cough characteristics such as cough number, amplitudes of inspiratory and expiratory cough efforts in comparison with experimental data. Multifactorial alterations of model characteristics during cough simulations were required to approximate cough motor patterns that were observed during unilateral vagal cooling in vivo. The results support the plausibility of a more complex NTS processing system for cough afferent information than has been proposed.
Collapse
Affiliation(s)
- Lukas Martvon
- Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Babalova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
12
|
Chung KF, McGarvey L, Song WJ, Chang AB, Lai K, Canning BJ, Birring SS, Smith JA, Mazzone SB. Cough hypersensitivity and chronic cough. Nat Rev Dis Primers 2022; 8:45. [PMID: 35773287 PMCID: PMC9244241 DOI: 10.1038/s41572-022-00370-w] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Chronic cough is globally prevalent across all age groups. This disorder is challenging to treat because many pulmonary and extrapulmonary conditions can present with chronic cough, and cough can also be present without any identifiable underlying cause or be refractory to therapies that improve associated conditions. Most patients with chronic cough have cough hypersensitivity, which is characterized by increased neural responsivity to a range of stimuli that affect the airways and lungs, and other tissues innervated by common nerve supplies. Cough hypersensitivity presents as excessive coughing often in response to relatively innocuous stimuli, causing significant psychophysical morbidity and affecting patients' quality of life. Understanding of the mechanisms that contribute to cough hypersensitivity and excessive coughing in different patient populations and across the lifespan is advancing and has contributed to the development of new therapies for chronic cough in adults. Owing to differences in the pathology, the organs involved and individual patient factors, treatment of chronic cough is progressing towards a personalized approach, and, in the future, novel ways to endotype patients with cough may prove valuable in management.
Collapse
Affiliation(s)
- Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, London, UK
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, UK
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Anne B Chang
- Australian Centre for Health Services Innovation, Queensland's University of Technology and Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia
- Division of Child Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Kefang Lai
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | | | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jaclyn A Smith
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Computer Modeling of D, L – Homocysteic Acid Microinjection into the Bötzinger Complex Area. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The impact of D,L – homocysteic acid (DLH) microinjection (non-specific glutamate receptor agonist that causes excitation of neurons) into the Bötzinger complex area (BOT) was simulated using computer model of quiet breathing and cough reflex. Integrated signals from simulated neuronal populations innervating inspiratory phrenic and expiratory lumbar motoneurons were obtained. We analysed durations and amplitudes of these “pre-phrenic and pre-lumbar” activities during quiet breathing and cough reflex and the number of coughs elicited by a fictive 10-second-long stimulation. Model fibre population provides virtual DLH related excitation to expiratory neuronal populations with augmenting discharge pattern (BOT neurons). The excitation was modelled by a higher number of fibres and terminals (simulated a higher number of excitatory inputs) or by a higher synaptic strength (simulated a higher effect of excitatory inputs).
Our simulations have demonstrated a high analogy of cough and breathing changes to those observed in animal experiments. The simulated neuronal excitations in the BOT led to cough depression represented by a lower cough number and a cough neuronal activity of the lumbar nerve. Despite the shortening of the phrenic activity during cough (compared to quiet breathing), which was not observed in animal experiments, our simulations confirm the ability of the computer model to simulate motor processes in the respiratory system. The computer model of functional respiratory / cough neural network is capable to confirm and / or predict the results obtained on animals.
Collapse
|
14
|
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:1-35. [PMID: 35965022 DOI: 10.1016/b978-0-323-91534-2.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
15
|
Shen TY, Poliacek I, Rose MJ, Musselwhite MN, Kotmanova Z, Martvon L, Pitts T, Davenport PW, Bolser DC. The role of neuronal excitation and inhibition in the pre-Bötzinger complex on the cough reflex in the cat. J Neurophysiol 2021; 127:267-278. [PMID: 34879205 PMCID: PMC8759968 DOI: 10.1152/jn.00108.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors. NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.
