1
|
Westemeier-Rice ES, Winters MT, Rawson TW, Patel KJ, McHugh O, Ward S, McLaughlin S, Stewart A, Misra B, Dziadowicz S, Yi W, Bobbala S, Hu G, Martinez I. Lnc-RAINY regulates genes involved in radiation susceptibility through DNA:DNA:RNA triplex-forming interactions and has tumor therapeutic potential in lung cancers. Noncoding RNA Res 2025; 12:152-166. [PMID: 40235937 PMCID: PMC11999364 DOI: 10.1016/j.ncrna.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 04/17/2025] Open
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. Unfortunately, radiation resistance remains a major problem facing lung cancer patients. Recently, we identified a group of long non-coding RNAs (lncRNAs) known as linc-SPRY3 RNAs, expressed on the Y-chromosome, which play a role in radiation sensitivity by decreasing tumor burden in vitro and in vivo after radiation. In this study, we found that the linc-SPRY3 RNAs are one large lncRNA that we named Radiation Induced Y-chromosome linked long non-coding RNA (lnc-RAINY). Through ATAC-seq and immunoprecipitation experiments, we show that lnc-RAINY interacts with DNA in a triple helix to induce chromatin remodeling and gene expression. We also identified that lnc-RAINY regulates CDC6 and CDC25A expression affecting senescence induction, cell migration patterns, and cell cycle regulation. Furthermore, the administration of Lnc-RAINY encapsulated in FDA-approved nanoparticles into a lung cancer patient-derived xenograft model dramatically reduces tumor progression demonstrating therapeutic potential.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Kiran J. Patel
- West Virginia School of Medicine, West Virginia University, West Virginia, United States
| | - Olivia McHugh
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sierra Ward
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sarah McLaughlin
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Amanda Stewart
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Bishal Misra
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Weijun Yi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sharan Bobbala
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| |
Collapse
|
2
|
Bendzus-Mendoza H, Rodriguez A, Debnath T, Bailey CD, Luker HA, Hansen IA. Radiation exposure induces genome-wide alternative splicing events in Aedes aegypti mosquitoes. Sci Rep 2025; 15:10057. [PMID: 40128241 PMCID: PMC11933385 DOI: 10.1038/s41598-025-94529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Sterile insect technique is a method to control insect pest populations by sterilizing males with ionizing radiation. However, radiation sickness lowers the fitness of sterilized males. In this study, we investigate impacts of ionizing radiation on gene transcription, specifically alternative splicing events in irradiated male Aedes aegypti mosquitoes. We compared RNA sequencing data from mosquitoes irradiated with a single standard X-ray dose of 50 Grey and un-irradiated control mosquitoes using the Multivariate Analysis of Transcript Splicing computational tool. We found that radiation exposure caused alternative splicing events in 197 genes that are involved in a variety of biological processes including the Hippo and Notch cell signaling pathways. Our results suggest that radiation damage produced by ionizing radiation can alter the splicing of genes involved in important biological functions in male Ae. aegypti mosquitoes. These findings identify several new leads for new projects aimed at understanding the impact of radiation-induced alternative splicing on mosquito fitness and improving sterile insect technique by the development of radio-resistant mosquito strains.
Collapse
Affiliation(s)
| | - Amanda Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Molecular Vector Physiology Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Tathagata Debnath
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Hailey A Luker
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Molecular Vector Physiology Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
- Molecular Vector Physiology Laboratory, New Mexico State University, Las Cruces, NM, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
3
|
Allignet B, De Ruysscher D, Martel-Lafay I, Waissi W. Stereotactic body radiation therapy in unresectable stage III non-small cell lung cancer: A systematic review. Cancer Treat Rev 2023; 118:102573. [PMID: 37210766 DOI: 10.1016/j.ctrv.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In unresectable stage III non-small cell lung cancer (NSCLC), the standard of care for most fit patients is concurrent chemotherapy with normofractionated radiotherapy (NFRT), followed by durvalumab consolidation. Nevertheless, almost half of patients will present locoregional or metastatic intrathoracic relapse. Improving locoregional control thus remains an important objective. For this purpose, stereotactic body radiotherapy (SBRT) may be a relevant treatment modality. We performed a systematic review of the literature that evaluate the efficacy and safety of SBRT in this situation, either instead of or in addition to NFRT. Among 1788 unique reports, 18 met the inclusion criteria. They included 447 patients and were mainly prospective (n = 10, including 5 phase 2 trials). In none, maintenance durvalumab was administered. Most reported SBRT boost after NFRT (n = 8), or definitive tumor and nodal SBRT (n = 7). Median OS varied from 10 to 52 months, due to the heterogeneity of the included populations and according to treatment regimen. The rate of severe side effects was low, with <5 % grade 5 toxicity, and mainly observed when mediastinal SBRT was performed without dose constraints to the proximal bronchovascular tree. It was suggested that a biologically effective dose higher than 112.3 Gy may increase locoregional control. SBRT for selected stage III NSCLC bears potential to improve loco-regional tumor control, but at present, this should only be done in prospective clinical trials.
Collapse
Affiliation(s)
- Benoît Allignet
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69673 Lyon, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294 Lyon, France.
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, The Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isabelle Martel-Lafay
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69673 Lyon, France
| | - Waisse Waissi
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69673 Lyon, France
| |
Collapse
|
4
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
5
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
6
|
Piletska E, Magumba K, Joseph L, Garcia Cruz A, Norman R, Singh R, Tabasso AFS, Jones DJL, Macip S, Piletsky S. Molecular imprinting as a tool for determining molecular markers: a lung cancer case. RSC Adv 2022; 12:17747-17754. [PMID: 35765329 PMCID: PMC9200412 DOI: 10.1039/d2ra01830f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Determining which cancer patients will be sensitive to a given therapy is essential for personalised medicine. Thus, it is important to develop new tools that will allow us to stratify patients according to their predicted response to treatment. The aim of work presented here was to use molecular imprinting for determining the sensitivity of lung cancer cell lines to ionising radiation based on cell surface proteomic differences. Molecularly imprinted polymer nanoparticles (nanoMIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complexing with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. The analysis identified two membrane proteins, neutral amino acid transporter B (0) and 4F2 cell-surface antigen heavy chain, the abundance of which in the lung cancer cells could indicate resistance of these cells to radiotherapy. This proof-of-principle experiments shows that this technology can be used in the discovery of new biomarkers and in development of novel diagnostic and therapeutic tools for a personalised medicine approach to treating cancer. A first use of molecular imprinting for characterisation of surfaceome of the lung cancer cells and discovery of the molecular markers for radiosensitivity: towards development of an effective tool for cancer therapy and personalised medicine.![]()
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Kirabo Magumba
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Lesslly Joseph
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Alvaro Garcia Cruz
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Rachel Norman
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Rajinder Singh
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Antonella F S Tabasso
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Department of Cardiovascular Sciences, University of Leicester Leicester UK.,National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital Leicester UK
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya Barcelona Spain
| | - Sergey Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| |
Collapse
|
7
|
Yadav P, Kundu P, Pandey VK, Amin PJ, Nair J, Shankar BS. Effects of prolonged treatment of TGF-βR inhibitor SB431542 on radiation-induced signaling in breast cancer cells. Int J Radiat Biol 2022; 98:1630-1644. [PMID: 35446183 DOI: 10.1080/09553002.2022.2069299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE We have earlier characterized increased TGF-β signaling in radioresistant breast cancer cells. In this study, we wanted to determine the effect of prolonged treatment of TGF-βR inhibitor SB431542 on radiation-induced signaling, viz., genes regulating apoptosis, EMT, anti and pro-inflammatory cytokines. MATERIALS AND METHODS Breast cancer cells were pretreated with TGF-βR inhibitor (SB 431542) followed by exposure to 6 Gy and recovery period of 7 days (D7-6G). We assessed cell survival by MTT assay, cytokines by ELISA and expression analysis by RT-PCR, flow cytometry, and western blot. We carried out migration assays using trans well inserts. We performed bioinformatics analyses of human cancer database through cBioportal. RESULTS There was an upregulation of TGF-β1 and 3 and downregulation of TGF-β2, TGF-βR1, and TGF-βR2 in invasive breast carcinoma samples compared to normal tissue. TGF-β1 and TNF-α was higher in radioresistant D7-6G cells with upregulation of pSMAD3, pNF-kB, and ERK signaling. Pretreatment of D7-6G cells with TGF-βR inhibitor SB431542 abrogated pSMAD3, increased proliferation, and migration along with an increase in apoptosis and pro-apoptotic genes. This was associated with hybrid E/M phenotype and downregulation of TGF-β downstream genes, HMGA2 and Snail. There was complete agreement in the expression of mRNA and protein data in genes like vimentin, Snail and HMGA2 in different treatment groups. However, there was disagreement in expression of mRNA and protein in genes like Bax, Bcl-2, E-cadherin, Zeb-1 among the different treatment groups indicating post-transcriptional and post-translational processing of these proteins. Treatment of cells with only SB431542 also increased expression of some E/M genes indicating TGF-β independent effects. Increased IL-6 and IL-10 secretion by SB431542 along with increase in pSTAT3 and pCREB1 could probably explain these TGF-β/Smad3 independent effects. CONCLUSION These results highlight that TGF-β-pSMAD3 and TNF-α-pNF-kB are the predominant signaling pathways in radioresistant cells and possibility of some TGF-β/Smad3 independent effects on prolonged treatment with the drug SB431542.
