1
|
Zhao X, Du L, Ma N, Tan X, Lei X, Zhang P, Qu B. The role of cGAS-STING pathway in the development of radiation-induced lung injury. J Cancer Res Clin Oncol 2025; 151:48. [PMID: 39856464 PMCID: PMC11761121 DOI: 10.1007/s00432-025-06088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND AND PURPOSE Radiation-induced lung injury (RILI) limits the efficacy of thoracic radiotherapy. However, the underlying mechanism of RILI remains unclear. cGAS-STING pathway is reported to be involved in the recognization of cytosolic dsDNA and various inflammatory diseases. This study aimed to investigate the role of cGAS-STING pathway in the development of RILI. MATERIALS AND METHODS A pre-clinical mouse model of RILI was established by whole thorax irradiation and confirmed using H&E and Masson's trichrome staining. STING agonist (DMXAA) and antagonist(C-176) were administrated to modulate cGAS-STING pathway in vivo. Western blot and ELISA were used to determine the expression levels of different proteins. RESULTS Quantitation analysis showed dsDNA accumulation in lung tissue and western blot showed the up-regulation of cGAS and STING protein level post-irradiation, indicating pathway activation. Histological evaluation showed that C-176 administration ameliorated radiation-induced pulmonary inflammation and fibrosis, while DMXAA exhibited contrary effects. In further in vitro study, the release of dsDNA induced by radiation led to the activation of cGAS-STING pathway in RAW 264.7 cells, resulting in the polarization into M1 phenotype and pro-inflammatory production. CONCLUSION In summary, our data demonstrated a link between cGAS-STING pathway and the development of RILI, indicating its potential application in clinic.
Collapse
Affiliation(s)
- Xinyao Zhao
- Department of Radiation Oncology, Shijingshan Teaching Hospital of Capital Medical University, Shijingshan Hospital, Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Na Ma
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Tan
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Lei
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhang W, Xiao Y. Clinical treatment of acute radiation pneumonitis caused by radiation therapy for lung cancer. Minerva Gastroenterol (Torino) 2024; 70:270-272. [PMID: 37326629 DOI: 10.23736/s2724-5985.23.03451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Weiwei Zhang
- Department of Traditional Chinese Medicine, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | - Yao Xiao
- Department of Traditional Chinese Medicine, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China -
| |
Collapse
|
3
|
Zheng J, Wu J, Xie L, Huang Y, Hong J, Chen C. Paclitaxel Aggravating Radiation-Induced Pulmonary Fibrosis Is Associated with the Down-Regulation of the Negative Regulatory Function of Spry2. J Pharmacol Exp Ther 2024; 389:197-207. [PMID: 37918858 DOI: 10.1124/jpet.123.001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Paclitaxel (PTX) is capable of aggravating radiation-induced pulmonary fibrosis (RIPF), but the mechanism is unknown. Spry2 is a negative regulator of receptor tyrosine kinase-related Ras/Raf/extracellular signal regulated kinase (ERK) pathway. This experiment was aimed at exploring whether the aggravation of RIPF by PTX is related to Spry2. The RIPF model was established with C57BL/6 mice by thoracic irradiation, and PTX was administered concurrently. Western blot was used to detect the expression level of ERK signaling molecules and the distribution of Spry2 in the plasma membrane/cytoplasm. Co-immunoprecipitation (co-IP) and immunofluorescence were used to observe the colocalization of Spry2 with the plasma membrane and tubulin. The results showed that PTX-concurrent radiotherapy could aggravate fibrotic lesions in RIPF, downregulate the content of membrane Spry2, and upregulate the levels of p-c-Raf and p-ERK in lung tissue. It was found that knockdown of Spry2 in fibroblast abolished the upregulation of p-c-Raf and p-ERK by PTX. Both co-IP results and immunofluorescence staining showed that PTX increased the binding of Spry2 to tubulin, and microtubule depolymerizing agents could abolish PTX's inhibition of Spry2 membrane distribution and inhibit PTX's upregulation of Raf/ERK signaling. Both nintedanib and ERK inhibitor were effective in relieving PTX-exacerbated RIPF. Taken together, the mechanism of PTX's aggravating RIPF was related to its ability to enhance Spry2's binding to tubulin, thus attenuating Spry2's negative regulation on Raf/ERK pathway. SIGNIFICANCE STATEMENT: This study revealed that paclitaxel (PTX) concurrent radiation therapy exacerbates radiation-induced pulmonary fibrosis during the treatment of thoracic tumors, which is associated with PTX restraining Spry2 and upregulating the Raf/extracellular signal regulated kinase signaling pathway, and provided drug targets for mitigating this complication.