Collapse
Affiliation(s)
- Tabitha Y Shen
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Ivan Poliacek
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.,Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - Melanie J Rose
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Nicholas Musselwhite
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - Teresa Pitts
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Paul W Davenport
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Olsen WL, Rose M, Golder FJ, Wang C, Hammond JC, Bolser DC. Intra-Arterial, but Not Intrathecal, Baclofen and Codeine Attenuates Cough in the Cat. Front Physiol 2021; 12:640682. [PMID: 33746778 PMCID: PMC7973226 DOI: 10.3389/fphys.2021.640682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Centrally-acting antitussive drugs are thought to act solely in the brainstem. However, the role of the spinal cord in the mechanism of action of these drugs is unknown. The purpose of this study was to determine if antitussive drugs act in the spinal cord to reduce the magnitude of tracheobronchial (TB) cough-related expiratory activity. Experiments were conducted in anesthetized, spontaneously breathing cats (n = 22). Electromyograms (EMG) were recorded from the parasternal (PS) and transversus abdominis (TA) or rectus abdominis muscles. Mechanical stimulation of the trachea or larynx was used to elicit TB cough. Baclofen (10 and 100 μg/kg, GABA-B receptor agonist) or codeine (30 μg/kg, opioid receptor agonist) was administered into the intrathecal (i.t.) space and also into brainstem circulation via the vertebral artery. Cumulative doses of i.t. baclofen or codeine had no effect on PS, abdominal muscle EMGs or cough number during the TB cough. Subsequent intra-arterial (i.a.) administration of baclofen or codeine significantly reduced magnitude of abdominal and PS muscles during TB cough. Furthermore, TB cough number was significantly suppressed by i.a. baclofen. The influence of these drugs on other behaviors that activate abdominal motor pathways was also assessed. The abdominal EMG response to noxious pinch of the tail was suppressed by i.t. baclofen, suggesting that the doses of baclofen that were employed were sufficient to affect spinal pathways. However, the abdominal EMG response to expiratory threshold loading was unaffected by i.t. administration of either baclofen or codeine. These results indicate that neither baclofen nor codeine suppress cough via a spinal action and support the concept that the antitussive effect of these drugs is restricted to the brainstem.
Collapse
Affiliation(s)
- Wendy L. Olsen
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | | | | | | | | | | |
Collapse
|
17
|
Wiels WA, Geens W, Vanderhasselt T, Michotte A, Van Velthoven V. Fourth ventricle papilloma and intractable cough. Acta Neurol Belg 2020; 120:751-753. [PMID: 31745847 DOI: 10.1007/s13760-019-01249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
18
|
Cinelli E, Iovino L, Bongianni F, Pantaleo T, Mutolo D. Essential Role of the cVRG in the Generation of Both the Expiratory and Inspiratory Components of the Cough Reflex. Physiol Res 2020; 69:S19-S27. [PMID: 32228008 DOI: 10.33549/physiolres.934396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As stated by Korpáš and Tomori (1979), cough is the most important airway protective reflex which provides airway defensive responses to nociceptive stimuli. They recognized that active expiratory efforts, due to the activation of caudal ventral respiratory group (cVRG) expiratory premotoneurons, are the prominent component of coughs. Here, we discuss data suggesting that neurons located in the cVRG have an essential role in the generation of both the inspiratory and expiratory components of the cough reflex. Some lines of evidence indicate that cVRG expiratory neurons, when strongly activated, may subserve the alternation of inspiratory and expiratory cough bursts, possibly owing to the presence of axon collaterals. Of note, experimental findings such as blockade or impairment of glutamatergic transmission to the cVRG neurons lead to the view that neurons located in the cVRG are crucial for the production of the complete cough motor pattern. The involvement of bulbospinal expiratory neurons seems unlikely since their activation affects differentially expiratory and inspiratory muscles, while their blockade does not affect baseline inspiratory activity. Thus, other types of cVRG neurons with their medullary projections should have a role and possibly contribute to the fine tuning of the intensity of inspiratory and expiratory efforts.
Collapse
Affiliation(s)
- E Cinelli
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy.
| | | | | | | | | |
Collapse
|
19
|
Martvon L, Kotmanova Z, Dobrolubov B, Babalova L, Simera M, Veternik M, Pitts T, Jakus J, Poliacek I. Modulation of Cough Reflex by Gaba-Ergic Inhibition in Medullary Raphé of the Cat. Physiol Res 2020; 69:S151-S161. [PMID: 32228021 DOI: 10.33549/physiolres.934401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We studied the effects of GABA receptor agonists microinjections in medullary raphé on the mechanically induced tracheobronchial cough response in anesthetized, unparalyzed, spontaneously breathing cats. The results suggest that GABA-ergic inhibition significantly contributes to the regulation of cough reflex by action of both GABA(A) and GABA(B) receptors. The data are consistent with inhomogeneous occurrence of GABA-ergic neurons in medullary raphé and their different involvement in the cough reflex control. Cells within rostral nucleus raphéobscurus with dominant role of GABA(A) receptors and neurons of rostral nucleus raphépallidus and caudal nucleus raphémagnus with dominant role of GABA(B) receptors participate in regulation of cough expiratory efforts. These cough control elements are distinct from cough gating mechanism. GABA-ergic inhibition in the raphé caudal to obex had insignificant effect on cough. Contradictory findings for GABA, muscimol and baclofen administration in medullary raphé suggest involvement of coordinated activity of GABA on multiple receptors affecting raphé neurons and/or the local neuronal circuits in the raphé modulating cough motor drive.