Collapse
Affiliation(s)
- Poonam Yadav
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priya Kundu
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vipul K Pandey
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Prayag J Amin
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Jisha Nair
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhavani S Shankar
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Jit BP, Pradhan B, Dash R, Bhuyan PP, Behera C, Behera RK, Sharma A, Alcaraz M, Jena M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants (Basel) 2021; 11:antiox11010049. [PMID: 35052553 PMCID: PMC8773162 DOI: 10.3390/antiox11010049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation results in extensive damage to biological systems. The massive amount of ionizing radiation from nuclear accidents, radiation therapy (RT), space exploration, and the nuclear battlefield leads to damage to biological systems. Radiation injuries, such as inflammation, fibrosis, and atrophy, are characterized by genomic instability, apoptosis, necrosis, and oncogenic transformation, mediated by the activation or inhibition of specific signaling pathways. Exposure of tumors or normal cells to different doses of ionizing radiation could lead to the generation of free radical species, which can release signal mediators and lead to harmful effects. Although previous FDA-approved agents effectively mitigate radiation-associated toxicities, their use is limited due to their high cellular toxicities. Preclinical and clinical findings reveal that phytochemicals derived from plants that exhibit potent antioxidant activities efficiently target several signaling pathways. This review examined the prospective roles played by some phytochemicals in altering signal pathways associated with radiation response.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Rutumbara Dash
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
| | - Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Ashok Sharma
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, Campus de Excelencia Internacional de Ámbito Regional (CEIR)-Campus Mare Nostrum (CMN), Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| |
Collapse
|
9
|
D S P, Chaturvedi PK, Shimokawa T, Kim KH, Park WY. Silencing of Fused Toes Homolog (FTS) Increases Radiosensitivity to Carbon-Ion Through Downregulation of Notch Signaling in Cervical Cancer Cells. Front Oncol 2021; 11:730607. [PMID: 34765546 PMCID: PMC8576531 DOI: 10.3389/fonc.2021.730607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of Carbon ion radiation (C-ion) alone or in combination with fused toes homolog (FTS) silencing on Notch signaling were investigated in uterine cervical cancer cell lines (ME180 and CaSki). In both cell lines, upon irradiation with C-ion, the expression of Notch signaling molecules (Notch1, 2, 3 and cleaved Notch1), γ-secretase complex molecules and FTS was upregulated dose-dependently (1, 2 and 4 Gy) except Notch1 in ME180 cells where the change in expression was not significant. However, overexpression of these molecules was attenuated upon silencing of FTS. The spheroid formation, expression of stem cell markers (OCT4A, Sox2 and Nanog) and clonogenic cell survival were reduced by the combination as compared to FTS silencing or C-ion irradiation alone. Additionally, immunoprecipitation and immunofluorescence assay revealed interaction and co-localization of FTS with Notch signaling molecules. In conclusion, FTS silencing enhances the radio-sensitivity of the cervical cancer cells to C-ion by downregulating Notch signaling molecules and decreasing the survival of cancer stem cells.
Collapse
Affiliation(s)
- Prabakaran D S
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Pankaj Kumar Chaturvedi
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba, Japan
| | - Ki-Hwan Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, South Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
10
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
11
|
A Radioresponse-Related lncRNA Biomarker Signature for Risk Classification and Prognosis Prediction in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2021; 2021:4338838. [PMID: 34594376 PMCID: PMC8478572 DOI: 10.1155/2021/4338838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Purpose Radiotherapy resistance is now recognized as the major obstacle to the effective therapeutic management of non-small-cell lung cancer (NSCLC). As a single biomarker has limited effect in stratifying NSCLC patients, this research aimed to identify long non-coding RNAs (lncRNAs) correlated with radiotherapy response to ameliorate forecast of NSCLC prognosis. Methods In a cohort of NSCLC patients with radiotherapy history (n = 96) from TCGA, genetic data of lncRNA expression profiling were performed. To identify radioresponse-related lncRNA sets which dysregulated significantly between radiosensitive (RS) and radioresistant (RR) groups, differential expression analysis was carried out. Cox relative regression was implemented to set up a radioresponse-related risk model. Moreover, we adopted survival analysis to measure the predictive potentiality of the prognosis model. Results Four radioresponse-related lncRNAs (CASC19, LINC01977, LINC02471, and MAGI2-AS3) were screened to create a prognostic signature. Then, we described a lncRNA signature-based regulatory network and explored the correlation of the immune microenvironment and the signature. Additionally, in vitro assays uncovered inhibition of LINC01977 weakened radioresistance of NSCLC cells. Conclusion We provided a novel radioresponse-related lncRNAs signature with excellent clinical potency for an effective prognostic forecast of patients.
Collapse
|
12
|
Hunter B, Crockett C, Faivre-Finn C, Hiley C, Salem A. Re-Irradiation of Recurrent Non-Small Cell Lung Cancer. Semin Radiat Oncol 2021; 31:124-132. [PMID: 33610269 DOI: 10.1016/j.semradonc.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Locoregional recurrence occurs in 10%-30% of non-small cell lung cancer (NSCLC) after treatment with definitive (chemo)radiotherapy. Re-irradiation is the main curative-intent treatment option for these patients; however, it represents a therapeutic challenge for thoracic radiation oncologists. Re-irradiation practices are variable worldwide with lack of agreement on the optimal dose or the cumulative maximum dose acceptable for critical organs. The role of re-irradiation in NSCLC is also not clearly defined in the era of immunotherapy. In this review, we will present published and on-going re-irradiation studies for recurrent NSCLC. We will appraise available evidence for critical organ dose constraints and provide a framework for future therapeutic approaches and trials.
Collapse
Affiliation(s)
| | - Cathryn Crockett
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Corrinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Crispin Hiley
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, Faculty of Medical Sciences, University College London, University College London Hospital, London, UK
| | - Ahmed Salem
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
13
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020; 9:725-727. [PMID: 32573117 PMCID: PMC7308636 DOI: 10.1002/sctm.20-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/20/2022] Open
|
14
|
Giuranno L, Roig EM, Wansleeben C, van den Berg A, Groot AJ, Dubois L, Vooijs M. NOTCH inhibition promotes bronchial stem cell renewal and epithelial barrier integrity after irradiation. Stem Cells Transl Med 2020; 9:799-812. [PMID: 32297712 PMCID: PMC7308641 DOI: 10.1002/sctm.19-0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperactivity of the NOTCH pathway is associated with tumor growth and radiotherapy resistance in lung cancer, and NOTCH/γ-secretase inhibitors (GSIs) are a potential therapeutic target. The therapeutic outcome, however, is often restricted by the dose-limiting toxicity of combined treatments on the surrounding healthy tissue. The NOTCH signaling pathway is also crucial for homeostasis and repair of the normal airway epithelium. The effects of NOTCH/γ-secretase inhibition on the irradiation of normal lung epithelium are unknown and may counteract antitumor activity. Here we, therefore, investigated whether normal tissue toxicity to radiation is altered upon NOTCH pathway inhibition. We established air-liquid interface pseudostratified and polarized cultures from primary human bronchial epithelial cells and blocked NOTCH signaling alone or after irradiation with small-molecule NOTCH inhibitor/GSI. We found that the reduction in proliferation and viability of bronchial stem cells (TP63+) in response to irradiation is rescued with concomitant NOTCH inhibition. This correlated with reduced activation of the DNA damage response and accelerated repair by 24 hours and 3 days postirradiation. The increase in basal cell proliferation and viability in GSI-treated and irradiated cultures resulted in an improved epithelial barrier function. Comparable results were obtained after in vivo irradiation, where the combination of NOTCH inhibition and irradiation increased the percentage of stem cells and ciliated cells ex vivo. These encourage further use of normal patient tissue for toxicity screening of combination treatments and disclose novel interactions between NOTCH inhibition and radiotherapy and opportunities for tissue repair after radiotherapy.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Eloy M Roig
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Carolien Wansleeben
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Annette van den Berg
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Sabol RA, Villela VA, Denys A, Freeman BT, Hartono AB, Wise RM, Harrison MAA, Sandler MB, Hossain F, Miele L, Bunnell BA. Obesity-Altered Adipose Stem Cells Promote Radiation Resistance of Estrogen Receptor Positive Breast Cancer through Paracrine Signaling. Int J Mol Sci 2020; 21:ijms21082722. [PMID: 32326381 PMCID: PMC7216284 DOI: 10.3390/ijms21082722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell’s (ER+BCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ER+BCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ER+BBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ER+BCCs leading to radiation resistance.