Collapse
Affiliation(s)
- Jianxing Zheng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Jiandong Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Lingfeng Xie
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Yihao Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Jinsheng Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Chun Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| |
Collapse
|
4
|
Giannini N, Gadducci G, Fuentes T, Gonnelli A, Di Martino F, Puccini P, Naso M, Pasqualetti F, Capaccioli S, Paiar F. Electron FLASH radiotherapy in vivo studies. A systematic review. Front Oncol 2024; 14:1373453. [PMID: 38655137 PMCID: PMC11035725 DOI: 10.3389/fonc.2024.1373453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
FLASH-radiotherapy delivers a radiation beam a thousand times faster compared to conventional radiotherapy, reducing radiation damage in healthy tissues with an equivalent tumor response. Although not completely understood, this radiobiological phenomenon has been proved in several animal models with a spectrum of all kinds of particles currently used in contemporary radiotherapy, especially electrons. However, all the research teams have performed FLASH preclinical studies using industrial linear accelerator or LINAC commonly employed in conventional radiotherapy and modified for the delivery of ultra-high-dose-rate (UHDRs). Unfortunately, the delivering and measuring of UHDR beams have been proved not to be completely reliable with such devices. Concerns arise regarding the accuracy of beam monitoring and dosimetry systems. Additionally, this LINAC totally lacks an integrated and dedicated Treatment Planning System (TPS) able to evaluate the internal dose distribution in the case of in vivo experiments. Finally, these devices cannot modify dose-time parameters of the beam relevant to the flash effect, such as average dose rate; dose per pulse; and instantaneous dose rate. This aspect also precludes the exploration of the quantitative relationship with biological phenomena. The dependence on these parameters need to be further investigated. A promising advancement is represented by a new generation of electron LINAC that has successfully overcome some of these technological challenges. In this review, we aim to provide a comprehensive summary of the existing literature on in vivo experiments using electron FLASH radiotherapy and explore the promising clinical perspectives associated with this technology.
Collapse
Affiliation(s)
- Noemi Giannini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Giovanni Gadducci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Taiusha Fuentes
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Alessandra Gonnelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Fabio Di Martino
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Tuscany, Italy
- National Institute of Nuclear Physics (INFN)-section of Pisa, Pisa, Tuscany, Italy
| | - Paola Puccini
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Monica Naso
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Simone Capaccioli
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Tuscany, Italy
| | - Fabiola Paiar
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| |
Collapse
|
5
|
Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, Slats AM. Predicting Radiation-Induced Lung Injury in Patients With Lung Cancer: Challenges and Opportunities. Int J Radiat Oncol Biol Phys 2024; 118:639-649. [PMID: 37924986 DOI: 10.1016/j.ijrobp.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting toxicities in radiation therapy (RT) for lung cancer. Approximately 10% to 20% of patients show signs of RILI of variable severity. The reason for the wide range of RILI severity and the mechanisms underlying its development are only partially understood. A number of clinical risk factors have been identified that can aid in clinical decision making. Technological advancements in RT and the use of strict organ-at-risk dose constraints have helped to reduce RILI. Predicting patients at risk for RILI may be further improved with a combination of cytokine assessments, γH2AX-assays in leukocytes, or epigenetic markers. A complicating factor is the lack of an objective definition of RILI. Tools such as computed tomography densitometry, fluorodeoxyglucose-positron emission tomography uptake, changes in lung function measurements, and exhaled breath analysis can be implemented to better define and quantify RILI. This can aid in the search for new biomarkers, which can be accelerated by omics techniques, single-cell RNA sequencing, mass cytometry, and advances in patient-specific in vitro cell culture models. An objective quantification of RILI combined with these novel techniques can aid in the development of biomarkers to better predict patients at risk and allow personalized treatment decisions.
Collapse
Affiliation(s)
- Merian E Kuipers
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Flakus MJ, Wuschner AE, Wallat EM, Graham M, Shao W, Shanmuganayagam D, Christensen GE, Reinhardt JM, Bayouth JE. Validation of CT-based ventilation and perfusion biomarkers with histopathology confirms radiation-induced pulmonary changes in a porcine model. Sci Rep 2023; 13:9377. [PMID: 37296169 PMCID: PMC10256800 DOI: 10.1038/s41598-023-36292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Imaging biomarkers can assess disease progression or prognoses and are valuable tools to help guide interventions. Particularly in lung imaging, biomarkers present an opportunity to extract regional information that is more robust to the patient's condition prior to intervention than current gold standard pulmonary function tests (PFTs). This regional aspect has particular use in functional avoidance radiation therapy (RT) in which treatment planning is optimized to avoid regions of high function with the goal of sparing functional lung and improving patient quality of life post-RT. To execute functional avoidance, detailed dose-response models need to be developed to identify regions which should be protected. Previous studies have begun to do this, but for these models to be clinically translated, they need to be validated. This work validates two metrics that encompass the main components of lung function (ventilation and perfusion) through post-mortem histopathology performed in a novel porcine model. With these methods validated, we can use them to study the nuanced radiation-induced changes in lung function and develop more advanced models.