Collapse
Affiliation(s)
- L Martvon
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tao M, Liu Q, Miyazaki Y, Canning BJ. Nicotinic receptor dependent regulation of cough and other airway defensive reflexes. Pulm Pharmacol Ther 2019; 58:101810. [PMID: 31181318 DOI: 10.1016/j.pupt.2019.101810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
Abstract
Nicotinic receptor activation in the airways evokes airway defensive reflexes including cough. These reflexes are the direct result of bronchopulmonary afferent nerve activation, which may occur directly, through activation of nicotinic receptors expressed on the terminals of airway sensory nerves, or indirectly, secondary to the end organ effects associated with autonomic nerve stimulation. The irritating effects of nicotine delivered topically to the airways are counterbalanced by an inhibitory effect of nicotinic receptor activation in the central nervous system. We present evidence that these nicotinic receptors are components of essential transducing and encoding mechanisms regulating airway defense.
Collapse
Affiliation(s)
- Mayuko Tao
- Tokyo Medical & Dental University, Japan
| | - Qi Liu
- Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| | | | | |
Collapse
|
21
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Lin R, Che G, Xu Z, Wang M, Zhou K, Li P. [Simplification and Validation of Leicester Cough Questionnaire in Mandarin-Chinese]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 20:468-472. [PMID: 28738962 PMCID: PMC5972941 DOI: 10.3779/j.issn.1009-3419.2017.07.05] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
背景与目的 患者行肺部手术后常常出现咳嗽,目前尚缺乏专门评估术后咳嗽的工具。本研究对中文版莱斯特咳嗽问卷(Leicester Cough Questionnaire in Mandarin-Chinese, LCQ-MC)改良并进行验证,探讨其临床应用价值。 方法 2015年9月-2016年12月四川大学华西医院胸外科单个医疗组共250例行胸腔镜肺部手术的患者参与调查,其中121例患者完成LCQ-MC,129例患者完成简化LCQ-MC,并进行信度和效度检验。 结果 新问卷保留LCQ-MC的框架与评分方式,由生理、心理和社会3个维度,共12个条目构成。量表内容效度良好,内容效度指数达到0.83;与日间咳嗽症状积分对比标准效度高(r=-0.578, P<0.001),与夜间咳嗽症状积分和健康调查简表总分(Chinese version of the Medical Outcome Study 36-item Short-Form Healthy Survey, SF-36)对比标准效度中等(r=-0.358, P=0.004; r=0.346, P=0.030),与医院焦虑与抑郁评分总分(Hospital Anxiety and Depression Scale, HADS)对比标准效度较弱(r=-0.241, P=0.046);内部一致性良好,克朗巴赫α系数在0.71-0.84之间;1周后重测信度良好(n=30, r=0.81-0.95)。 结论 简化版中文版莱斯特咳嗽问卷有良好的信度和效度,可应用于临床。
Collapse
Affiliation(s)
- Rongjia Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihua Xu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingming Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengfei Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Xie MG, Xiao XR, Guo FZ, Zhang JT, Wu Z, Zhang LW. Surgical Management and Functional Outcomes of Cavernous Malformations Involving the Medulla Oblongata. World Neurosurg 2018; 119:e643-e652. [PMID: 30077748 DOI: 10.1016/j.wneu.2018.07.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the clinical features, surgical complications, and functional outcomes of the surgical treatment of patients with cavernous malformations (CMs) involving the medulla oblongata. METHODS The charts of 69 patients undergoing surgical treatment of CMs in the medulla oblongata, pontomedullary, and cervicomedullary junctions between 2011 and 2017 were retrospectively reviewed. Patient demographics, lesion characteristics, operative documents, and patient outcomes were examined. RESULTS Of the 69 patients, the male-to-female ratio was 1.3. The mean patient age was 32.6 years, and the mean mRS score was 2.7 on admission. Postoperatively, 21 patients (30.4%) had deficits of cough reflexes, and 6 patients (8.7%) experienced respiratory rhythm disorder and dyspnea. The mean follow-up duration was 35.3 months. At the last follow-up evaluation, the mean mRS score was 1.8, and 53 patients (80.3%) had favorable outcomes, with mRS scores ≤2. The conditions of the patients improved in 45 cases (68.2%), remained unchanged in 11 cases (16.7%), and worsened in 10 cases (15.1%) relative to their preoperative baseline. The independent adverse factors for long-term functional outcome were increased age, multiple hemorrhages, presence of developmental venous anomalies, and lack of perilesional edema. CONCLUSIONS Respiratory dysfunction and deficits of cough reflexes can commonly occur during the early postoperative period for surgical resection of CMs involving the medulla oblongata. Favorable functional outcomes can be achieved by surgery, especially for younger patients who experience fewer hemorrhages and have lesions with perilesional edema and the absence of developmental venous anomalies.