Collapse
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Vidal A. Villela
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Alexandra Denys
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Benjamin T. Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA;
| | - Alifiani B. Hartono
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Rachel M. Wise
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Mark A. A. Harrison
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Maxwell B. Sandler
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Fokhrul Hossain
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Lucio Miele
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
- Department of Pharmacology, Tulane University, New Orleans, LA 70112, USA
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
- Correspondence: ; Tel.: +1-504-988-7071
| |
Collapse
|
16
|
Zhang K, Hong X, Song Z, Xu Y, Li C, Wang G, Zhang Y, Zhao X, Zhao Z, Zhao J, Huang M, Huang D, Qi C, Gao C, Cai S, Gu F, Hu Y, Xu C, Wang W, Lou Z, Zhang Y, Liu L. Identification of Deleterious NOTCH Mutation as Novel Predictor to Efficacious Immunotherapy in NSCLC. Clin Cancer Res 2020; 26:3649-3661. [PMID: 32241817 DOI: 10.1158/1078-0432.ccr-19-3976] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE NOTCH signaling is associated with tumorigenesis, mutagenesis, and immune tolerance in non-small cell lung cancer (NSCLC), indicating its association with the clinical benefit of immune checkpoint inhibitors (ICI). We hypothesized that NOTCH mutation in NSCLC might be a robust predictor of immunotherapeutic efficacy. EXPERIMENTAL DESIGN Multiple-dimensional data including genomic, transcriptomic, and clinical data from cohorts of NSCLC internal and public cohorts involving immunotherapeutic patients were analyzed. Polymorphism Phenotyping v2 (PolyPhen-2) system was performed to determine deleterious NOTCH mutation (del-NOTCH mut). Further investigation on molecular mechanism was performed in The Cancer Genome Atlas (TCGA) data via CIBERSORT and gene set enrichment analysis. RESULTS Our 3DMed cohort (n = 58) and other four cohorts (Rizvi, POPLAR/OAK, Van Allen, and MSKCC; n = 1,499) uncovered marked correlation between NOTCH1/2/3 mutation and better ICI outcomes in EGFR/ALK WT population, including objective response rate (2.20-fold, P = 0.001), progression-free survival [HR, 0.61; 95% confidence interval (CI), 0.46-0.81; P = 0.001], and overall survival (HR, 0.56; 95% CI, 0.32-0.96; P = 0.035). Del-NOTCH mut exhibited better predictive function than non-deleterious NOTCH mutation, potentially via greater transcription of genes related to DNA damage response and immune activation. Del-NOTCH mut was not linked with prognosis in TCGA cohorts and chemotherapeutic response, but was independently associated with immunotherapeutic benefit, delineating the predictive, but not prognostic, utility of del-NOTCH mut. CONCLUSIONS This work distinguishes del-NOTCH mut as a potential predictor to favorable ICI response in NSCLC, highlighting the importance of genomic profiling in immunotherapy. More importantly, our results unravel a possibility of personalized combination immunotherapy as adding NOTCH inhibitor to ICI regimen in NSCLC, for the optimization of ICI treatment in clinical practice.
Collapse
Affiliation(s)
- Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | | | - Yu Xu
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Chengcheng Li
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Guoqiang Wang
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Yuzi Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Xiaochen Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Zhengyi Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Jing Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Chuang Qi
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Shangli Cai
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fujian, P.R. China
| | - Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Zhejiang, P.R. China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China.
| |
Collapse
|
17
|
Chen L, Ren P, Zhang Y, Gong B, Yu D, Sun X. Long non‑coding RNA GAS5 increases the radiosensitivity of A549 cells through interaction with the miR‑21/PTEN/Akt axis. Oncol Rep 2020; 43:897-907. [PMID: 32020207 PMCID: PMC7041238 DOI: 10.3892/or.2020.7467] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Radioresistance hinders the therapeutic outcomes of radiotherapy in non-small cell lung cancer (NSCLC). Although long non-coding RNAs (lncRNAs) have been demonstrated to participate in the regulation of multiple cell behaviors, whether they can modulate the radiosensitivity of NSCLC and the underlying molecular mechanisms have not been well investigated. In the present study, it was revealed that NSCLC NCI-H460 cells were more sensitive to ionizing radiation (IR) than A549 cells. Using the RNA-Seq method, four highly differentially expressed lncRNAs were identified, including the growth arrest-specific transcript 5 (GAS5), syntaxin binding protein 5 antisense RNA 1 (STXBP5-AS1), metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and X-inactive specific transcript (XIST), which were predicted to play roles in the acquisition of radiosensitivity. Using real-time quantitative PCR (qPCR), it was demonstrated that lncRNA GAS5 was significantly upregulated in NCI-H460 cells but not in A549 cells during IR. Mechanistically, it was demonstrated that overexpression of lncRNA GAS5 decreased the level of microRNA-21 (miR-21). Overexpression of lncRNA GAS5 or suppression of miR-21 markedly increased the IR-induced cell apoptosis of A549 cells. It was also demonstrated that overexpression of lncRNA GAS5 increased PTEN expression and suppressed Akt phosphorylation through the modulation of miR-21. Notably, it was revealed that IR enhanced the interaction between lncRNA GAS5 and the miR-21/PTEN/Akt axis. In summary, the present findings revealed that lncRNA GAS5 has a radiosensitization effect on NSCLC, indicating the potential application of lncRNA GAS5 in NSCLC radiotherapy.
Collapse
Affiliation(s)
- Li Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Oral Radiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baijuan Gong
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- The Laboratory of Cancer Precision Medicine of The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Xiguang Sun
- Hand Surgery Department, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Jeon SH, Chie EK, Kim YJ, Lee KH, Lee HS, Kim MJ, Im SA, Kim JI, Kim TY. Targeted next-generation DNA sequencing identifies Notch signaling pathway mutation as a predictor of radiation response. Int J Radiat Biol 2019; 95:1640-1647. [PMID: 31525117 DOI: 10.1080/09553002.2019.1665212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose: Identifying the association between somatic mutations and the radiation response of tumor is essential for understanding the mechanisms and practicing personalized radiotherapy. The present study aimed to discover specific genes or pathways that are associated with radiation response using targeted next-generation DNA sequencing.Material and methods: Fifty-five patients with various solid tumors whose specimen were sequenced using institutional panel which includes 148 cancer-related genes and received radiotherapy for a measurable tumor were analyzed. Patients with irradiated tumors in complete or partial remission for more than 6 months were defined as responders. Association between mutations including pathogenic single nucleotide variants and insertions/deletions in the 148 genes and 39 molecular pathways and radiation response was investigated.Results: Analyzing 17 responders and 38 non-responders, biologically effective dose (BED), but not concurrent chemotherapy, was associated with radiation response. No single gene correlated with radiation response. Mutations in Notch signaling pathway were associated with radiosensitivity after correction for multiple comparison (adjusted p = .094). When BED and Notch signaling pathway mutation were tested with logistic regression, both variables were associated with radiation response.Conclusions: Our results suggest that somatic mutations in Notch signaling pathway may be related to sensitivity to radiation, although these results should be validated in a larger and more homogeneous cohort.
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Yi-Jun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seob Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Min Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Giuranno L, Wansleeben C, Iannone R, Arathoon L, Hounjet J, Groot AJ, Vooijs M. NOTCH signaling promotes the survival of irradiated basal airway stem cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L414-L423. [DOI: 10.1152/ajplung.00197.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced lung injury to normal airway epithelium is a frequent side-effect and dose-limiting factor in radiotherapy of tumors in the thoracic cavity. NOTCH signaling plays key roles in self-renewal and differentiation of upper airway basal lung stem cells during development, and the NOTCH pathway is frequently deregulated in lung cancer. In preclinical lung cancer models, NOTCH inhibition was shown to improve the radiotherapy response by targeting tumor stem cells, but the effects in combination with irradiation on normal lung stem cells are unknown. NOTCH/γ-secretase inhibitors are potent clinical candidates to block NOTCH function in tumors, but their clinical implementation has been hampered by normal tissue side-effects. Here we show that NOTCH signaling is active in primary human- and murine-derived airway epithelial stem cell models and when combined with radiation NOTCH inhibition provokes a decrease in S-phase and increase in G1-phase arrest. We show that NOTCH inhibition in irradiated lung basal stem cells leads to a more potent activation of the DNA damage checkpoint kinases pATM and pCHK2 and results in an increased level of residual 53BP1 foci in irradiated lung basal stem cells reducing their capacity for self-renewal. The effects are recapitulated in ex vivo cultured lung basal stem cells after in vivo whole thorax irradiation and NOTCH inhibition. These results highlight the importance of studying normal tissue effects that may counteract the therapeutic benefit in the use of NOTCH/γ-secretase inhibitors in combination with radiation for antitumor treatment.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Carolien Wansleeben
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Raffaella Iannone
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Louise Arathoon
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Judith Hounjet
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arjan J. Groot
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Lu HY, Zu YX, Jiang XW, Sun XT, Liu TY, Li RL, Wu Q, Zhang YS, Zhao QC. Novel ADAM-17 inhibitor ZLDI-8 inhibits the proliferation and metastasis of chemo-resistant non-small-cell lung cancer by reversing Notch and epithelial mesenchymal transition in vitro and in vivo. Pharmacol Res 2019; 148:104406. [PMID: 31442576 DOI: 10.1016/j.phrs.2019.104406] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/21/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
Acquired drug-resistant non-small cell lung cancer (NSCLC) has strong proliferation ability and is prone to epithelial-mesenchymal transition (EMT) and subsequent metastasis. Notch pathway mediates cell survival and EMT and is involved in the induction of multidrug resistance (MDR). ZLDI-8 is an inhibitor of Notch activating/cleaving enzyme ADAM-17 we found before. However, the effects of ZLDI-8 on resistant NSCLC was unclear. Here, we demonstrated for the first time that ZLDI-8 could induce apoptosis in lung cancer, especially in chemotherapy-resistant non-small cell lung cancer cells, and also inhibit migration, invasion and EMT phenotype of drug-resistant lung cancer. ZLDI-8 inhibits the Notch signaling pathway, thereby regulating the expression of survival/apoptosis and EMT-related proteins. Moreover, ZLDI-8 suppresses multidrug-resistant lung cancer xenograft growth in vivo and blocks metastasis in a tail vein injection mice model. Therefore, ZLDI-8 is expected to be an effective agent in the treatment of drug-resistant lung cancer.
