1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Jin J, Mazzacuva F, Crocetti L, Giovannoni MP, Cilibrizzi A. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. Int J Mol Sci 2023; 24:11518. [PMID: 37511275 PMCID: PMC10380597 DOI: 10.3390/ijms241411518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Letizia Crocetti
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
3
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Mussen F, Broeckhoven JV, Hellings N, Schepers M, Vanmierlo T. Unleashing Spinal Cord Repair: The Role of cAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24098135. [PMID: 37175842 PMCID: PMC10179671 DOI: 10.3390/ijms24098135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.
Collapse
Affiliation(s)
- Femke Mussen
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
| | - Jana Van Broeckhoven
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Konen FF, Möhn N, Witte T, Schefzyk M, Wiestler M, Lovric S, Hufendiek K, Schwenkenbecher P, Sühs KW, Friese MA, Klotz L, Pul R, Pawlitzki M, Hagin D, Kleinschnitz C, Meuth SG, Skripuletz T. Treatment of autoimmunity: The impact of disease-modifying therapies in multiple sclerosis and comorbid autoimmune disorders. Autoimmun Rev 2023; 22:103312. [PMID: 36924922 DOI: 10.1016/j.autrev.2023.103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
More than 10 disease-modifying therapies (DMT) are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) and new therapeutic options are on the horizon. Due to different underlying therapeutic mechanisms, a more individualized selection of DMTs in MS is possible, taking into account the patient's current situation. Therefore, concomitant treatment of various comorbid conditions, including autoimmune mediated disorders such as rheumatoid arthritis, should be considered in MS patients. Because the pathomechanisms of autoimmunity partially overlap, DMT could also treat concomitant inflammatory diseases and simplify the patient's treatment. In contrast, the exacerbation and even new occurrence of several autoimmune diseases have been reported as a result of immunomodulatory treatment of MS. To simplify treatment and avoid disease exacerbation, knowledge of the beneficial and adverse effects of DMT in other autoimmune disorders is critical. Therefore, we conducted a literature search and described the beneficial and adverse effects of approved and currently studied DMT in a large number of comorbid autoimmune diseases, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel diseases, cutaneous disorders including psoriasis, Sjögren´s syndrome, systemic lupus erythematosus, systemic vasculitis, autoimmune hepatitis, and ocular autoimmune disorders. Our review aims to facilitate the selection of an appropriate DMT in patients with MS and comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany..
| | - Matthias Schefzyk
- Department of Dermatology, Allergology and Venerology, Hannover Medical School, 30625 Hannover, Germany..
| | - Miriam Wiestler
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany.
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany.
| | - Karsten Hufendiek
- University Eye Hospital, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen 45147, Germany.
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St., Tel-Aviv 6423906, Israel.
| | - Christoph Kleinschnitz
- Department of Neurology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen 45147, Germany.
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| |
Collapse
|
6
|
Oubaid EN, Abu-Raghif A, Al-Sudani IM. Ibudilast ameliorates experimentally induced colitis in rats via down-regulation of proinflammatory cytokines and myeloperoxidase enzyme activity. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e98715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Objectives: This study was carried out to explore the possible anti-inflammatory effect of ibudilast on acetic acid-induced colitis in rats.
Methods: Fifty adult Wistar rats were separated into 5 groups, including the control group, acetic acid group, acetic acid + vehicle, acetic acid + sulfasalazine (100 mg/kg/day)group, and acetic acid + ibudilast (30 mg/kg/day) group. Colitis was induced in rats by the inter-rectal installation of 2 ml of 4% (v/v) acetic acid. Sulfasalazine and ibudilast were administered orally for ten days after 2 hours of induction.
Results: The treatment with ibudilast significantly reduced disease activity index (DAI), macroscopic colonic scores (MAC), and histopathological changes induced by acetic acid. Also, ibudilast markedly decreased the expression of proinflammatory markers (TNF-α and IL-1β) in colonic tissue. Moreover, ibudilast inhibited myeloperoxidase (MPO) enzyme activity that was increased by acetic acid.
Conclusion: Therefore, ibudilast may have a therapeutic effect in the management of ulcerative colitis.
Collapse
|
7
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
The PDE4 Inhibitor Tanimilast Restrains the Tissue-Damaging Properties of Human Neutrophils. Int J Mol Sci 2022; 23:ijms23094982. [PMID: 35563373 PMCID: PMC9104715 DOI: 10.3390/ijms23094982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001—is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide—a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.
Collapse
|
10
|
Baek JJ, Kline H, Deveau CM, Yamamoto BK. Roflumilast treatment during forced abstinence reduces relapse to methamphetamine seeking and taking. Addict Biol 2022; 27:e13082. [PMID: 34363284 PMCID: PMC8720055 DOI: 10.1111/adb.13082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Methamphetamine (METH) is a psychostimulant with high abuse potential. Currently, there are no pharmacological treatments specific for METH abuse or stimulant use disorder generally. Although phosphodiesterase inhibitors have shown some promise, current animal models have not examined their use in abstinence from stimulant abuse. We employed a METH self-administration model in the rat followed by a forced abstinence period during which roflumilast, a phosphodiesterase 4 inhibitor, was administered. A detailed behavioral analysis of chronic treatment with roflumilast during 7 days of forced abstinence showed that roflumilast reduced METH seeking and METH taking upon subsequent relapse test. Roflumilast treatment during 7 days of forced abstinence did not affect sucrose seeking and sucrose taking behaviors. These data suggest that roflumilast may be a treatment for METH use disorder that is effective when administered only during abstinence.
Collapse
Affiliation(s)
- James J Baek
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hannah Kline
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmen M Deveau
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Verrou KM, Vlachogiannis NI, Ampatziadis-Michailidis G, Moulos P, Pavlopoulos GA, Hatzis P, Kollias G, Sfikakis PP. Distinct transcriptional profile of blood mononuclear cells in Behçet's disease: insights into the central role of neutrophil chemotaxis. Rheumatology (Oxford) 2021; 60:4910-4919. [PMID: 33493315 DOI: 10.1093/rheumatology/keab052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Both innate and adaptive immune responses are reportedly increased in Behçet's disease (BD), a chronic, relapsing systemic vasculitis lying at the intersection between autoinflammation and autoimmunity. To further study pathophysiologic molecular mechanisms operating in BD, we searched for transcriptome-wide changes in blood mononuclear cells from these patients. METHODS We performed 3' mRNA next-generation sequencing-based genome-wide transcriptional profiling followed by analysis of differential expression signatures, Kyoto Encyclopedia of Genes and Genomes pathways, GO biological processes and transcription factor signatures. RESULTS Differential expression analysis clustered the transcriptomes of 13 patients and one healthy subject separately from those of 10 healthy age/gender-matched controls and one patient. Among the total of 17 591 expressed protein-coding genes, 209 and 31 genes were significantly upregulated and downregulated, respectively, in BD vs controls by at least 2-fold. The most upregulated genes comprised an abundance of CC- and CXC-chemokines. Remarkably, the 5 out of top 10 upregulated biological processes involved leucocyte recruitment to peripheral tissues, especially for neutrophils. Moreover, NF-kB, TNF and IL-1 signalling pathways were prominently enhanced in BD, while transcription factor activity analysis suggested that the NF-kB p65/RELA subunit action underlies the observed differences in the BD transcriptome. CONCLUSION This RNA-sequencing analysis in peripheral blood mononuclear cells derived from patients with BD does not support a major pathogenetic role for adaptive immunity-driven mechanisms, but clearly points to the action of aberrant innate immune responses with a central role played by upregulated neutrophil chemotaxis.