Collapse
Affiliation(s)
- Ming-Guo Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Xin-Ru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fang-Zhou Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Jun-Ting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Li-Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China.
| |
Collapse
|
24
|
Mazzone SB, Chung KF, McGarvey L. The heterogeneity of chronic cough: a case for endotypes of cough hypersensitivity. THE LANCET RESPIRATORY MEDICINE 2018; 6:636-646. [DOI: 10.1016/s2213-2600(18)30150-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
|
25
|
Surgical Management and Risk Factors of Postoperative Respiratory Dysfunction of Cavernous Malformations Involving the Medulla Oblongata. World Neurosurg 2018; 118:e956-e963. [PMID: 30036714 DOI: 10.1016/j.wneu.2018.07.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate surgical management of cavernous malformations (CMs) involving the medulla oblongata and to predict risk factors of postoperative respiratory dysfunction (RDF). METHODS Patient data from individuals who underwent surgical treatment for CMs involving the medulla oblongata were retrospectively reviewed. Patients with postoperative RDF and/or deficits of the cough reflex (CR, ≥7 days) were deemed as having bad respiratory statuses. A binary logistic regression analysis tested the association of preoperative predictors with bad postoperative respiratory status. RESULTS The study consisted of 69 patients. Preoperatively, 9 patients (13.0%) had dyspnea, and 4 (5.8%) had hypoxemia. Postoperatively, 11 patients (15.9%) had bad respiratory statuses, including RDF as a respiratory rhythm disorder and/or dyspnea in 6 patients, and ≥7 days of CR deficits in 5 patients. With a mean follow-up duration of 35.3 months, the neurologic status improved in 45 patients (68.2%), remained unchanged in 11 (16.7%), and worsened in 10 (15.1%) relative to the preoperative baseline. A multivariate logistic regression analysis identified that the independent adverse factors of bad postoperative respiratory status were multiple preoperative hemorrhages, large lesion size, and surgical intervention during the chronic period (>8 weeks). CONCLUSIONS Postoperative RDF and CR deficits could commonly occur in patients with CMs involving the medulla oblongata. However, patients with fewer preoperative hemorrhages, small lesion size, and operation within 8 weeks of the last bleeding are prone to be associated with a reduced possibility of bad postoperative respiratory status.
Collapse
|
26
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
Affiliation(s)
- Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women's and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Inhibitory modulation of the cough reflex by acetylcholine in the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2018; 257:93-99. [PMID: 29369803 DOI: 10.1016/j.resp.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
A cholinergic system has been described in the nucleus tractus solitarii (NTS). However, no information is available on the role played by acetylcholine (ACh) in the modulation of the cough reflex within the caudal NTS that has an important function in cough regulation. We addressed this issue making use of bilateral microinjections (30-50 nl) of 10 mM ACh combined with 5 mM physostigmine as well as of 10 mM mecamylamine or 10 mM scopolamine into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Microinjections of ACh/physostigmine caused depressant effects on the cough reflex induced by mechanical and chemical stimulation of the tracheobronchial tree. They also elicited transient increases in respiratory frequency and decreases in abdominal activity. These effects were prevented by scopolamine, but not by mecamylamine. The results show for the first time that ACh exerts an inhibitory modulation of the cough reflex through muscarinic receptors within the caudal NTS. They also may provide hints for novel antitussive approaches.
Collapse
|
28
|
Hines MT. Clinical Approach to Commonly Encountered Problems. EQUINE INTERNAL MEDICINE 2018. [PMCID: PMC7158300 DOI: 10.1016/b978-0-323-44329-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Sex differences in cough reflex. Respir Physiol Neurobiol 2017; 245:122-129. [DOI: 10.1016/j.resp.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022]
|
30
|
Subramanian HH, Huang ZG, Silburn PA, Balnave RJ, Holstege G. The physiological motor patterns produced by neurons in the nucleus retroambiguus in the rat and their modulation by vagal, peripheral chemosensory, and nociceptive stimulation. J Comp Neurol 2017; 526:229-242. [DOI: 10.1002/cne.24318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Hari H. Subramanian
- Queensland Brain Institute, Asia-Pacific Centre for Neuromodulation, The University of Queensland; Brisbane 4072 Australia
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
| | - Zheng-Gui Huang
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
- Department of Pharmacology; Wannan Medical College; Wuhu City Anhui Province 241002 People's Republic of China
| | - Peter A. Silburn
- Queensland Brain Institute, Asia-Pacific Centre for Neuromodulation, The University of Queensland; Brisbane 4072 Australia
| | - Ron J. Balnave
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
| | - Gert Holstege
- The University of Queensland; Brisbane 4072 Australia
| |
Collapse
|
31
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
32
|
Poliacek I, Simera M, Veternik M, Kotmanova Z, Bolser DC, Machac P, Jakus J. Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 2017; 246:59-66. [PMID: 28778649 DOI: 10.1016/j.resp.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.