Collapse
Affiliation(s)
- Hong-Yuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Yu-Xin Zu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Tong Sun
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian-Yi Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruo-Lan Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying-Shi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qing-Chun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China.
| |
Collapse
|
21
|
Liu YM, Chan YL, Wu TH, Li TL, Hsia S, Chiu YH, Wu CJ. Antitumor, Inhibition of Metastasis and Radiosensitizing Effects of Total Nutrition Formula on Lewis Tumor-Bearing Mice. Nutrients 2019; 11:nu11081944. [PMID: 31426614 PMCID: PMC6723674 DOI: 10.3390/nu11081944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) causes high mortality. Radiotherapy is an induction regimen generally applied to patients with NSCLC. In view of therapeutic efficacy, the outcome is not appealing in addition to bringing about unwanted side effects. Total nutrition is a new trend in cancer therapy, which benefits cancer patients under radiotherapy. Male C57BL/6JNarl mice were experimentally divided into five groups: one control group, one T group (borne with Lewis lung carcinoma but no treatment), and three Lewis lung carcinoma-bearing groups administrated with a total nutrition formula (T + TNuF group), a local radiotherapy plus daily 3 Gy in three fractions (T + R group), or a combination TNuF and radiotherapy (T + R + TNuF group). These mice were assessed for their mean tumor volumes, cachectic symptoms and tumor metastasis. TNuF administration significantly suppressed tumor growth and activated apoptotic cell death in NSCLC-bearing mice under radiation. The body-weight gain was increased, while the radiation-induced cachexia was alleviated. Analysis of mechanisms suggests that TNuF downregulates EGFR and VEGF signaling pathways, inhibiting angiogenesis and metastasis. In light of radiation-induced tumor cell death, mitigation of radiation-induced cachexia and inhibition of tumor cell distant metastasis, the combination of TNuF and radiotherapy synergistically downregulates EGFR and VEGF signaling in NSCLC-bearing mice.
Collapse
Affiliation(s)
- Yu-Ming Liu
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| | - Tsung-Han Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Division of Hemato-oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33320, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei 10596, Taiwan
| | - Yi-Han Chiu
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26647, Taiwan.
- Institute of Long-Term Care, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Chang-Jer Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
22
|
Tribbles Homolog 3 Involved in Radiation Response of Triple Negative Breast Cancer Cells by Regulating Notch1 Activation. Cancers (Basel) 2019; 11:cancers11020127. [PMID: 30678233 PMCID: PMC6406679 DOI: 10.3390/cancers11020127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common cancer for women in Taiwan and post-lumpectomy radiotherapy is one of the therapeutic strategies for this malignancy. Although the 10-year overall survival of breast cancer patients is greatly improved by radiotherapy, the locoregional recurrence is around 10% and triple negative breast cancers (TNBCs) are at a high risk for relapse. The aim of this paper is to understand the mechanisms of radioresistance in breast cancers which may facilitate the development of new treatments in sensitizing breast cancer toward radiation therapy. Tribbles homolog 3 (TRIB3) is a pseudokinase protein and known to function as a protein scaffold within cells. It has been reported that higher TRIB3 expression is a poor prognostic factor in breast cancer patients with radiotherapy. In this study, we investigate the involvement of TRIB3 in the radiation response of TNBC cells. We first found that the expression of TRIB3 and the activation of Notch1, as well as Notch1 target genes, increased in two radioresistant TNBC cells. Knockdown of TRIB3 in radioresistant MDA-MB-231 TNBC cells decreased Notch1 activation, as well as the CD24-CD44+ cancer stem cell population, and sensitized cells toward radiation treatment. The inhibitory effects of TRIB3 knockdown in self-renewal or radioresistance could be reversed by forced expression of the Notch intracellular domain. We also observed an inhibition in cell growth and accumulated cells in the G0/G1 phase in radioresistant MDA-MB-231 cells after knockdown of TRIB3. With immunoprecipitation and mass spectrometry analysis, we found that, BCL2-associated transcription factor 1 (BCLAF1), BCL2 interacting protein 1 (BNIP1), or DEAD-box helicase 5 (DDX5) were the possible TRIB3 interacting proteins and immunoprecipitation data also confirmed that these proteins interacted with TRIB3 in radioresistant MDA-MB-231 cells. In conclusion, the expression of TRIB3 in radioresistant TNBC cells participated in Notch1 activation and targeted TRIB3 expression may be a strategy to sensitize TNBC cells toward radiation therapy.
Collapse
|
23
|
Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 2018; 9:36083-36101. [PMID: 30546829 PMCID: PMC6281426 DOI: 10.18632/oncotarget.26300] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation is utilized in the therapy of more than 50% of cancer patients. Unfortunately, many malignancies become resistant to radiation over time. We investigated the hypothesis that one method of a cancer cell's ability to survive radiation occurs through cellular communication via exosomes. Exosomes are cell-derived vesicles containing DNA, RNA, and protein. Three properties were analyzed: 1) exosome function, 2) exosome profile and 3) exosome uptake/blockade. To analyze exosome function, we show radiation-derived exosomes increased proliferation and enabled recipient cancer cells to survive radiation in vitro. Furthermore, radiation-derived exosomes increased tumor burden and decreased survival in an in vivo model. To address the mechanism underlying the alterations by exosomes in recipient cells, we obtained a profile of radiation-derived exosomes that showed expression changes favoring a resistant/proliferative profile. Radiation-derived exosomes contain elevated oncogenic miR-889, oncogenic mRNAs, and proteins of the proteasome pathway, Notch, Jak-STAT, and cell cycle pathways. Radiation-derived exosomes contain decreased levels of tumor-suppressive miR-516, miR-365, and multiple tumor-suppressive mRNAs. Ingenuity pathway analysis revealed the most represented networks included cell cycle, growth/survival. Upregulation of DNM2 correlated with increased exosome uptake. To analyze the property of exosome blockade, heparin and simvastatin were used to inhibit uptake of exosomes in recipient cells resulting in inhibited induction of proliferation and cellular survival. Because these agents have shown some success as cancer therapies, our data suggest their mechanism of action could be limiting exosome communication between cells. The results of our study identify a novel exosome-based mechanism that may underlie a cancer cell's ability to survive radiation.