Collapse
Affiliation(s)
| | - Nikolaos I Vlachogiannis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens
| | | | - Panagiotis Moulos
- Center of New Biotechnologies & Precision Medicine.,Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari
| | - Georgios A Pavlopoulos
- Center of New Biotechnologies & Precision Medicine.,Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari
| | - Pantelis Hatzis
- Center of New Biotechnologies & Precision Medicine.,Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari
| | - George Kollias
- Center of New Biotechnologies & Precision Medicine.,Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens.,Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari, Greece
| | - Petros P Sfikakis
- Center of New Biotechnologies & Precision Medicine.,Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens
| |
Collapse
|
12
|
Martin C, Burgel PR, Roche N. Inhaled Dual Phosphodiesterase 3/4 Inhibitors for the Treatment of Patients with COPD: A Short Review. Int J Chron Obstruct Pulmon Dis 2021; 16:2363-2373. [PMID: 34429594 PMCID: PMC8378910 DOI: 10.2147/copd.s226688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current pharmacological treatments for chronic obstructive pulmonary disease (COPD) are mostly limited to inhaled bronchodilators and corticosteroids. Azithromycin can contribute to exacerbation prevention. Roflumilast, a phosphodiesterase (PDE) 4 inhibitor administered orally, also prevents exacerbations in selected patients with chronic bronchitis, recurrent exacerbations, severe airflow limitation and concomitant therapy with long-acting inhaled bronchodilators. This outcome likely results from anti-inflammatory effects since PDE4 is expressed by all inflammatory cell types involved in COPD. The use of this agent is, however, limited by side-effects, particularly nausea and diarrhea. To address remaining unmet needs and enrich therapeutic options for patients with COPD, inhaled dual PDE3/4 inhibitors have been developed, with the aim of enhancing bronchodilation through PDE3 inhibition and modulating inflammation and mucus production though PDE4 inhibition, thus producing a potentially synergistic effect on airway calibre. Experimental preclinical data confirmed these effects in vitro and in animal models. At present, RPL554/ensifentrine is the only agent of this family in clinical development. It decreases sputum markers of both neutrophilic and eosinophilic inflammation in patients with COPD. Clinical Phase II trials confirmed its bronchodilator effect and demonstrated clinically meaningful symptom relief and quality of life improvements in these patients. The safety profile appears satisfactory, with less effects on heart rate and blood pressure than salbutamol and no other side effect. Altogether, these data suggest that ensifentrine could have a role in COPD management, especially in addition to inhaled long-acting bronchodilators with or without corticosteroids since experimental studies suggest potentiation of ensifentrine effects by these agents. However, results from ongoing and future Phase III studies are needed to confirm both beneficial effects and favourable safety profile on a larger scale and assess other outcomes including exacerbations, lung function decline, comorbidities and mortality.
Collapse
Affiliation(s)
- Clémence Martin
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Pierre-Régis Burgel
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Nicolas Roche
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| |
Collapse
|
13
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
14
|
Bayraktutan Z, Dincer B, Keskin H, Kose D, Bilen A, Toktay E, Sirin B, Halici Z. Roflumilast as a Potential Therapeutic Agent for Cecal Ligation and Puncture-Induced Septic Lung Injury. J INVEST SURG 2021; 35:605-613. [PMID: 33843406 DOI: 10.1080/08941939.2021.1908462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE/AIMS This study focused on delineating the possible effects of roflumilast (ROF), a selective phosphodiesterase 4 (PDE4) inhibitor, in rats with cecal ligation and puncture (CLP)-induced polymicrobial sepsis, and investigated whether ROF can act as a protective agent in sepsis-induced lung damage. MATERIAL AND METHODS Four experimental groups were organized, each comprising eight rats: Control, Sepsis, Sepsis + ROF 0.5 mgkg-1, and Sepsis + ROF 1 mgkg-1 groups. A polymicrobial sepsis model was induced in the rats by cecal ligation and puncture under anesthesia. Twelve hours after sepsis induction, the lungs were obtained for biochemical, molecular, and histopathological analyses. RESULTS In the sepsis group's lungs, the TNF-α, IL-1β, and IL-6 mRNA expression levels peaked in the sepsis group's lung tissues, and ROF significantly decreased these levels compared with the sepsis group dose-dependently. ROF also significantly decreased MDA levels in septic lungs and increased antioxidant parameters (SOD and GSH) compared with the sepsis group. Histopathological analysis results supported biochemical and molecular results. CONCLUSIONS ROF, a PDE4 inhibitor, suppressed the expression levels of pro-inflammatory cytokines, alleviated lung damage (probably by blocking neutrophil infiltration), and increased the capacity of the antioxidant system.
Collapse
Affiliation(s)
| | - Busra Dincer
- Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halil Keskin
- Department of Child Health and Diseases, Ataturk University, Erzurum, Turkey
| | - Duygu Kose
- Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Arzu Bilen
- Department of Internal Medicine, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Busra Sirin
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University, Erzurum, Turkey.,Department of Internal Medicine, Ataturk University, Erzurum, Turkey.,Department of Histology and Embryology, Kafkas University, Kars, Turkey.,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Picchianti-Diamanti A, Spinelli FR, Rosado MM, Conti F, Laganà B. Inhibition of Phosphodiesterase-4 in Psoriatic Arthritis and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22052638. [PMID: 33807944 PMCID: PMC7961737 DOI: 10.3390/ijms22052638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterases (PDEs) are a heterogeneous superfamily of enzymes which catalyze the degradation of the intracellular second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Among PDEs, PDE4 is the most widely studied and characterized isoenzyme. PDE4 blocking can lead to increased levels of intracellular cAMP, which results in down-regulation of inflammatory responses by reducing the expression of tumor necrosis factor (TNF), interleukin (IL)-23, IL-17, interferon-γ, while increasing regulatory cytokines, such as IL-10. Therefore, PDE4 has been explored as a therapeutic target for the treatment of different chronic inflammatory conditions such as psoriatic arthritis (PsA) and inflammatory bowel disease (IBD). PsA shares clinical, genetic, and pathogenic features with IBD such as ulcerative colitis (UC) and Crohn’s disease (CD), and enteropathic spondyloarthritis (eSpA) represent a frequent clinical evidence of the overlap between gut and joint diseases. Current therapeutic options in PsA patients and underlying UC are limited to synthetic immunosuppressants and anti-TNF. Apremilast is an oral PDE4 inhibitor approved for the treatment of active PsA patients with inadequate response to synthetic immunosuppressants. The efficacy and a good safety profile observed in randomized clinical trials with apremilast in PsA patients have been confirmed by few studies in a real-life scenario. In addition, apremilast led to significant improvement in clinical and endoscopic features in UC patients in a phase II RCT. By now there are no available data regarding its role in eSpA patients. In view of the above, the use of apremilast in eSpA patients is a route that deserves to be deepened.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, “Sapienza” University, 00189 Rome, Italy;
- Correspondence:
| | - Francesca Romana Spinelli
- Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, “Sapienza” Università di Roma, 00161 Rome, Italy; (F.R.S.); (F.C.)
| | | | - Fabrizio Conti
- Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, “Sapienza” Università di Roma, 00161 Rome, Italy; (F.R.S.); (F.C.)