Collapse
Affiliation(s)
- Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Peter Machac
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Jakus
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| |
Collapse
|
33
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
34
|
Hoffman Ruddy B, Nadun Kuruppumullage D, Carnaby G, Crary M, Lehman J, Ilegbusi OJ. Computational Modelling of Cough Function and Airway Penetrant Behavior in Patients with Disorders of Laryngeal Function. Laryngoscope Investig Otolaryngol 2017; 2:23-29. [PMID: 28894819 PMCID: PMC5510279 DOI: 10.1002/lio2.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2016] [Indexed: 11/23/2022] Open
Abstract
Objective/Hypothesis Patients with laryngeal disorders often exhibit changes to cough function contributing to aspiration episodes. Two primary cough variables (peak cough flow: PCF and compression phase duration: CPD) were examined within a biomechanical model to determine their impact on characteristics that impact airway compromise. Study Design Computational study Methods A Computational Fluid Dynamics (CFD) technique was used to simulate fluid flow within an upper airway model reconstructed from patient CT images. The model utilized a finite‐volume numerical scheme to simulate cough‐induced airflow, allowing for turbulent particle interaction, collision, and break‐up. Liquid penetrants at 8 anatomical release locations were tracked during the simulated cough. Cough flow velocity was computed for a base case and four simulated cases. Airway clearance was evaluated through assessment of the fate of particles in the airway following simulated cough. Results Peak‐expiratory phase resulted in very high airway velocities for all simulated cases modelled. The highest velocity predicted was 49.96 m/s, 88 m/s, and 117 m/s for Cases 1 and 3, Base case, and Cases 2 and 4 respectively. In the base case, 25% of the penetrants cleared the laryngeal airway. The highest percentage (50%) of penetrants clearing the laryngeal airway are observed in Case 2 (with −40% CPD, +40% PCF), while only 12.5% cleared in Case 3 (with +40% CPD, −40% PCF). The proportion that cleared in Cases 1 and 4 was 37.5%. Conclusion Airway modelling may be beneficial to the study of aspiration in patients with impaired cough function including those with upper airway and neurological diseases. It can be used to enhance understanding of cough flow dynamics within the airway and to inform strategies for treatment with “cough‐assist devices” or devices to improve cough strength. Level of Evidence N/A.
Collapse
Affiliation(s)
| | - Don Nadun Kuruppumullage
- Department of Mechanical and Aerospace Engineering University of Central Florida Orlando Florida
| | | | | | - Jeffery Lehman
- Ear Nose Throat and Plastic Surgery Associates Winter Park Florida
| | - Olusegun J Ilegbusi
- Department of Mechanical and Aerospace Engineering University of Central Florida Orlando Florida
| |
Collapse
|
35
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
36
|
Vigeland CL, Hughes AH, Horton MR. Etiology and treatment of cough in idiopathic pulmonary fibrosis. Respir Med 2016; 123:98-104. [PMID: 28137504 DOI: 10.1016/j.rmed.2016.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/07/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of dysregulated wound healing leading to unremitting scarring and loss of lung function. The predominant symptoms are dyspnea on exertion and a persistent dry cough. For patients with IPF, cough is more than just bothersome; it has a significant negative impact on quality of life and is a marker of disease severity and progression. The etiology of cough in IPF is unclear but may be due to architectural distortion of the lungs, increased sensitivity of the cough reflex, airway inflammation, or changes in mucus production and clearance. There also may be an overlap between IPF cough and cough due to other common etiologies such as asthma, gastroesophageal reflux disease, upper airway cough syndrome, and medications. There are no approved therapies to specifically treat IPF cough, and recently approved medications for IPF have not been evaluated in cough. Few clinical trials have focused on treatments for IPF cough. To date, there is only one randomized, placebo control therapeutic study for IPF cough with thalidomide, which significantly reduced IPF cough and improved quality of life. Two additional cohort studies report that interferon-α and prednisolone also decrease IPF cough. However, no medication is approved to treat IPF cough. Currently, the mainstay of therapy for IPF cough is standard cough suppressants, which have limited efficacy and often intolerable side effects. Future studies are needed to determine an effective therapy to alleviate this particularly debilitating symptom and improve overall quality of life for patients suffering with IPF.