Collapse
|
24
|
Sosa Iglesias V, Theys J, Groot AJ, Barbeau LMO, Lemmens A, Yaromina A, Losen M, Houben R, Dubois L, Vooijs M. Synergistic Effects of NOTCH/γ-Secretase Inhibition and Standard of Care Treatment Modalities in Non-small Cell Lung Cancer Cells. Front Oncol 2018; 8:460. [PMID: 30464927 PMCID: PMC6234899 DOI: 10.3389/fonc.2018.00460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer death worldwide. More effective treatments are needed to increase durable responses and prolong patient survival. Standard of care treatment for patients with non-operable stage III-IV NSCLC is concurrent chemotherapy and radiation. An activated NOTCH signaling pathway is associated with poor outcome and treatment resistance in non-small cell lung cancer (NSCLC). NOTCH/γ-secretase inhibitors have been effective in controlling tumor growth in preclinical models but the therapeutic benefit of these inhibitors as monotherapy in patients has been limited so far. Because NOTCH signaling has been implicated in treatment resistance, we hypothesized that by combining NOTCH inhibitors with chemotherapy and radiotherapy this could result in an increased therapeutic effect. A direct comparison of the effects of NOTCH inhibition when combined with current treatment combinations for NSCLC is lacking. Methods: Using monolayer growth assays, we screened 101 FDA-approved drugs from the Cancer Therapy Evaluation Program alone, or combined with radiation, in the H1299 and H460 NSCLC cell lines to identify potent treatment interactions. Subsequently, using multicellular three-dimensional tumor spheroid assays, we tested a selection of drugs used in clinical practice for NSCLC patients, and combined these with a small molecule inhibitor, currently being tested in clinical trials, of the NOTCH pathway (BMS-906024) alone, or in combination with radiation, and measured specific spheroid growth delay (SSGD). Statistical significance was determined by one-way ANOVA with post-hoc Bonferroni correction, and synergism was assessed using two-way ANOVA. Results: Monolayer assays in H1299 and H460 suggest that 21 vs. 5% were synergistic, and 17 vs. 11% were additive chemoradiation interactions, respectively. In H1299 tumor spheroids, significant SSGD was obtained for cisplatin, etoposide, and crizotinib, which increased significantly after the addition of the NOTCH inhibitor BMS-906024 (but not for paclitaxel and pemetrexed), and especially in triple combination with radiation. Synergistic interactions were observed when BMS-906024 was combined with chemoradiation (cisplatin, paclitaxel, docetaxel, and crizotinib). Similar results were observed for H460 spheroids using paclitaxel or crizotinib in dual combination treatment with NOTCH inhibition and triple with radiation. Conclusions: Our findings point to novel synergistic combinations of NOTCH inhibition and chemoradiation that should be tested in NSCLC in vivo models for their ability to achieve an improved therapeutic ratio.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Arjan J Groot
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Alyssa Lemmens
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ala Yaromina
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mario Losen
- Department of Psychology and Neuropsychology, MHeNS, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ruud Houben
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,MAASTRO Clinic, Maastricht, Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,MAASTRO Clinic, Maastricht, Netherlands
| |
Collapse
|
25
|
Lu Z, Ren Y, Zhang M, Fan T, Wang Y, Zhao Q, Liu HM, Zhao W, Hou G. FLI-06 suppresses proliferation, induces apoptosis and cell cycle arrest by targeting LSD1 and Notch pathway in esophageal squamous cell carcinoma cells. Biomed Pharmacother 2018; 107:1370-1376. [PMID: 30257352 DOI: 10.1016/j.biopha.2018.08.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the Notch signaling plays an important role in progression of esophageal squamous cell carcinoma (ESCC) and may represent a potential therapeutic target for ESCC. FLI-06 is a novel Notch inhibitor, preventing the early secretion of Notch signaling. However, little information about the antitumor activity of FLI-06 has been reported so far. To evaluate the anti-tumor activity and possible molecular mechanism of FLI-06 to ESCC cells, the effects of FLI-06 on cell viability, apoptosis and cell cycle were evaluated by CCK-8 and flow cytometry assays, respectively, in ESCC cell lines ECa109 and EC9706, and the expressions of proteins in Notch signaling pathway and LSD1 were investigated after cells were treated with FLI-06 by Western blotting. The results showed that FLI-06 blocked proliferation, induced apoptosis and G1 phase arrest of ESCC cells in a dose-dependent manner. Mechanistically, we found FLI-06 could inhibit Notch signaling pathway by decreasing the expressions of Notch3, DTX1 and Hes1. Interestingly, we also found that the expression of LSD1 (histone lysine specific demethylase 1), which is dysregulated in multiple tumors, was also inhibited by FLI-06. In addition, inhibition of Notch pathway by γ-secretase inhibitor GSI-DAPT could also inhibit LSD1 expression. The current study demonstrated that FLI-06 exerts antitumor activity on ESCC by inhibiting both LSD1 and Notch pathway, which provides the theory support for the treatment of ESCC with FLI-06.
Collapse
Affiliation(s)
- Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianli Fan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Sosa Iglesias V, Giuranno L, Dubois LJ, Theys J, Vooijs M. Drug Resistance in Non-Small Cell Lung Cancer: A Potential for NOTCH Targeting? Front Oncol 2018; 8:267. [PMID: 30087852 PMCID: PMC6066509 DOI: 10.3389/fonc.2018.00267] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Drug resistance is a major cause for therapeutic failure in non-small cell lung cancer (NSCLC) leading to tumor recurrence and disease progression. Cell intrinsic mechanisms of resistance include changes in the expression of drug transporters, activation of pro-survival, and anti-apoptotic pathways, as well as non-intrinsic influences of the tumor microenvironment. It has become evident that tumors are composed of a heterogeneous population of cells with different genetic, epigenetic, and phenotypic characteristics that result in diverse responses to therapy, and underlies the emergence of resistant clones. This tumor heterogeneity is driven by subpopulations of tumor cells termed cancer stem cells (CSCs) that have tumor-initiating capabilities, are highly self-renewing, and retain the ability for multi-lineage differentiation. CSCs have been identified in NSCLC and have been associated with chemo- and radiotherapy resistance. Stem cell pathways are frequently deregulated in cancer and are implicated in recurrence after treatment. Here, we focus on the NOTCH signaling pathway, which has a role in stem cell maintenance in non-squamous non-small lung cancer, and we critically assess the potential for targeting the NOTCH pathway to overcome resistance to chemotherapeutic and targeted agents using both preclinical and clinical evidence.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Lorena Giuranno
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Jan Theys
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| |
Collapse
|
27
|
Krepler C, Xiao M, Samanta M, Vultur A, Chen HY, Brafford P, Reyes-Uribe PI, Halloran M, Chen T, He X, Hristova D, Liu Q, Samatar AA, Davies MA, Nathanson KL, Fukunaga-Kalabis M, Herlyn M, Villanueva J. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget 2018; 7:71211-71222. [PMID: 27655717 PMCID: PMC5342073 DOI: 10.18632/oncotarget.12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The discovery of activating BRAF mutations in approximately 50% of melanomas has led to the development of MAPK pathway inhibitors, which have transformed melanoma therapy. However, not all BRAF-V600E melanomas respond to MAPK inhibition. Therefore, it is important to understand why tumors with the same oncogenic driver have variable responses to MAPK inhibitors. Here, we show that concurrent loss of PTEN and activation of the Notch pathway is associated with poor response to the ERK inhibitor SCH772984, and that co-inhibition of Notch and ERK decreased viability in BRAF-V600E melanomas. Additionally, patients with low PTEN and Notch activation had significantly shorter progression free survival when treated with BRAF inhibitors. Our studies provide a rationale to further develop combination strategies with Notch antagonists to maximize the efficacy of MAPK inhibition in melanoma. Our findings should prompt the evaluation of combinations co-targeting MAPK/ERK and Notch as a strategy to improve current therapies and warrant further evaluation of co-occurrence of aberrant PTEN and Notch activation as predictive markers of response to therapy.
Collapse
Affiliation(s)
- Clemens Krepler
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Min Xiao
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Minu Samanta
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Adina Vultur
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Hsin-Yi Chen
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Patricia Brafford
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | | | - Molly Halloran
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Thomas Chen
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Xu He
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Denitsa Hristova
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Ahmed A Samatar
- Discovery Oncology Merck Research Laboratories, Boston, MA, USA
| | - Michael A Davies
- Melanoma Medical Oncology and Systems Biology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine L Nathanson
- Division of Medical Genetics and The Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia PA, USA
| | | | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Jessie Villanueva
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| |
Collapse
|
28
|
Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget 2018; 7:29804-23. [PMID: 26934331 PMCID: PMC5045435 DOI: 10.18632/oncotarget.7772] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway.
Collapse
|
29
|
Yahyanejad S, King H, Iglesias VS, Granton PV, Barbeau LMO, van Hoof SJ, Groot AJ, Habets R, Prickaerts J, Chalmers AJ, Eekers DBP, Theys J, Short SC, Verhaegen F, Vooijs M. NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma. Oncotarget 2018; 7:41251-41264. [PMID: 27183910 PMCID: PMC5173056 DOI: 10.18632/oncotarget.9275] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/10/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. The current standard of care includes surgery followed by radiotherapy (RT) and chemotherapy with temozolomide (TMZ). Treatment often fails due to the radiation resistance and intrinsic or acquired TMZ resistance of a small percentage of cells with stem cell-like behavior (CSC). The NOTCH signaling pathway is expressed and active in human glioblastoma and NOTCH inhibitors attenuate tumor growth in vivo in xenograft models. Here we show using an image guided micro-CT and precision radiotherapy platform that a combination of the clinically approved NOTCH/γ-secretase inhibitor (GSI) RO4929097 with standard of care (TMZ + RT) reduces tumor growth and prolongs survival compared to dual combinations. We show that GSI in combination with RT and TMZ attenuates proliferation, decreases 3D spheroid growth and results into a marked reduction in clonogenic survival in primary and established glioma cell lines. We found that the glioma stem cell marker CD133, SOX2 and Nestin were reduced following combination treatments and NOTCH inhibitors albeit in a different manner. These findings indicate that NOTCH inhibition combined with standard of care treatment has an anti-glioma stem cell effect which provides an improved survival benefit for GBM and encourages further translational and clinical studies.
Collapse
Affiliation(s)
- Sanaz Yahyanejad
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Henry King
- Radiation Biology and Therapy Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, England
| | - Venus Sosa Iglesias
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Patrick V Granton
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands.,Department of Oncology, London Health Sciences Center, London, Ontario, Canada
| | - Lydie M O Barbeau
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Stefan J van Hoof
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Roger Habets
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Anthony J Chalmers
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, Scotland
| | - Daniëlle B P Eekers
- Department of Radiation Oncology, Maastro Clinic, Maastricht, The Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Susan C Short
- Radiation Biology and Therapy Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, England
| | - Frank Verhaegen
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
30
|
Zou B, Zhou XL, Lai SQ, Liu JC. Notch signaling and non-small cell lung cancer. Oncol Lett 2018; 15:3415-3421. [PMID: 29467866 PMCID: PMC5796339 DOI: 10.3892/ol.2018.7738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. Elucidation of the pathogenesis and biology of lung cancer is critical for the design of an effective treatment for patients. Non-small cell lung cancer (NSCLC) accounts for 80–85% of lung cancer cases. The abnormal expression of Notch signaling pathway members is a relatively frequent event in NSCLC. The Notch signaling pathway serves important roles in cell fate determination, proliferation, differentiation and apoptosis. Increasing evidence supports the association of Notch signaling dysregulation with various types of malignant tumor, including NSCLC. Several studies have demonstrated that members of the Notch signaling pathway may be potential biomarkers for predicting the progression and prognosis of patients with NSCLC. Furthermore, Notch signaling serves critical roles in the tumorigenesis and treatment resistance of NSCLC cells by promoting the proliferation or inhibiting the apoptosis of NSCLC cells. The present review provides a detailed summary of the roles of Notch signaling in NSCLC.