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, “Sapienza” University, 00189 Rome, Italy;
| |
Collapse
|
16
|
Kato N, Takama H, Ando Y, Yanagishita T, Ohshima Y, Ohashi W, Akiyama M, Watanabe D. Immediate response to apremilast in patients with palmoplantar pustulosis: a retrospective pilot study. Int J Dermatol 2021; 60:570-578. [PMID: 33454961 PMCID: PMC8248100 DOI: 10.1111/ijd.15382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
Background Recent case reports have shown the efficacy of apremilast for the treatment of palmoplantar pustulosis (PPP). However, no study has statistically analyzed the clinical efficacy of oral apremilast in patients with PPP. Objectives To evaluate the effectiveness of apremilast, a phosphodiesterase 4 inhibitor, for PPP. Materials and Methods Among 13 patients who were diagnosed with PPP, 10 patients with PPP with either palmoplantar pustules (>1 mm diameter) or sternoclavicular joint pain were retrospectively analyzed. Results Palmoplantar Pustulosis Area and Severity Index (mean ± SD: baseline, 13.4 ± 9.5 vs. after treatment, 5.1 ± 5.6; P = 0.013) and the number of pustules measuring > 1 mm in diameter (3.9 ± 3.9 vs. 1.3 ± 1.9; P = 0.029) significantly improved in 2 (±1) weeks. Moreover, the Dermatology Life Quality Index (9.7 ± 7.0 vs. 3.3 ± 3.6; P = 0.009) and palmoplantar itching (visual analog scale [VAS] score) (5.6 ± 3.5 vs. 2.1 ± 2.2; P = 0.026) significantly improved in 2 weeks, whereas VAS scores of palmoplantar pain (4.8 ± 4.4 vs. 1.1 ± 2.4; P = 0.081) and sternoclavicular joint pain (3.2 ± 3.8 vs. 2.0 ± 2.6; P = 0.194) did not significantly improve. Diarrhea was observed in 60.0% of our patients. Conclusion Our study demonstrated that apremilast can effectively treat cutaneous manifestations and arthralgia in Japanese patients with PPP who had apparent pustules and/or clavicular‐sternocostal arthralgia. Owing to the retrospective design of the study and a small sample size, placebo‐controlled clinical trials with a larger number of patients are warranted to confirm the efficacy of apremilast for treatment of PPP.
Collapse
Affiliation(s)
- Noriko Kato
- Department of Dermatology, Aichi Medical University, Aichi, Japan
| | - Hiroyuki Takama
- Department of Dermatology, Aichi Medical University, Aichi, Japan.,Department of Dermatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoriko Ando
- Department of Dermatology, Aichi Medical University, Aichi, Japan
| | | | - Yuichiro Ohshima
- Department of Dermatology, Aichi Medical University, Aichi, Japan
| | - Wataru Ohashi
- Clinical Research Center, Aichi Medical University, Aichi, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Daisuke Watanabe
- Department of Dermatology, Aichi Medical University, Aichi, Japan
| |
Collapse
|
17
|
El Tabaa MM, El Tabaa MM. New putative insights into neprilysin (NEP)-dependent pharmacotherapeutic role of roflumilast in treating COVID-19. Eur J Pharmacol 2020; 889:173615. [PMID: 33011243 PMCID: PMC7527794 DOI: 10.1016/j.ejphar.2020.173615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, coronavirus disease 2019 (COVID-19) represents the most serious inflammatory respiratory disease worldwide. Despite many proposed therapies, no effective medication has yet been approved. Neutrophils appear to be the key mediator for COVID-19-associated inflammatory immunopathologic, thromboembolic and fibrotic complications. Thus, for any therapeutic agent to be effective, it should greatly block the neutrophilic component of COVID-19. One of the effective therapeutic approaches investigated to reduce neutrophil-associated inflammatory lung diseases with few adverse effects was roflumilast. Being a highly selective phosphodiesterase-4 inhibitors (PDE4i), roflumilast acts by enhancing the level of cyclic adenosine monophosphate (cAMP), that probably potentiates its anti-inflammatory action via increasing neprilysin (NEP) activity. Because activating NEP was previously reported to mitigate several airway inflammatory ailments; this review thoroughly discusses the proposed NEP-based therapeutic properties of roflumilast, which may be of great importance in curing COVID-19. However, further clinical studies are required to confirm this strategy and to evaluate its in vivo preventive and therapeutic efficacy against COVID-19.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
18
|
Roflumilast: A potential drug for the treatment of cognitive impairment? Neurosci Lett 2020; 736:135281. [DOI: 10.1016/j.neulet.2020.135281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
|
19
|
Sapey E. Neutrophil Modulation in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:247-259. [PMID: 32697897 DOI: 10.15326/jcopdf.7.3.2019.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutrophils have been implicated in the pathogenesis of alpha-1 antitrypsin deficiency (AATD) since the first descriptions of the disease. Neutrophil proteinases can cause all lung manifestations of AATD, from small airways destruction, to emphysema, to chronic bronchitis and airflow obstruction. Initially, it was proposed that neutrophil functions were normal in AATD, responding in an initially physiological manner to a high burden of pulmonary inflammation. More recent studies have shed new light on this, describing changes in neutrophil responses (a modulation of usual cellular functions) in the presence of inflammation or infection which might enhance tissue damage while impeding bacterial clearance, providing some evidence to support there being an AATD neutrophil phenotype. Many facets of neutrophil function in AATD can be explained by the loss of alpha-1 antitrypsin (AAT) in diverse biological processes. If this were the only reason for altered neutrophil functions, one would predict similar disease presentation across affected people. However, this is not the case. Despite similar (low) levels of AAT, lung disease is extremely variable in AATD, with some patients suffering a significant burden of lung disease and some much less, irrespective of smoking habits and, in some cases, despite augmentation therapy. This review will explore how complex neutrophil responses are and how they are altered with age, inflammation and AATD. Further, it will discuss the need to understand more completely which aspects of AATD-associated disease are driven by neutrophils and how patients more susceptible to neutrophil dysfunction could be identified to potentially stratify treatment approaches.
Collapse
Affiliation(s)
- Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Peng T, Qi B, He J, Ke H, Shi J. Advances in the Development of Phosphodiesterase-4 Inhibitors. J Med Chem 2020; 63:10594-10617. [PMID: 32255344 DOI: 10.1021/acs.jmedchem.9b02170] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclic nucleotide phosphodiesterase 4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP) and plays vital roles in biological processes such as cancer development. To date, PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases such as chronic obstructive pulmonary disease, and many of them have progressed to clinical trials or have been approved as drugs. Herein, we review the advances in the development of PDE4 inhibitors in the past decade and will focus on their pharmacophores, PDE4 subfamily selectivity, and therapeutic potential. Hopefully, this analysis will lead to a strategy for development of novel therapeutics targeting PDE4.