Collapse
Affiliation(s)
- Christine L Vigeland
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Andrew H Hughes
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Maureen R Horton
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
37
|
Dandurand C, Champagne PO, Elayoubi K, Weil AG, Lespérence P, Bouthillier A. Vagus nerve stimulator-related speech/exercise induced cough. J Clin Neurosci 2016; 37:47-48. [PMID: 27863972 DOI: 10.1016/j.jocn.2016.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
Vagal nerve stimulation (VNS) therapy is an effective adjunctive treatment for chronic or recurrent treatment resistant depression. Although considered a safe procedure, increasing output current can be associated with stimulation induced side effects. We report the first case of dry cough induced by speech and mild exercise, occurring in the off mode following implantation of a vagal nerve stimulator (VNSor). We discuss the possible pathophysiology and the potential treatment options of this rare complication.
Collapse
Affiliation(s)
- Charlotte Dandurand
- Department of Neurosurgery, University of British-Columbia, Vancouver General Hospital, 855 West 12th Ave, Vancouver V5Z 1M9, Canada.
| | - Pierre-Olivier Champagne
- Department of Neurosurgery, University of Montreal Medical Center, 1560 East Sherbrooke Street, Montreal H2L 4M1, Canada.
| | - Karim Elayoubi
- Department of Neurosurgery, University of Montreal Medical Center, 1560 East Sherbrooke Street, Montreal H2L 4M1, Canada.
| | - Alexander G Weil
- Department of Neurosurgery, University of Montreal Medical Center, 1560 East Sherbrooke Street, Montreal H2L 4M1, Canada.
| | - Paul Lespérence
- Department of Psychiatry, University of Montreal Medical Center, 1560 East Sherbrooke Street, Montréal H2L 4M1, Canada.
| | - Alain Bouthillier
- Department of Neurosurgery, University of Montreal Medical Center, 1560 East Sherbrooke Street, Montreal H2L 4M1, Canada.
| |
Collapse
|
38
|
Pitts T, Morris KF, Segers LS, Poliacek I, Rose MJ, Lindsey BG, Davenport PW, Howland DR, Bolser DC. Feed-forward and reciprocal inhibition for gain and phase timing control in a computational model of repetitive cough. J Appl Physiol (1985) 2016; 121:268-78. [PMID: 27283917 PMCID: PMC4967248 DOI: 10.1152/japplphysiol.00790.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/08/2016] [Indexed: 11/22/2022] Open
Abstract
We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms of the parasternal (inspiratory) and rectus abdominis (expiratory) muscles and esophageal pressure were recorded. In vivo data revealed that expiratory motor drive during bouts of repetitive coughs is variable: peak expulsive amplitude increases from the first cough, peaks about the eighth or ninth cough, and then decreases through the remainder of the bout. Model simulations indicated that feed-forward inhibition of a single second-order neuron population is not sufficient to account for this dynamic feature of a repetitive cough bout. When a single second-order population was split into two subpopulations (inspiratory and expiratory), the resultant model produced simulated expiratory motor bursts that were comparable to in vivo data. However, expiratory phase durations during these simulations of repetitive coughing had less variance than those in vivo. Simulations in which reciprocal inhibitory processes between inspiratory-decrementing and expiratory-augmenting-late neurons were introduced exhibited increased variance in the expiratory phase durations. These results support the prediction that serial and parallel processing of airway afferent signals in the NTS play a role in generation of the motor pattern for cough.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurologic Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida;
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; Institute of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Dena R Howland
- Department of Neurologic Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
39
|
Bolser DC, Pitts TE, Davenport PW, Morris KF. Role of the dorsal medulla in the neurogenesis of airway protection. Pulm Pharmacol Ther 2015; 35:105-10. [PMID: 26549786 DOI: 10.1016/j.pupt.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
The dorsal medulla encompassing the nucleus of the tractus solitarius (NTS) and surrounding reticular formation (RF) has an important role in processing sensory information from the upper and lower airways for the generation and control of airway protective behaviors. These behaviors, such as cough and swallow, historically have been studied in isolation. However, recent information indicates that these and other airway protective behaviors are coordinated to minimize risk of aspiration. The dorsal medullary neural circuits that include the NTS are responsible for rhythmogenesis for repetitive swallowing, but previous models have assigned a role for this portion of the network for coughing that is restricted to monosynaptic sensory processing. We propose a more complex NTS/RF circuit that controls expression of swallowing and coughing and the coordination of these behaviors. The proposed circuit is supported by recordings of activity patterns of selected neural elements in vivo and simulations of a computational model of the brainstem circuit for breathing, coughing, and swallowing. This circuit includes separate rhythmic sub-circuits for all three behaviors. The revised NTS/RF circuit can account for the mode of action of antitussive drugs on the cough motor pattern, as well as the unique coordination of cough and swallow by a meta-behavioral control system for airway protection.