Collapse
Affiliation(s)
- Bin Zou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue-Liang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
31
|
Adamowicz M. Breaking up with ATM. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:26-31. [PMID: 29652413 PMCID: PMC5892715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
ATM kinase is a master regulator of the DNA damage response (DDR). A recently published report from the d'Adda di Fagagna laboratory1 sheds a light onto our understanding of ATM activation. In this short-commentary we will expand on this and other work to perceive better some of the aspects of ATM regulation.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK,Correspondence: Dr. Marek Adamowicz, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK;
| |
Collapse
|
32
|
Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malouf D, Gillatt D, Li Y. Cancer stem cells and signaling pathways in radioresistance. Oncotarget 2017; 7:11002-17. [PMID: 26716904 PMCID: PMC4905454 DOI: 10.18632/oncotarget.6760] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) is one of the most important strategies in cancer treatment. Radioresistance (the failure to RT) results in locoregional recurrence and metastasis. Therefore, it is critically important to investigate the mechanisms leading to cancer radioresistance to overcome this problem and increase patients' survival. Currently, the majority of the radioresistance-associated researches have focused on preclinical studies. Although the exact mechanisms of cancer radioresistance have not been fully uncovered, accumulating evidence supports that cancer stem cells (CSCs) and different signaling pathways play important roles in regulating radiation response and radioresistance. Therefore, targeting CSCs or signaling pathway proteins may hold promise for developing novel combination modalities and overcoming radioresistance. The present review focuses on the key evidence of CSC markers and several important signaling pathways in cancer radioresistance and explores innovative approaches for future radiation treatment.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - David Malouf
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | - David Gillatt
- Department of Urology, St George Hospital, Kogarah, NSW, Australia.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
33
|
Zhang H, Jiang H, Chen L, Liu J, Hu X, Zhang H. Inhibition of Notch1/Hes1 signaling pathway improves radiosensitivity of colorectal cancer cells. Eur J Pharmacol 2017; 818:364-370. [PMID: 29126793 DOI: 10.1016/j.ejphar.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Notch signaling pathway has been demonstrated to mediate radioresistance of several tumors. Our study aims to explore the function of Notch1/HES1 pathway in the radioresistance of colorectal cancer (CRC). The results demonstrated that expressions of Notch1 and Hes1 were up-regulated with the increasing irradiation dose. DAPT (N-[(3,5-difluorophenacetyl)acety1]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester) or si-Notch1 reduced expressions of Notch1 and Hes1, exacerbated irradiation-induced cell proliferation inhibition, and improved radiosensitivity of CRC cells. Moreover, DAPT or si-Notch1 increased radiation-induced DNA damage and attenuated radiation-triggered DNA-PK activity. Furthermore, xenograft in nude mice demonstrated that co-treated with DAPT and irradiation could inhibited tumor growth additively in vivo. Taken together, inhibition of Notch1/Hes1 signaling pathway enhances radiosensitivity of CRC cells, providing a potential therapeutic target to improve the therapeutic effect of radiotherapy for CRC patients.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Huijuan Jiang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lei Chen
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Juncai Liu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Xigang Hu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Huixiang Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
34
|
Arita H, Nagata M, Yoshida R, Matsuoka Y, Hirosue A, Kawahara K, Sakata J, Nakashima H, Kojima T, Toya R, Murakami R, Hiraki A, Shinohara M, Nakayama H. FBXW7 expression affects the response to chemoradiotherapy and overall survival among patients with oral squamous cell carcinoma: A single-center retrospective study. Tumour Biol 2017; 39:1010428317731771. [PMID: 29072128 DOI: 10.1177/1010428317731771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FBXW7 (F-box and WD repeat domain containing-7) is a tumor suppressor protein that regulates the degradation of various oncoproteins in several malignancies. However, limited information is available regarding FBXW7 expression in oral squamous cell carcinoma. Therefore, this study aimed to determine the clinical significance of FBXW7 expression in oral squamous cell carcinoma. The FBXW7 expression patterns in oral squamous cell carcinoma and adjacent normal tissues from 15 patients who underwent radical resection were evaluated using quantitative real-time polymerase chain reaction and immunohistochemical staining. In addition, immunohistochemistry was performed using paraffin-embedded sections from biopsy specimens obtained from 110 patients with oral squamous cell carcinoma who underwent surgery after 5 fluorouracil-based chemoradiotherapy. The associations of FBXW7 expression with various clinicopathological features and prognosis were evaluated in these patients. As a results, in the 15 matched samples, the FBXW7 expression was significantly decreased in the oral squamous cell carcinoma tissues compared to that in the adjacent normal tissues. In the clinicopathological analysis, compared to high protein expression, low FBXW7 expression was found to significantly associate with a poor histological response to preoperative chemoradiotherapy. Kaplan-Meier curve analysis revealed that low FBXW7 expression was significantly associated with a poor prognosis, and FBXW7 expression was found to be an independent predictor of overall survival in the multivariate analysis. Our results suggest that FBXW7 may function as a tumor suppressor protein in oral squamous cell carcinoma. In addition, FBXW7 could be a potential biomarker for predicting not only the clinical response to chemoradiotherapy but also overall survival in patients with oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Hidetaka Arita
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Kojima
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Toya
- 2 Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- 3 Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akimitsu Hiraki
- 4 Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Hideki Nakayama
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Enhancing the cytotoxicity of chemoradiation with radiation-guided delivery of anti-MGMT morpholino oligonucleotides in non-methylated solid tumors. Cancer Gene Ther 2017; 24:348-357. [PMID: 28752860 PMCID: PMC5605678 DOI: 10.1038/cgt.2017.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
The DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is epigenetically silenced in some tumors by MGMT gene promoter methylation. MGMT-hypermethylated solid tumors have enhanced susceptibility to the cytotoxic effects of alkylating chemotherapy such as temozolomide, compared with non-methylated tumors. In glioblastoma, subjects with MGMT hypermethylation have significantly longer survival rates after chemoradiotherapy. We report the first successful use of a non-ablative dose of ionizing radiation to prime human cancer cells to enhance the uptake of unmodified anti-MGMT morpholino oligonucleotide (AMON) sequences. We demonstrate >40% reduction in the in vitro proliferation index and cell viability in radiation-primed MGMT-expressing human solid tumor cells treated with a single dose of AMONs and temozolomide. We further demonstrate the feasibility of using a non-ablative dose of radiation in vivo to guide and enhance the delivery of intravenously administered AMONs to achieve 50% MGMT knockdown only at radiation-primed tumor sites in a subcutaneous tumor model. Local upregulation of physiological endocytosis after radiation may have a role in radiation-guided uptake of AMONs. This approach holds direct translational significance in glioblastoma and brain metastases where radiation is part of the standard of care; our approach to silence MGMT could overcome the significant problem of MGMT-mediated chemoresistance.
Collapse
|
36
|
Koo T, Cho BJ, Kim DH, Park JM, Choi EJ, Kim HH, Lee DJ, Kim IA. MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Oncotarget 2017; 8:65457-65468. [PMID: 29029445 PMCID: PMC5630345 DOI: 10.18632/oncotarget.18924] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNA-200c (miR-200c) recently was found to have tumor-suppressive properties by inhibiting the epithelial-mesenchymal transition (EMT) in several cancers. miR-200c also interacts with various cellular signaling molecules and regulates many important signaling pathways. In this study, we investigated the radiosensitizing effect of miR-200c and its mechanism in a panel of human cancer cell lines. Malignant glioma (U251, T98G), breast cancer (MDA-MB-468), and lung carcinoma (A549) cells were transfected with control pre-microRNA, pre-miR-200c, or anti-miR-200c. Then, RT-PCR, clonogenic assays, immunoblotting, and immunocytochemisty were performed. To predict the potential targets of miR-200c, microRNA databases were used for bioinformatics analysis. Ectopic overexpression of miR-200c downregulated p-EGFR and p-AKT and increased the radiosensitivity of U251, T98G, A549, and MDA-MB-468 cells. In contrast, miR-200c inhibition upregulated p-EGFR and p-AKT, and decreased radiation-induced cell killing. miR-200c led to persistent γH2AX focus formation and downregulated pDNA-PKc expression. Autophagy and apoptosis were major modes of cell death. Bioinformatics analysis predicted that miR-200c may be associated with EGFR, AKT2, MAPK1, VEGFA, and HIF1AN. We also confirmed that miR-200c downregulated the expression of VEGF, HIF-1α, and MMP2 in U251 and A549 cells. In these cells, overexpressing miR-200c inhibited invasion, migration, and vascular tube formation. These phenotypic changes were associated with E-cadherin and EphA2 downregulation and N-cadherin upregulation. miR-200c showed no observable cytotoxic effect on normal human fibroblasts and astrocytes. Taken together, our data suggest that miR-200c is an attractive target for improving the efficacy of radiotherapy via a unique modulation of the complex regulatory network controlling cancer pro-survival signaling and EMT.