Collapse
Affiliation(s)
- Ting Peng
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
21
|
The modulatory effects of the PDE4 inhibitors CHF6001 and roflumilast in alveolar macrophages and lung tissue from COPD patients. Cytokine 2019; 123:154739. [DOI: 10.1016/j.cyto.2019.154739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Peng CK, Huang KL, Wu CP, Wu YK, Tzeng IS, Lan CC. Phosphodiesterase-4 Inhibitor Roflumilast Attenuates Pulmonary Air Emboli-Induced Lung Injury. J Surg Res 2019; 241:24-30. [PMID: 31004869 DOI: 10.1016/j.jss.2019.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/26/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pulmonary air embolism (PAE)-induced acute lung injury (ALI) can be caused by massive air entry into the lung circulation. PAE can occur during diving, aviation, and some iatrogenic invasive procedures. PAE-induced ALI presents with severe inflammation, hypoxia, and pulmonary hypertension, and it is a serious complication resulting in significant morbidity and mortality. Phosphodiesterase-4 (PDE4) inhibitors can regulate inflammation and are therefore expected to have a therapeutic effect on ALI. However, the effect of the PDE4 inhibitor roflumilast on PAE-induced ALI is unknown. METHODS The PAE model was undertaken in isolated-perfused rat lungs. Four groups (n = 6 in each group) were defined as follows: control, PAE, PAE + roflumilast 2.5 mg/kg, and PAE + roflumilast 5 mg/kg. Induction of PAE-induced ALI was achieved via the infusion of 0.7 cc air through the pulmonary artery. Roflumilast was administered via perfusate. All groups were assessed for pulmonary microvascular permeability, lung histopathology changes, pulmonary edema (lung weight/body weight, lung wet/dry weight ratio), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-17, nuclear factor-kappa B (NF-κB), and inhibitor of NF-κB alpha (IκB-α). RESULTS After the induction of air, PAE-induced ALI presented with pulmonary edema, pulmonary microvascular hyperpermeability, and lung inflammation with neutrophilic sequestration. The PAE-induced ALI also presented with increased expressions of IL-1β, IL-6, IL-8, IL-17, TNF-α, and NF-κB and decreased expression of IκB-α. The administration of roflumilast decreased pulmonary edema, inflammation, cytokines, NF-κB, and restored IκB-α level. CONCLUSIONS PAE-induced ALI presents with lung inflammation with neutrophilic sequestration, pulmonary edema, hyperpermeability, increased cytokine levels, and activation of the NF-κB pathway. Roflumilast attenuates lung edema and inflammation and downregulates the NF-κB pathway and cytokines.
Collapse
Affiliation(s)
- Chung-Kan Peng
- Division of Pulmonary Medicine, Tri-Service General Hospital, Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary Medicine, Tri-Service General Hospital, Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Li-Shin Hospital, Tao-Yuan County, Taiwan
| | - Yao-Kuang Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
23
|
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019; 8. [PMID: 31069060 PMCID: PMC6489989 DOI: 10.12688/f1000research.18411.1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung diseases and is associated with disease progression, often regardless of the initiating cause. Neutrophils and their products are thought to be key mediators of the inflammatory changes in the airways of patients with chronic obstructive pulmonary disease (COPD) and have been shown to cause many of the pathological features associated with disease, including emphysema and mucus hypersecretion. Patients with COPD also have high rates of bacterial colonisation and recurrent infective exacerbations, suggesting that neutrophil host defence mechanisms are impaired, a concept supported by studies showing alterations to neutrophil migration, degranulation and reactive oxygen species production in cells isolated from patients with COPD. Although the role of neutrophils is best described in COPD, many of the pathological features of this disease are not unique to COPD and also feature in other chronic inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1 anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for immune cell dysfunction contributing to inflammation in many of these diseases, focusing interest on the neutrophil as a key driver of pulmonary inflammation and a potential therapeutic target than spans diseases. This review discusses the evidence for neutrophilic involvement in COPD and also considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma, and cystic fibrosis. We provide an in-depth assessment of the role of the neutrophil in each of these conditions, exploring recent advances in understanding, and finally discussing the possibility of common mechanisms across diseases.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - William J McIver
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Georgia M Walton
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
24
|
Dunne AE, Kawamatawong T, Fenwick PS, Davies CM, Tullett H, Barnes PJ, Donnelly LE. Direct Inhibitory Effect of the PDE4 Inhibitor Roflumilast on Neutrophil Migration in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 60:445-453. [DOI: 10.1165/rcmb.2018-0065oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Amy E. Dunne
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Theerasuk Kawamatawong
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter S. Fenwick
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ceri M. Davies
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hannah Tullett
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J. Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E. Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
WITHDRAWN: The modulatory effects of the PDE4 inhibitors CHF6001 and roflumilast in alveolar macrophages and lung tissue from COPD patients. Cytokine X 2019. [DOI: 10.1016/j.cytox.2019.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Al-Sajee D, Yin X, Gauvreau GM. An evaluation of roflumilast and PDE4 inhibitors with a focus on the treatment of asthma. Expert Opin Pharmacother 2019; 20:609-620. [PMID: 30722707 DOI: 10.1080/14656566.2019.1570132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Asthma is a common chronic airway inflammatory disease characterized by diverse inflammatory events leading to airway hyperresponsiveness and reversible airflow obstruction. Corticosteroids have been the mainstay for asthma treatment due to their broad anti-inflammatory actions; however, other medications such as phosphodiesterase 4 inhibitors also demonstrate anti-inflammatory activity in the airways. AREAS COVERED This review describes tissue expression of phosphodiesterase 4 in the airways, the different phosphodiesterase 4 isoenzymes identified, and the anti-inflammatory activities of phosphodiesterase 4 inhibition in asthma and related findings in chronic obstructive pulmonary disease (COPD). The authors further review clinical trials demonstrating that drugs such as roflumilast have an excellent safety profile and efficacy in patients with asthma and COPD. EXPERT OPINION Phosphodiesterase 4 inhibitors suppress the activity of immune cells, an effect similar to corticosteroids although by acting through different anti-inflammatory pathways and uniquely blocking neutrophilic inflammation. Roflumilast and other phosphodiesterase 4 inhibitors have been shown to provide additive protection in asthma when added to corticosteroid and anti-leukotriene treatment. Developmental drugs with dual phosphodiesterase 3 and 4 inhibition are thought to be able to provide bronchodilation and anti-inflammatory activities and will consequently be pushed forward in their clinical development for the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Dhuha Al-Sajee
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| | - Xuanzhi Yin
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| | - Gail M Gauvreau
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
28
|
Barberot C, Moniot A, Allart-Simon I, Malleret L, Yegorova T, Laronze-Cochard M, Bentaher A, Médebielle M, Bouillon JP, Hénon E, Sapi J, Velard F, Gérard S. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur J Med Chem 2018; 146:139-146. [PMID: 29407945 DOI: 10.1016/j.ejmech.2018.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), that controls intracellular level of cyclic nucleotide cAMP, has aroused scientific attention as a suitable target for anti-inflammatory therapy in respiratory diseases. Here we describe the development of two families of pyridazinone derivatives as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4,5-dihydropyridazinone representatives possess promising activity, selectivity towards PDE4 isoenzymes and are able to reduce IL-8 production by human primary polymorphonuclear cells.