Collapse
Affiliation(s)
- Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA.
| | - Teresa E Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612-4799, USA
| |
Collapse
|
40
|
Nuding SC, Segers LS, Iceman KE, O'Connor R, Dean JB, Bolser DC, Baekey DM, Dick TE, Shannon R, Morris KF, Lindsey BG. Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea. J Neurophysiol 2015; 114:2162-86. [PMID: 26203111 PMCID: PMC4600964 DOI: 10.1152/jn.00608.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/18/2015] [Indexed: 01/17/2023] Open
Abstract
Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04-0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.
Collapse
Affiliation(s)
- Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kimberly E Iceman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Russell O'Connor
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - Thomas E Dick
- Departments of Medicine and Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Roger Shannon
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida;
| |
Collapse
|
41
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Sakaguchi H, Hisa Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J Neurophysiol 2015. [PMID: 26203106 DOI: 10.1152/jn.00332.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing. To further evaluate the contribution of RTN/pFRG neurons to these nonrespiratory behaviors, the motor output patterns during breathing, coughing, and swallowing were compared before and after brain stem transection at the caudal margin of RTN/pFRG region. In addition, the effects of transection at its rostral margin were also investigated to evaluate pontine contribution to these behaviors. During respiration, transection at the rostral margin attenuated the postinspiratory activity of the recurrent laryngeal nerve. Meanwhile, the late expiratory activity of the abdominal nerve was abolished after caudal transection. The caudal transection also decreased the amplitude of the coughing-related abdominal nerve discharge but did not abolish the activity. Swallowing could be elicited even after the caudal end transection. These findings raise the prospect that the RTN/pFRG contributes to expiratory regulation during normal respiration, although this region is not an essential element of the neuronal networks involved in coughing and swallowing.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan; and
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Troche MS, Brandimore AE, Godoy J, Hegland KW. A framework for understanding shared substrates of airway protection. J Appl Oral Sci 2014; 22:251-60. [PMID: 25141195 PMCID: PMC4126819 DOI: 10.1590/1678-775720140132] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/06/2014] [Indexed: 02/01/2023] Open
Abstract
Deficits of airway protection can have deleterious effects to health and quality of
life. Effective airway protection requires a continuum of behaviors including
swallowing and cough. Swallowing prevents material from entering the airway and
coughing ejects endogenous material from the airway. There is significant overlap
between the control mechanisms for swallowing and cough. In this review we will
present the existing literature to support a novel framework for understanding shared
substrates of airway protection. This framework was originally adapted from Eccles'
model of cough28 (2009) by Hegland,
et al.42 (2012). It will serve to
provide a basis from which to develop future studies and test specific hypotheses
that advance our field and ultimately improve outcomes for people with airway
protective deficits.
Collapse
Affiliation(s)
- Michelle Shevon Troche
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | | | - Juliana Godoy
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Karen Wheeler Hegland
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Poliacek I, Rose MJ, Pitts TE, Mortensen A, Corrie LW, Davenport PW, Bolser DC. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats. J Appl Physiol (1985) 2014; 118:265-72. [PMID: 25477349 DOI: 10.1152/japplphysiol.00075.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism.
Collapse
Affiliation(s)
- I Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - M J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - T E Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - A Mortensen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - L W Corrie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - P W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - D C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| |
Collapse
|
44
|
Mutolo D, Cinelli E, Bongianni F, Pantaleo T. Inhibitory control of the cough reflex by galanin receptors in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1358-67. [DOI: 10.1152/ajpregu.00237.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The caudal nucleus tractus solitarii (NTS) is the main central station of cough-related afferents and a strategic site for the modulation of the cough reflex. The similarities between the characteristics of central processing of nociceptive and cough-related inputs led us to hypothesize that galanin, a neuropeptide implicated in the control of pain, could also be involved in the regulation of the cough reflex at the level of the NTS, where galanin receptors have been found. We investigated the effects of galanin and galnon, a nonpeptide agonist at galanin receptors, on cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nl) into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Galnon antitussive effects on cough responses to the mechanical stimulation of the airway mucosa via a custom-built device were also investigated. Bilateral microinjections of 1 mM galanin markedly decreased cough number, peak abdominal activity, and increased cough-related total cycle duration. Bilateral microinjections of 1 mM galnon induced mild depressant effects on cough, whereas bilateral microinjections of 10 mM galnon caused marked antitussive effects consistent with those produced by galanin. Galnon effects were confirmed by using the cough-inducing device. The results indicate that galanin receptors play a role in the inhibitory control of the cough reflex at the level of the caudal NTS and provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
45
|
Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest 2014; 146:1633-1648. [PMID: 25188530 PMCID: PMC4251621 DOI: 10.1378/chest.14-1481] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina, and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera, as well as somatosensory nerves innervating the chest wall, diaphragm, and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychologic methods for treatment of dystussia, is high, and modern imaging methods have revealed potential neural substrates for some features of cough in the human.