Collapse
Affiliation(s)
- Taeryool Koo
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bong Jun Cho
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dan Hyo Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Min Park
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.,Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Jung Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hans H Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - David J Lee
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.,Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|
38
|
Sensitivity of non-small cell lung cancer to erlotinib is regulated by the Notch/miR-223/ FBXW7 pathway. Biosci Rep 2017; 37:BSR20160478. [PMID: 28507201 PMCID: PMC5479025 DOI: 10.1042/bsr20160478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023] Open
Abstract
Recent evidence supports a role for microRNA-223 (miR-223) in modulating tumor cell sensitivity to chemotherapeutic drugs; however, its role in cellular resistance to the effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) used in treatment of non-small cell lung cancer (NSCLC) remains to be elucidated. The levels of miR-223 in parental cell line (HCC827) and erlotinib resistant HCC827 cell line (HCC827/ER) were detected by qRT-PCR. HCC827/ER cells were treated with MK-2206 to block the Akt signaling pathway or RO4929097 to block the Notch signaling pathway, and then transfected with an miR-223 inhibitor or interference expression plasmid of F-Box/WD repeat-containing protein 7 (FBXW7) or insulin-like growth factor 1 receptor (IGF1R). HCC827 cells were transfected with miR-223 mimics. Next, CCK-8, colony formation, and flow cytometric apoptosis assays were used to assess cell resistance to erlotinib. When compared with its expression in HCC827 cells, miR-223 expression was significantly up-regulated in HCC827/ER cells. Blocking either the Akt or Notch signaling pathway and reducing miR-223 expression resulted in decreased resistance in HCC827/ER cells. Conversely, increasing miR-223 expression induced cell resistance to erlotinib in HCC827 cells. miR-223 enhanced resistance to erlotinib by down-regulating FBXW7 expression. Reducing FBXW7 expression lowered resistance to erlotinib in HCC827/ER cells, while interference with expression of IGF1R produced no significant effect. This study demonstrated that NSCLC cells can up-regulate their levels of miR-223 expression via the Akt and Notch signaling pathways. miR-223 may serve as an important regulator of erlotinib sensitivity in NSCLC cells by targeting FBXW7.
Collapse
|
39
|
Xue Y, Ni T, Jiang Y, Li Y. Long Noncoding RNA GAS5 Inhibits Tumorigenesis and Enhances Radiosensitivity by Suppressing miR-135b Expression in Non-Small Cell Lung Cancer. Oncol Res 2017; 25:1305-1316. [PMID: 28117028 PMCID: PMC7841232 DOI: 10.3727/096504017x14850182723737] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Growth arrest-specific transcript 5 (GAS5) has been demonstrated to correlate with clinicopathological characteristics and serve as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the underlying mechanism of the competing endogenous RNA (ceRNA) regulatory network involving GAS5 in NSCLC remains to be elucidated. In this study, qRT-PCR results showed that GAS5 was downregulated and miR-135b was upregulated in NSCLC tissues and cells. The expressions of GAS5 and miR-135b changed inversely in response to irradiation. Gain-of-function experiments revealed that GAS5 overexpression and miR-135b downregulation significantly suppressed tumorigenesis by repressing cell proliferation and invasion, and enhanced the radiosensitivity of NSCLC cells by reducing colony formation rates. Luciferase reporter assay confirmed that GAS5 could directly target miR-135b and negatively regulate its expression. Moreover, rescue experiments demonstrated that miR-135b upregulation markedly abolished GAS5 overexpression-induced tumorigenesis inhibition and radiosensitivity improvement. Furthermore, xenograft model analysis validated that GAS5 overexpression suppressed tumor growth and improved radiosensitivity of NSCLC cells in vivo. Taken together, GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in NSCLC cells, deepening our understanding of the mechanism of miRNA-lncRNA interaction and providing a novel therapeutic strategy for NSCLC.
Collapse
|
40
|
Song B, Zhang Q, Yu M, Qi X, Wang G, Xiao L, Yi Q, Jin W. Ursolic acid sensitizes radioresistant NSCLC cells expressing HIF-1α through reducing endogenous GSH and inhibiting HIF-1α. Oncol Lett 2016; 13:754-762. [PMID: 28356955 PMCID: PMC5351155 DOI: 10.3892/ol.2016.5468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/26/2016] [Indexed: 12/25/2022] Open
Abstract
In previous studies, the present authors demonstrated that effective sensitization of ionizing radiation-induced death of tumor cells, including non-small cell lung cancer (NSCLC) cells, could be produced by oleanolic acid (OA), a pentacyclic triterpenoid present in plants. In the present study, it was investigated whether ursolic acid (UA), an isomer of OA, had also the capacity of sensitizing radioresistant NSCLC cells. The radioresistant cell line H1299/M-hypoxia inducible factor-1α (HIF-1α) was established by transfection with a recombinant plasmid expressing mutant HIF-1α (M-HIF-1α). Compared with parental H1299 cells and H1299 cells transfected with empty plasmid, H1299/M-HIF-1α cells had lower radiosensitivity. Following the use of UA to treat NSCLC cells, elevation of the radiosensitivity of cells was observed by MTT assay. The irradiated H1299/M-HIF-1α cells were more sensitive to UA pretreatment than the irradiated cells with empty plasmid and control. The alteration of DNA damage in the irradiated cells was further measured using micronucleus (MN) assay. The combination of UA treatment with radiation could induce the increase of cellular MN frequencies, in agreement with the change in the tendency observed in the cell viability assay. It was further shown that the endogenous glutathione (GSH) contents were markedly attenuated in the differently irradiated NSCLC cells with UA (80 µmol/l) pretreatment through glutathione reductase/5,5'-dithiobis-(2-nitrob-enzoic acid) (DTNB) recycling assay. The results revealed that UA treatment alone could effectively decrease the GSH content in H1299/M-HIF-1α cells. In addition, the inhibition of HIF-1α expression in radioresistant cells was confirmed by western blotting. It was then concluded that UA could upregulate the radiosensitivity of NSCLC cells, and in particular reduce the refractory response of cells expressing HIF-1α to ionizing radiation. The primary mechanism is associated with reduction of endogenous GSH and inhibition of high expression of intracellular HIF-1α. UA should therefore be deeply studied as a potential radiosensitizing reagent for NSCLC radiotherapy.
Collapse
Affiliation(s)
- Bing Song
- Department of Cardiology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qian Zhang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Maohu Yu
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinrong Qi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Gang Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Linlin Xiao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wensen Jin
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
41
|
Yang CX, Zhang SM, Li J, Yang B, Ouyang W, Mei ZJ, Chen J, Dai J, Ke S, Zhou FX, Zhou YF, Xie CH. MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting β-catenin. Oncol Lett 2016; 12:4983-4990. [PMID: 28105205 PMCID: PMC5228454 DOI: 10.3892/ol.2016.5340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/30/2016] [Indexed: 01/18/2023] Open
Abstract
Cervical cancer is the second most common malignancy in women worldwide and always has recurrence owing to radioresistance. MicroRNA (miRNA or miR) has been identified to relate to the sensitivity of cancer radiotherapy. Here, we investigated the potential of miRNA-320 as a biomarker for radiosensitivity by targeting β-catenin in cervical cancer. A radioresistant cervical cancer cell line, C33AR, was established, and the radioresistance of C33AR cells was confirmed by a colony-formation assay. The expression of miRNA-320 was detected by reverse transcription-quantitative polymerase chain reaction, and compared between C33A and C33AR. β-catenin, the target of miRNA-320, was determined at the protein level by western blotting after transfecting the inhibitor of miRNA-320. The expression of miRNA-320 was markedly decreased in C33AR cells, which appeared to be more radioresistant, compared with its parental cell line C33A. Target prediction suggested that miRNA-320 negatively regulated the expression of β-catenin. Knockdown of β-catenin increased C33AR radiosensitivity, which revealed that the inhibition of β-catenin could rescue the miRNA-320-mediated cell radioresistance. On the other hand, overexpressing miRNA-320 increased C33AR radiosensitivity. In conclusion, miRNA-320 regulated the radiosensitivity of C33AR cells by targeting β-catenin. This finding provides evidence that miRNA-320 may be a potential biomarker of radiosensitivity in cervical cancer.