Collapse
Affiliation(s)
- Chantal Barberot
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en Site OSseux (BIOS), SFR CAP-Santé (FED 4231), UFR Pharmacie and UFR Odontologie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Laurette Malleret
- Centre International de Recherche en Infectiologie (CIRI), EA7426, Faculté de Médecine Lyon-Sud, 165 Chemin Du Grand Revoyet, 69921 Oullins, France
| | - Tatiana Yegorova
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Abderrazzaq Bentaher
- Centre International de Recherche en Infectiologie (CIRI), EA7426, Faculté de Médecine Lyon-Sud, 165 Chemin Du Grand Revoyet, 69921 Oullins, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43 Bd Du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en Site OSseux (BIOS), SFR CAP-Santé (FED 4231), UFR Pharmacie and UFR Odontologie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France.
| |
Collapse
|
29
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, El-Adawy SA. Roflumilast, type 4 phosphodiesterase inhibitor, attenuates inflammation in rats with ulcerative colitis via down-regulation of iNOS and elevation of cAMP. Int Immunopharmacol 2018; 56:36-42. [PMID: 29331766 DOI: 10.1016/j.intimp.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/09/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Roflumilast (Rof), a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be an effective agent in inflammatory diseases and marketed for chronic obstructive pulmonary disease. OBJECTIVE This study was conducted to examine the potential anti-inflammatory effects of Rof in dextran sulphate sodium (DSS)-induced ulcerative colitis (UC) in rats and to investigate the molecular mechanisms underlying these effects. METHODS Forty male Wistar rats were divided into four groups: normal control, colitis group (rats received 5% DSS in their drinking water continuously for 7 days), Rof group, and sulfasalazine (SLZ) group. The Rof (5 mg/kg) and SLZ (500 mg/kg) groups underwent pretreatment with DSS one week ahead of DSS challenge and parallel with DSS. Colitis was determined by assessing colon length, weight loss, histologic colon score, quantifying the concentration of tumor necrosis factor alpha (TNF-α), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), myeloperoxidase (MPO) activity and inducible nitric oxide synthase (iNOS) gene expression in colon tissue. RESULTS Rof attenuated the severity of colitis as evidenced by increased colon length, prevention of body weight loss, and improved colon histologic score compared to DSS group. Rof also suppressed the inflammatory response induced in DSS colitis group by decreasing colon concentration of TNF-α, NO and MPO activity and down- regulation of iNOS gene expression. The level of cAMP was increased by Rof compared to DSS group. The obtained results of Rof were comparable to those exerted by SLZ. CONCLUSION These findings revealed the beneficial effects of Rof in alleviating inflammation in DSS colitis.
Collapse
Affiliation(s)
| | - Naglaa F Khedr
- Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia 31527, Egypt
| | - Hoda A El-Bahrawy
- Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia 31527, Egypt.
| | - Samar A El-Adawy
- Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia 31527, Egypt.
| |
Collapse
|
30
|
Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res 2017; 2017:3743048. [PMID: 29359169 PMCID: PMC5735647 DOI: 10.1155/2017/3743048] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic inflammatory disease that undermines the airways. It is caused by dysfunction of various types of cells, as well as cellular components, and is characterized by recruitment of inflammatory cells, bronchial hyperreactivity, mucus production, and airway remodelling and narrowing. It has commonly been considered that airway inflammation is caused by the Th2 immune response, or eosinophilia, which is a hallmark of bronchial asthma pathogenesis. Some patients display a neutrophil-dominant presentation and are characterized with low (or even absent) Th2 cytokines. In recent years, increasing evidence has also suggested that neutrophils play a key role in the development of certain subtypes of asthma. This review discusses neutrophils in asthma and potentially related targeted therapies.
Collapse
|
31
|
Spadaccini M, D'Alessio S, Peyrin-Biroulet L, Danese S. PDE4 Inhibition and Inflammatory Bowel Disease: A Novel Therapeutic Avenue. Int J Mol Sci 2017; 18:1276. [PMID: 28617319 PMCID: PMC5486098 DOI: 10.3390/ijms18061276] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last few decades, a better knowledge of the inflammatory pathways involved in the pathogenesis of Inflammatory Bowel Disease (IBD) has promoted biological therapy as an important tool to treat IBD patients. However, in spite of a wider spectrum of biological drugs, a significant proportion of patients is unaffected by or lose their response to these compounds, along with increased risks of infections and malignancies. For these reasons there is an urgent need to look for new pharmacological targets. The novel Phosphodiesterase 4 (PDE4) inhibitors have been recently introduced as new modulators of intracellular signals and gene transcription for the treatment of IBD. AIM To discuss and describe the state of the art of this new class of compounds in the IBD field, with particular attention to apremilast. METHODS Published articles selected from PubMed were comprehensively reviewed, with key words including apremilast, inflammatory disease, IBD, psoriasis, psoriatic arthritis, pathogenesis, therapies, and treatment. RESULTS PDE4 inhibitors generate elevated intracellular levels of cyclic Adenosine Monophosphate (cAMP), that consequently down-regulate the release of pro-inflammatory cytokines in the mucosa of IBD patients. The newly developed apremilast is one of these drugs and has already been approved for the treatment of dermatologic/rheumatologic inflammatory conditions; studies in psoriasis and psoriatic arthritis have in fact demonstrated its clinical activity. However, no clinical trials have yet been published on the use of apremilast in IBD. CONCLUSION In light of the similarity of pro-inflammatory signaling pathways across the gut, the skin, and joints, apremilast is likely supposed to show its efficacy also in IBD.
Collapse
Affiliation(s)
- Marco Spadaccini
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan 20089, Italy.
| | - Silvia D'Alessio
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan 20089, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan 20129, Italy.
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, Lorraine University, Vandoeuvre-lès-Nancy 54500, France.
| | - Silvio Danese
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan 20089, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan 20089, Italy.