Collapse
Affiliation(s)
| | - Anne B Chang
- Queensland Children's Respiratory Centre, Royal Children's Hospital, Brisbane, QLD, Australia, Child Health Division, Menzies School of Health, Darwin, NT, Australia
| | - Donald C Bolser
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Jaclyn A Smith
- Centre for Respiratory and Allergy, University of Manchester, Manchester, England
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lorcan McGarvey
- Centre for Infection and Immunity, The Queen's University of Belfast, Belfast, Northern Ireland.
| |
Collapse
|
46
|
Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Struct Funct 2014; 220:3683-99. [PMID: 25158901 DOI: 10.1007/s00429-014-0883-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
Complex sensations accompany the activation of sensory neurons within the respiratory system, yet little is known about the organization of sensory pathways in the brain that mediate these sensations. In the present study, we employ anterograde viral neuroanatomical tract tracing with isogenic self-reporting recombinants of HSV-1 strain H129 to map the higher brain regions in receipt of vagal sensory neurons arising from the trachea versus the lungs, and single-cell PCR to characterize the phenotype of sensory neurons arising from these two divisions of the respiratory tree. The results suggest that the upper and lower airways are predominantly innervated by sensory neurons derived from the somatic jugular and visceral nodose cranial ganglia, respectively. This coincides with central circuitry that is predominately somatic-like, arising from the trachea, and visceral-like, arising from the lungs. Although some convergence of sensory pathways was noted in preautonomic cell groups, this was notably absent in thalamic and cortical regions. These data support the notion that distinct afferent subtypes, via distinct central circuits, subserve sensations arising from the upper versus lower airways. The findings may explain why sensations arising from different levels of the respiratory tree are qualitatively and quantitatively unique.
Collapse
|
47
|
Lim K. Neurogenic cough. J Allergy Clin Immunol 2014; 133:1779-.e3. [DOI: 10.1016/j.jaci.2014.02.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
|
48
|
Dicpinigaitis PV, Morice AH, Birring SS, McGarvey L, Smith JA, Canning BJ, Page CP. Antitussive drugs--past, present, and future. Pharmacol Rev 2014; 66:468-512. [PMID: 24671376 PMCID: PMC11060423 DOI: 10.1124/pr.111.005116] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cough remains a serious unmet clinical problem, both as a symptom of a range of other conditions such as asthma, chronic obstructive pulmonary disease, gastroesophageal reflux, and as a problem in its own right in patients with chronic cough of unknown origin. This article reviews our current understanding of the pathogenesis of cough and the hypertussive state characterizing a number of diseases as well as reviewing the evidence for the different classes of antitussive drug currently in clinical use. For completeness, the review also discusses a number of major drug classes often clinically used to treat cough but that are not generally classified as antitussive drugs. We also reviewed a number of drug classes in various stages of development as antitussive drugs. Perhaps surprising for drugs used to treat such a common symptom, there is a paucity of well-controlled clinical studies documenting evidence for the use of many of the drug classes in use today, particularly those available over the counter. Nonetheless, there has been a considerable increase in our understanding of the cough reflex over the last decade that has led to a number of promising new targets for antitussive drugs being identified and thus giving some hope of new drugs being available in the not too distant future for the treatment of this often debilitating symptom.
Collapse
Affiliation(s)
- P V Dicpinigaitis
- King's College London, Franklin Wilkins Building, 100 Stamford St., London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Poliacek I, Jakus J, Simera M, Veternik M, Plevkova J. Control of coughing by medullary raphé. PROGRESS IN BRAIN RESEARCH 2014; 212:277-95. [DOI: 10.1016/b978-0-444-63488-7.00014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Abstract
Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e., inspiration or swallow) or the reverse (i.e., expiration reflex or vomiting). These vital mechanisms have not been evaluated in clinical conditions but could be impaired in many neurodegenerative diseases, leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations.
Collapse
|