Collapse
Affiliation(s)
- Chun-Xu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shi-Min Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jie Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wen Ouyang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Jie Mei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Radio-Chemotherapy, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Su Ke
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fu-Xiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Radio-Chemotherapy, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yun-Feng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Radio-Chemotherapy, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Cong-Hua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Radio-Chemotherapy, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
42
|
Tinhofer I, Stenzinger A, Eder T, Konschak R, Niehr F, Endris V, Distel L, Hautmann MG, Mandic R, Stromberger C, Weichert W, Budach V. Targeted next-generation sequencing identifies molecular subgroups in squamous cell carcinoma of the head and neck with distinct outcome after concurrent chemoradiation. Ann Oncol 2016; 27:2262-2268. [PMID: 27681865 DOI: 10.1093/annonc/mdw426] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Based on epidemiological (HPV status, smoking habits) and clinical risk factors (T/N stage), three subgroups of patients suffering from locally advanced oropharyngeal carcinoma with significantly different outcome after concurrent chemoradiation (cCRTX) can be distinguished. Mutational profiling by targeted next-generation sequencing (NGS) might further improve risk stratification. PATIENTS AND METHODS Patients with stage IV squamous cell carcinoma of the oropharynx and hypopharynx who had been enrolled in a randomized phase III trial (ARO-0401) comparing two regimens of cCRTX and from whom archival tumor specimens were available were included. The HPV status was determined by p16 immunostaining and detection of HPV DNA. Targeted NGS covering 45 genes frequently altered in squamous cell carcinoma of the head and neck (SCCHN) was applied for detection of non-synonymous somatic and germline mutations. Interference of mutational profiles with cCRTX efficacy was determined. RESULTS The prognostic value of the 'Ang' risk model could be confirmed in the total biomarker study cohort (N = 175) as well as the patient subgroup for which mutational profiles could be established (N = 97). Mutations in genes involved in phosphoinositide 3-kinase (PI3K), receptor tyrosine kinase (RTK), and p53 signaling pathways were significantly enriched in the low- (N = 7), intermediate- (N = 20), and high-risk group (N = 70), respectively. Mutations in TP53 identified a subgroup of high-risk patients with dismal outcome after cCRTX. No prognostic relevance was observed for mutations in PI3K and RTK signaling pathways in the low- and intermediate-risk groups, respectively. Mutated NOTCH1 and two functional KDR germline variants (rs2305948, rs1870377) were associated with improved outcome in all risk groups. All genetic markers (TP53, NOTCH1, KDR) remained independent prognosticators of OS in the multivariate model. CONCLUSION A potential of targeted NGS for risk classification of SCCHN cases beyond HPV status and clinical factors was demonstrated.
Collapse
Affiliation(s)
- I Tinhofer
- Department of Radiooncology and Radiotherapy, Charite University Hospital, Berlin .,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin
| | - A Stenzinger
- Institute of Pathology, University Hospital and National Center for Tumor Diseases, Heidelberg, Germany.,Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - T Eder
- Department of Radiooncology and Radiotherapy, Charite University Hospital, Berlin.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin
| | - R Konschak
- Department of Radiooncology and Radiotherapy, Charite University Hospital, Berlin.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin
| | - F Niehr
- Department of Radiooncology and Radiotherapy, Charite University Hospital, Berlin.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin
| | - V Endris
- Institute of Pathology, University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
| | - L Distel
- Department of Radiation Oncology, University Hospitals Erlangen-Nürnberg, Erlangen
| | - M G Hautmann
- Department of Radiotherapy, University Hospital Regensburg
| | - R Mandic
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Giessen-Marburg, Marburg
| | - C Stromberger
- Department of Radiooncology and Radiotherapy, Charite University Hospital, Berlin
| | - W Weichert
- Institute of Pathology, University Hospital and National Center for Tumor Diseases, Heidelberg, Germany.,Institute of Pathology, Technical University Munich (TUM), Munich.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) partner site Munich, Germany
| | - V Budach
- Department of Radiooncology and Radiotherapy, Charite University Hospital, Berlin
| |
Collapse
|
43
|
Yu X, Feng L, Han Z, Wu B, Wang S, Xiao Y, Li F, Zhang L, Cao B, Di X, Lu D, Li X, Jiang W, Zhang K, Cheng S. Crosstalk of dynamic functional modules in lung development of rhesus macaques. MOLECULAR BIOSYSTEMS 2016; 12:1342-9. [PMID: 26923754 DOI: 10.1039/c5mb00881f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung development follows a complex series of dynamic histogenic events that depend on the fluctuation of gene expression, and the disruption of gene regulation could lead to devastating consequences, such as diseases in adulthood. In order to investigate the mechanism of lung development, we performed RNA sequencing by Illumina HiSeq™ 2000 to measure mRNA expression in lung tissues of nine rhesus macaques spanning from foetuses at gestation of 45 days to postnatal at 7 days. This development period was divided into three developmental stages, including the early stage (45-100 gestational days), the middle stage (137-163 gestational days) and the late stage (after birth at 4-7 days). Firstly, we identified stage-specific genes, based on which we found that the principle biological processes of the early stage were mainly associated with internal growth signalling, while the middle and late stage-specific genes controlled the external stress signalling. Then, we constructed a stage-specific protein-protein interaction (PPI) subnetwork, extracted dynamic modules, and identified crosstalk between modules. Moreover, we found four active pathways that could mediate the crosstalk, including the Notch signalling pathway, cell cycle, NOD-like receptor signalling pathway, and Toll-like receptor signalling pathway. These pathways not only played crucial roles in lung development, but also were implicated in lung diseases. Finally, some important bridgers, such as PSEN2, HSP90AA1 and CASP8, were discovered to explain the potential mechanism of crosstalk. Therefore, our study presents the landscape of gene expression of lung development of rhesus macaques, and provides an extended insight into the lung development mechanism.
Collapse
Affiliation(s)
- Xuexin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yahyanejad S, Theys J, Vooijs M. Targeting Notch to overcome radiation resistance. Oncotarget 2016; 7:7610-28. [PMID: 26713603 PMCID: PMC4884942 DOI: 10.18632/oncotarget.6714] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies.
Collapse
Affiliation(s)
- Sanaz Yahyanejad
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
45
|
FBXW7 Facilitates Nonhomologous End-Joining via K63-Linked Polyubiquitylation of XRCC4. Mol Cell 2016; 61:419-433. [PMID: 26774286 DOI: 10.1016/j.molcel.2015.12.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/05/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
FBXW7 is a haploinsufficient tumor suppressor with loss-of-function mutations occurring in human cancers. FBXW7 inactivation causes genomic instability, but the mechanism remains elusive. Here we show that FBXW7 facilitates nonhomologous end-joining (NHEJ) repair and that FBXW7 depletion causes radiosensitization. In response to ionizing radiation, ATM phosphorylates FBXW7 at serine 26 to recruit it to DNA double-strand break (DSB) sites, whereas activated DNA-PKcs phosphorylates XRCC4 at serines 325/326, which promotes binding of XRCC4 to FBXW7. SCF(FBXW7) E3 ligase then promotes polyubiquitylation of XRCC4 at lysine 296 via lysine 63 linkage for enhanced association with the Ku70/80 complex to facilitate NHEJ repair. Consistent with these findings, a small-molecule inhibitor that abrogates XRCC4 polyubiquitylation reduces NHEJ repair. Our study demonstrates one mechanism by which FBXW7 contributes to genome integrity and implies that inactivated FBXW7 in human cancers could be a strategy for increasing the efficacy of radiotherapy.
Collapse
|
46
|
Epithelial Mesenchymal Transition in Aggressive Lung Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 890:37-56. [DOI: 10.1007/978-3-319-24932-2_3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Xiao YF, Yong X, Tang B, Qin Y, Zhang JW, Zhang D, Xie R, Yang SM. Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review). Int J Oncol 2015; 48:437-49. [PMID: 26648421 DOI: 10.3892/ijo.2015.3280] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
Abstract
There is no radical cure for all cancer types. The most frequently used therapies are surgical treatment, radiotherapy and chemotherapy. However, recrudescence, radiation resistance and chemotherapy resistance are the most challenging issues in clinical practice. To address these issues, they should be further studied at the molecular level, and the signaling pathways involved represent a promising avenue for this research. In the present review, we mainly discuss the components and mechanisms of activation of the Notch and Wnt signaling pathways, and we summarize the recent research efforts on these two pathways in different cancers. We also evaluate the ideal drugs that could target these two signaling pathways for cancer therapy, summarize alterations in the Notch and Wnt signaling pathways in cancer, and discuss potential signaling inhibitors as effective drugs for cancer therapy.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jian-Wei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Dan Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
48
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
49
|
Rodemann HP, Bodis S. Cutting-edge research in basic and translational radiation biology/oncology reflections from the 14th International Wolfsberg Meeting on Molecular Radiation Biology/Oncology 2015. Radiother Oncol 2015; 116:335-41. [DOI: 10.1016/j.radonc.2015.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/11/2023]
|
50
|
Foster JG, Wong SCK, Sharp TV. The hypoxic tumor microenvironment: driving the tumorigenesis of non-small-cell lung cancer. Future Oncol 2015; 10:2659-74. [PMID: 25531051 DOI: 10.2217/fon.14.201] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the application of molecular biology in cancer biology, lung cancer research has classically focused on molecular drivers of disease. One such pathway, the hypoxic response pathway, is activated by reduced local oxygen concentrations at the tumor site. Hypoxia-driven gene and protein changes enhance epithelial-to-mesenchymal transition, remodel the extracellular matrix, drive drug resistance, support cancer stem cells and aid evasion from immune cells. However, it is not the tumor cells alone which drive this response to hypoxia, but rather their interaction with a complex milieu of supporting cells. This review will focus on recent advances in our understanding of how these cells contribute to the tumor response to hypoxia in non-small-cell lung cancer.
Collapse
Affiliation(s)
- John G Foster
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | |
Collapse
|