| |
Collapse
|
32
|
Kawamatawong T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis 2017; 9:1144-1154. [PMID: 28523172 DOI: 10.21037/jtd.2017.03.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases. Both diseases have incompletely distinct pathophysiology, clinical manifestation, and treatment responsiveness. Pulmonary and systemic inflammations are the hallmarks of COPD. Most asthma responds to inhaled corticosteroid (ICS) treatment. In contrast, COPD is a corticosteroid-resistant disease. Bronchodilators are a preferred treatment method of COPD, with the aim of improving symptoms and preventing exacerbation. In addition, corticosteroid insensitivity is an underlying mechanism in severe asthma. An overlap of features between asthma and COPD, which was described as asthma-COPD overlap syndrome (ACOS) is not uncommon in practice. Novel nonsteroidal therapies focusing on inflammation in asthma and COPD have been developed. Selective phosphodiesterase 4 (PDE4) inhibitor is a promising class of drugs that has been studied for the treatment of COPD. Selective PDE4 inhibitor is different from xanthine in terms of mechanisms and pharmacokinetic profiles. This review focuses on clinical data on PDE4 inhibitors and its future roles in asthma, COPD, bronchiectasis, ACOS and other chronic non-pulmonary diseases.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Murad HA, Habib HS, Rafeeq MM, Sulaiman MI, Abdulrahman AS, Khabaz MN. Co-inhalation of roflumilast, rather than formoterol, with fluticasone more effectively improves asthma in asthmatic mice. Exp Biol Med (Maywood) 2017; 242:516-526. [PMID: 28056550 PMCID: PMC5367656 DOI: 10.1177/1535370216685006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
Roflumilast is approved as an add-on therapy for chronic obstructive pulmonary disease. The inflammation in chronic obstructive pulmonary disease is mainly neutrophilic, while in asthma it is mainly eosinophilic, studies addressing role of roflumilast in eosinophilic inflammation are recommended. Also in severe asthma, the dominant inflammatory cells are neutrophils. Thus, roflumilast has a potential off-label use in the treatment of asthma. This study was designed to evaluate the effects of co-inhalation of roflumilast and fluticasone compared to that of formoterol and fluticasone in ovalbumin-sensitized and-challenged BALB/c mice. Besides normal control group, the ovalbumin-asthmatic mice were randomly divided into seven groups (n = 8): positive control, vehicle-treated, and five drug-treated groups. Treatments (µg/kg) were given as 15 min-inhalation once/day for five days as follows: roflumilast (500), formoterol (50), fluticasone (1000), roflumilast + fluticasone (500 + 1000), and formoterol + fluticasone (50 + 1000). Penh values were measured in conscious unrestrained mice using the single-chamber whole-body plethysmography. Airway hyperreactivity to inhaled methacholine was evaluated. Bronchoalveolar lavage fluid was used for the measurements of levels of IL-4, IL-5, TNF-α, OVA-specific IgE, and total and differential white cells. Lung sections were stained with hematoxylin and eosin and periodic acid-Schiff. The asthmatic mice showed significant increases in airway hyperreactivity which were significantly reversed by the combination treatments. The asthmatic mice showed significant increases in levels of IL-4, IL-5, TNF-α, ovalbumin-specific IgE, and total and differential white cells in bronchoalveolar lavage fluid. All treatments (except formoterol) significantly reversed these changes mainly with roflumilast + fluticasone. The asthmatic mice showed severe inflammatory infiltration and goblet cell hyperplasia which were maximally reversed by roflumilast + fluticasone, while minimally reversed by formoterol. In conclusion, co-inhalation of roflumilast + fluticasone more significantly improved inflammation and histopathological changes than co-inhalation of formoterol + fluticasone in ovalumin-asthmatic mice. Further studies are needed to help confirm the potential off-label add-on use of roflumilast in typical and atypical asthma and asthma-chronic obstructive pulmonary disease overlap syndrome. Impact statement Roflumilast, a selective phosphodiesterase-4 inhibitor, was approved for the treatment of chronic obstructive pulmonary disease (COPD). This study showed that co-inhalation of roflumilast and fluticasone significantly decreased airway hyperresponsiveness in ovalumin-asthmatic mice. Also, it more significantly improved inflammation and histopathological changes than co-inhalation of formoterol and fluticasone. The current results showed that inhaled roflumilast reduced counts of eosinophils, neutrophils, and macrophages in bronchoalveolar lavage fluid. Consequently, inhaled roflumilast might be of potential off-label benefit in treatment of eosinophilic and neutrophilic asthma and asthma-COPD overlap syndrome (ACOS). These results could also support other experimental and clinical studies addressing the same issue.
Collapse
Affiliation(s)
- Hussam A Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Hamed S Habib
- Department of Pediatrics, Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Mansour I Sulaiman
- Department of Pharmacology, Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Amer S Abdulrahman
- Department of Pathology, Faculty of Medicine, Rabigh, KAU, Jeddah 21589, Saudi Arabia
| | - Mohamad Nidal Khabaz
- Department of Pathology, Faculty of Medicine, Rabigh, KAU, Jeddah 21589, Saudi Arabia
| |
Collapse
|
34
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. The discovery of roflumilast for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2016; 11:733-44. [DOI: 10.1080/17460441.2016.1184642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Kasetty G, Papareddy P, Bhongir RKV, Egesten A. Roflumilast Increases Bacterial Load and Dissemination in a Model of Pseudomononas Aeruginosa Airway Infection. J Pharmacol Exp Ther 2016; 357:66-72. [PMID: 26865680 DOI: 10.1124/jpet.115.229641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/09/2016] [Indexed: 03/08/2025] Open
Abstract
Exacerbations present a major clinical problem in many patients suffering from chronic obstructive pulmonary disease (COPD). Roflumilast, an inhibitor of phosphodiesterase 4, has shown beneficial effects in several clinical trials and is currently widely used to prevent exacerbations in severe COPD. Roflumilast has anti-inflammatory properties that may interfere with potentially important host defense functions, including cytotoxic properties of neutrophils at sites of inflammation. Since chronic bacterial infection is prevalent in severe COPD, Pseudomonas aeruginosa being a major pathogen, we hypothesized that this drug could impair host defense against P. aeruginosa. In this study, mice were pretreated with vehicle alone or roflumilast at doses of 5 mg/kg or 10 mg/kg, followed by instillation of P. aeruginosa in the airways. Bacterial load and dissemination, as well as inflammatory markers and immune cells, present in the airways were monitored. Roflumilast increased mortality, bacterial load, and dissemination in mice infected with P. aeruginosa. In addition, roflumilast-treated mice had significantly lower numbers of neutrophils in the bronchi, but not in the lung tissue airways, compared with untreated mice. Several proinflammatory cytokines decreased in roflumilast-treated mice but in neither the neutrophil-recruiting chemokine KC nor IL-6. These findings show that roflumilast treatment impairs host defense against P. aeruginosa in the airways, which may indicate that patients suffering from chronic bacterial infection of the airways could benefit from withholding of treatment with roflumilast.
Collapse
Affiliation(s)
- Gopinath Kasetty
- Respiratory Medicine & Allergology (G.K., R.K.V.B., A.E.) and Infection Medicine (P.P.), Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Praveen Papareddy
- Respiratory Medicine & Allergology (G.K., R.K.V.B., A.E.) and Infection Medicine (P.P.), Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Respiratory Medicine & Allergology (G.K., R.K.V.B., A.E.) and Infection Medicine (P.P.), Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine & Allergology (G.K., R.K.V.B., A.E.) and Infection Medicine (P.P.), Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
36
|
The effects of roflumilast on the pancreas and remote organs in a cerulein-induced experimental acute pancreatitis model in rats. Surg Today 2016; 46:1435-1442. [DOI: 10.1007/s00595-016-1329-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/25/2016] [Indexed: 01/20/2023]
|
37
|
Response of antimicrobial peptides from porcine neutrophils to pentoxifylline and antigens from Gram negative and Gram positive bacteria. Res Vet Sci 2016; 104:160-5. [PMID: 26850555 DOI: 10.1016/j.rvsc.2015.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
Neutrophils, the main component of the defense against invading organisms have also been implicated in tissue damage in numerous inflammatory conditions. Neutrophil products can degrade the extracellular matrix and when excessively released are thought to cause some disorders. As it is known, pentoxifylline (PTX) can suppress a range of neutrophil responses. Cathelicidins are components of the early host defenses against infection, however, in most cases cleavage with elastase is necessary to obtain active forms. Thus, the aim of our study was to assess the usage of PTX as a factor which could inhibit some neutrophil functions, and to assess if PTX can lead to the impairment of the release from these cells active cathelicidins. For these purposes we determined neutrophil activity as well as expression of cathelicidins from porcine neutrophils in cultures under the influence of PTX. PTX exerted an inhibitory effect on elastase and MPO release from neutrophils. At lower concentrations of PTX, ALP release was inhibited both in cultures stimulated with PTX+fMLP and with PTX+LPS. Inhibition of superoxide generation was insignificant, whereas a decrease of NO production was noted. The MALDI TOF analysis revealed that in all cultures stimulated with PTX+fLMP and PTX+LPS there was no inhibition of the release of cathelicidins in comparison with cultures stimulated only with fMLP and only with LPS. Our study proved that although PTX in porcine neutrophils is able to suppress many neutrophil functions, the expression of cathelicidins is maintained.
Collapse
|
38
|
Matrix Metalloproteinases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. Arch Immunol Ther Exp (Warsz) 2015; 64:177-93. [DOI: 10.1007/s00005-015-0375-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/25/2015] [Indexed: 01/04/2023]
|
39
|
Abdulrahim H, Thistleton S, Adebajo AO, Shaw T, Edwards C, Wells A. Apremilast: a PDE4 inhibitor for the treatment of psoriatic arthritis. Expert Opin Pharmacother 2015; 16:1099-108. [DOI: 10.1517/14656566.2015.1034107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Page CP. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 2014; 165:152-64. [PMID: 25532037 DOI: 10.1159/000368800] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Xanthines like theophylline have long been recognised as being effective drugs for the treatment of asthma and chronic obstructive pulmonary disease (COPD). They are of interest as they possess both anti-inflammatory and bronchodilator activity in the same molecule. Since the discovery of phosphodiesterases (PDEs) in the late 1950s, it has been suggested that xanthines work, in part, by acting as non-selective PDE inhibitors. However, it has also been suggested that the ability of xanthines to non-selectively inhibit PDEs contributes to their many unwanted side effects, thus limiting their use since the arrival of inhaled drugs with more favourable safety profiles. As our understanding of PDEs has improved over the last 30 years, and with the recognition that the distribution of different PDEs varies across different cell types, this family of enzymes has been widely investigated as targets for novel drugs. In particular, PDE3 in airway smooth muscle and PDE4 and PDE7 in inflammatory cells have been targeted to provide new bronchodilators and anti-inflammatory agents, respectively. This review discusses the progress made in this field over the last decade in the development of selective PDE inhibitors to treat COPD and asthma.
Collapse
Affiliation(s)
- Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
41
|
Cortijo Gimeno J. [Phosphodiesterase 4 inhibitors: a new pharmacologic group in the treatment of chronic inflammation of the airways]. Arch Bronconeumol 2014; 46 Suppl 9:3-7. [PMID: 21320810 DOI: 10.1016/s0300-2896(10)70046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Julio Cortijo Gimeno
- Unidad de Docencia e Investigación. Consorcio Hospital General Universitario de Valencia; Departamento de Farmacología. Facultad de Medicina y Odontología. Universitat de Valencia. Valencia. España
| |
Collapse
|
42
|
Milara J, Lluch J, Almudever P, Freire J, Xiaozhong Q, Cortijo J. Roflumilast N-oxide reverses corticosteroid resistance in neutrophils from patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2014; 134:314-22. [PMID: 24636089 DOI: 10.1016/j.jaci.2014.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Glucocorticoid functions are markedly impaired in patients with chronic obstructive pulmonary disease (COPD). The phosphodiesterase 4 inhibitor roflumilast N-oxide (RNO) is the active metabolite of roflumilast approved as a treatment to reduce the risk of exacerbations in patients with severe COPD. OBJECTIVE We sought to characterize the differential effects of RNO versus corticosteroids and their potential additive/synergistic effect in neutrophils from patients with COPD, thus providing scientific rationale for the combination of roflumilast with corticosteroids in the clinic. METHODS Peripheral blood neutrophils were isolated from patients with COPD (n = 32), smokers (n = 7), and healthy nonsmokers (n = 25). Levels of IL-8, matrix metallopeptidase 9 (MMP-9), and biomarkers of glucocorticoid resistance were determined by using ELISA and RT-PCR. Neutrophils were incubated with dexamethasone (0.1 nmol/L to 1 μmol/L), RNO (0.1 nmol/L to 1 μmol/L), or the combination of 1 nmol/L RNO plus 10 nmol/L DEX and stimulated with LPS (1 μg/mL) or cigarette smoke extract 5%; levels of IL-8, MMP-9, and other biomarkers were measured at the end of the incubation period. RESULTS Peripheral neutrophils from patients with COPD showed a primed phenotype with an increased basal release of IL-8 and MMP-9 and expressed a corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase δ, macrophage migration inhibitory factor, and glucocorticoid receptor β expression and a decrease in HDAC activity and mitogen-activated protein kinase phosphatase 1 expression. RNO demonstrated robust anti-inflammatory effects on neutrophils from patients with COPD, reversing their resistance to corticosteroids. The combination of RNO and dexamethasone showed additive/synergistic effects, which were consistent with the reversal of corticosteroid-resistant molecular markers by RNO. CONCLUSION RNO reverses corticosteroid resistance and shows strong anti-inflammatory effects alone or in combination with corticosteroids on neutrophils from patients with COPD.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit (UIC), University General Hospital Consortium, Valencia, Spain; Department of Biotechnology, Universidad Politécnica de Valencia, Valencia, Spain; Research Foundation of General Hospital of Valencia, Valencia, Spain.
| | - Javier Lluch
- Research Foundation of General Hospital of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Patricia Almudever
- Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | | | - Julio Cortijo
- Clinical Research Unit (UIC), University General Hospital Consortium, Valencia, Spain; Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
43
|
Abbott-Banner KH, Page CP. Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases. Basic Clin Pharmacol Toxicol 2014; 114:365-76. [PMID: 24517491 DOI: 10.1111/bcpt.12209] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Selective phosphodiesterase (PDE) 4 and dual PDE3/4 inhibitors have attracted considerable interest as potential therapeutic agents for the treatment of respiratory diseases, largely by virtue of their anti-inflammatory (PDE4) and bifunctional bronchodilator/anti-inflammatory (PDE3/4) effects. Many of these agents have, however, failed in early development for various reasons, including dose-limiting side effects when administered orally and lack of sufficient activity when inhaled. Indeed, only one selective PDE4 inhibitor, the orally active roflumilast-n-oxide, has to date received marketing authorization. The majority of the compounds that have failed were, however, orally administered and non-selective for either PDE3 (A,B) or PDE4 (A,B,C,D) subtypes. Developing an inhaled dual PDE3/4 inhibitor that is rapidly cleared from the systemic circulation, potentially with subtype specificity, may represent one strategy to improve the therapeutic index and also exhibit enhanced efficacy versus inhibition of either PDE3 or PDE4 alone, given the potential positive interactions with regard to anti-inflammatory and bronchodilator effects that have been observed pre-clinically with dual inhibition of PDE3 and PDE4 compared with inhibition of either isozyme alone. This MiniReview will summarize recent clinical data obtained with PDE inhibitors and the potential for these drugs to treat COPD and other inflammatory airways diseases such as asthma and cystic fibrosis.
Collapse
|
44
|
Baeumer DW, Szelenyi PI, Kietzmann PM. Cilomilast, an orally active phosphodiesterase 4 inhibitor for the treatment of COPD. Expert Rev Clin Immunol 2014; 1:27-36. [DOI: 10.1586/1744666x.1.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
McIvor RA. Roflumilast: systemic therapy for chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 2:539-49. [DOI: 10.1586/17476348.2.5.539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Stockley JA, Walton GM, Lord JM, Sapey E. Aberrant neutrophil functions in stable chronic obstructive pulmonary disease: the neutrophil as an immunotherapeutic target. Int Immunopharmacol 2013; 17:1211-7. [PMID: 23994347 DOI: 10.1016/j.intimp.2013.05.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/31/2013] [Indexed: 01/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, progressive and debilitating chronic inflammatory condition affecting the lungs, with significant systemic manifestations and co-morbidities. Smoking cigarettes is the main risk factor, but only a fifth of smokers have clinically significant airflow obstruction and the inflammation persists after smoking cessation. This suggests that smoking (and exposure to other inhaled toxins) may be necessary but not sufficient to cause COPD. Neutrophils are believed central to COPD and their accumulation and degranulation are associated with tissue damage, increased inflammation and disordered tissue repair. It was assumed that neutrophil activity and function were appropriate in COPD, responding to the presence of high levels of inflammation in the lung. However more recent studies of neutrophil function (including migration, reactive oxygen species generation, degranulation, phagocytosis and extracellular trap (NET) production) suggest that there is a general impairment in COPD neutrophil responses that predispose towards increased inflammation and reduced bacterial clearance. This may be amenable to correction and manipulating neutrophil intracellular pathways (such as phosphoinositide-3-kinase signalling) appears to restore some key COPD neutrophil responses. Targeting neutrophil intra-cellular signalling may provide a means to normalise neutrophil behaviour in COPD. This could lead to improvements in disease outcomes by reducing extraneous inflammatory burden. However further studies are needed to determine if these findings are relevant in vivo and whether this would impact positively upon health and disease.
Collapse
Affiliation(s)
- James A Stockley
- Centre for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
47
|
Qin W, Lu W, Li H, Yuan X, Li B, Zhang Q, Xiu R. Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J Endocrinol 2012; 214:145-53. [PMID: 22619232 DOI: 10.1530/joe-12-0147] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been involved in inflammatory and degradative processes in pathologic conditions. The purpose of this study was to investigate the protective effect of melatonin in human umbilical vein endothelial cell (HUVEC) monolayer permeability and the regulation of MMP9 induced by interleukin 1β (IL1β (IL1B)) in HUVECs. Protection studies were carried out with melatonin, a well-known antioxidant and antiinflammatory molecule. MMP9 expression was increased with IL1β induction in HUVECs. Melatonin showed a barrier-protective role by downregulation of MMP9 and upregulation of tissue inhibitor of metalloproteinase-1 expression in HUVECs. Meanwhile, melatonin also decreased sodium fluorescein permeability and counteracted the downregulation of vascular endothelial cadherin and occludin expression in HUVECs. During inflammatory stimulus, nuclear factor-κB (NF-κB) plays a significant role in regulating MMP genes expression, thus the function of NF-κB in HUVECs' barrier disruption was investigated. IL1β induced nuclear translocation of NF-κB in HUVECs and regulated MMP9 expression. However, NF-κB translocation into the nucleus was inhibited significantly by melatonin. Our results show that melatonin decreases the permeability of monolayer endothelial cell induced by IL1β. At the same time, melatonin decreased the expression and activity of MMP9 by a NF-κB-dependent pathway in HUVECs induced by IL1β.
Collapse
Affiliation(s)
- Weiwei Qin
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Page CP, Spina D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol 2012; 12:275-86. [PMID: 22497841 DOI: 10.1016/j.coph.2012.02.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 02/05/2023]
Abstract
Phosphodiesterases (PDEs) are a family of enzymes which catalyse the metabolism of the intracellular cyclic nucleotides, c-AMP and c-GMP that are expressed in a variety of cell types and in the context of respiratory diseases, It is now recognised that the use of PDE3, PDE4 and mixed PDE3/4 inhibitors can provide clinical benefit to patients with asthma or chronic obstructive pulmonary disease (COPD). The orally active PDE4 inhibitor Roflumilast-n-oxide has been approved for treatment of severe exacerbations of COPD as add-on therapy to standard drugs. This review discusses the involvement of PDEs in airway diseases and various strategies that are currently being pursued to improve efficacy and reduce side-effects of PDE4 inhibitors, including delivery via the inhaled route, mixed PDE inhibitors and/or antisense biologicals targeted towards PDE4.
Collapse
Affiliation(s)
- Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, Franklin Wilkins Building, King's College London, London SE1 9NH, UK.
| | | |
Collapse
|
49
|
Zhang WH, Zhang Y, Cui YY, Rong WF, Cambier C, Devillier P, Bureau F, Advenier C, Gustin P. Can β2-adrenoceptor agonists, anticholinergic drugs, and theophylline contribute to the control of pulmonary inflammation and emphysema in COPD? Fundam Clin Pharmacol 2011; 26:118-34. [PMID: 22044554 DOI: 10.1111/j.1472-8206.2011.01007.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic disease with an increased morbidity and mortality in the world. Inflammatory process progresses and contributes to irreversible airflow limitation. However, there is no available therapy to better control the inflammatory progression and therefore to reduce the exacerbations and mortality. Thus, the development of efficient anti-inflammatory therapies is a priority for patients with COPD. β(2) -Adrenoceptor agonists and anticholinergic agents are widely used as first line drugs in management of COPD because of their efficient bronchodilator properties. At present, many studies in vitro and some data obtained in laboratory animals reveal the potential anti-inflammatory effects of these bronchodilators but their protective role against chronic inflammation and the development of emphysema in patients with COPD remains to be investigated. The anti-inflammatory effects of theophylline at low doses have also been identified. Beneficial interactions between glucocorticoids and bronchodilators have been reported, and signaling pathways explaining these synergistic effects begin to be understood, especially for theophylline. Recent data demonstrating interactions between anticholinergics with β(2) -adrenoceptor agonists aiming to better control the pulmonary inflammation and the development of emphysema in animal models of COPD justify the priority to investigate the interactive effects of a tritherapy associating corticoids with the two main categories of bronchodilators.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- Department of Physiology, School of Medicine, Shanghai JiaoTong University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schudt C, Hatzelmann A, Beume R, Tenor H. Phosphodiesterase inhibitors: history of pharmacology. Handb Exp Pharmacol 2011:1-46. [PMID: 21695634 DOI: 10.1007/978-3-642-17969-3_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.
Collapse
Affiliation(s)
- Christian Schudt
- Department of Biologics, Nycomed GmbH, 78467, Konstanz, Germany.
| | | | | | | |
Collapse
|