Collapse
Affiliation(s)
- Mattison J Flakus
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA.
| | - Antonia E Wuschner
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Eric M Wallat
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, University of Wisconsin - Madison, Madison, WI, USA
| | - Wei Shao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhanansayan Shanmuganayagam
- Department of Surgery, University of Wisconsin - Madison, Madison, WI, USA
- Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - John E Bayouth
- Department of Radiation Medicine, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
7
|
Cong C, Niu S, Jiang Y, Zhang X, Jing W, Zheng Y, Zhang X, Su G, Zhang Y, Sun M. Renin-angiotensin system inhibitors mitigate radiation pneumonitis by activating ACE2-angiotensin-(1-7) axis via NF-κB/MAPK pathway. Sci Rep 2023; 13:8324. [PMID: 37221286 DOI: 10.1038/s41598-023-35412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
Radiation pneumonitis (RP) affects both patients and physicians during radiation therapy for lung cancer. To date, there are no effective drugs for improving the clinical outcomes of RP. The activation of angiotensin-converting enzyme 2 (ACE2) improves experimental acute lung injury caused by severe acute respiratory syndrome coronavirus, acid inhalation, and sepsis. However, the effects and underlying mechanisms of ACE2 in RP remain unclear. Therefore, this study aimed to investigate the effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on RP and ACE2/angiotensin-(1-7)/Mas receptor pathway activation. We found that radiotherapy decreased the expression of ACE2 and that overexpression of ACE2 alleviated lung injury in an RP mouse model. Moreover, captopril and valsartan restored ACE2 activation; attenuated P38, ERK, and p65 phosphorylation; and effectively mitigated RP in the mouse model. Further systematic retrospective analysis illustrated that the incidence of RP in patients using renin-angiotensin system inhibitors (RASis) was lower than that in patients not using RASis (18.2% vs. 35.8% at 3 months, p = 0.0497). In conclusion, the current findings demonstrate that ACE2 plays a critical role in RP and suggest that RASis may be useful potential therapeutic drugs for RP.
Collapse
Affiliation(s)
- Changsheng Cong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, China
| | - Shiying Niu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Pathophysiology, Academy of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
- Department of Pathology, Linfen Central Hospital, Linfen, 041099, Shanxi, China
| | - Yifan Jiang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Pathophysiology, Academy of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Xinhui Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Pathophysiology, Academy of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Wang Jing
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, China
| | - Xiaoyue Zhang
- Department of Pathology, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, Shandong, China
| | - Guohai Su
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yueying Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Pathophysiology, Academy of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China.
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, China.
| |
Collapse
|
8
|
Zhou S, Zhu J, Zhou PK, Gu Y. Alveolar type 2 epithelial cell senescence and radiation-induced pulmonary fibrosis. Front Cell Dev Biol 2022; 10:999600. [PMID: 36407111 PMCID: PMC9666897 DOI: 10.3389/fcell.2022.999600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a chronic and progressive respiratory tract disease characterized by collagen deposition. The pathogenesis of RIPF is still unclear. Type 2 alveolar epithelial cells (AT2), the essential cells that maintain the structure and function of lung tissue, are crucial for developing pulmonary fibrosis. Recent studies indicate the critical role of AT2 cell senescence during the onset and progression of RIPF. In addition, clearance of senescent AT2 cells and treatment with senolytic drugs efficiently improve lung function and radiation-induced pulmonary fibrosis symptoms. These findings indicate that AT2 cell senescence has the potential to contribute significantly to the innovative treatment of fibrotic lung disorders. This review summarizes the current knowledge from basic and clinical research about the mechanism and functions of AT2 cell senescence in RIPF and points to the prospects for clinical treatment by targeting senescent AT2 cells.
Collapse
Affiliation(s)
- Shenghui Zhou
- Hengyang Medical College, University of South China, Hengyang, China,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Jiaojiao Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ping-Kun Zhou
- Hengyang Medical College, University of South China, Hengyang, China,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China,*Correspondence: Yongqing Gu, ; Ping-Kun Zhou,
| | - Yongqing Gu
- Hengyang Medical College, University of South China, Hengyang, China,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China,*Correspondence: Yongqing Gu, ; Ping-Kun Zhou,
| |
Collapse
|
9
|
Wang TY, Hu YJ, Wang X, Li YF, Zhang F, Yan YD, Dou WT, Cheng CY, Xu P. Targeting p65 to inhibit Cas3 transcription by Onjisaponin B for radiation damage therapy in p65+/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154317. [PMID: 35816993 DOI: 10.1016/j.phymed.2022.154317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In response to radiation injury, p65 becomes activated. The formation of p65 is one target of Onjisaponin B (OB), but it has not been studied in radioprotection. In addition, there is a binding site for p65 in the promoter region of Cas3. This study evaluates the use of OB as an intervention to modulate p65/Cas3 following radiation exposure. PURPOSE This study aimed to confirm that OB regulated the transcription of Cas3 via p65 to overcome radiation-induced damage. STUDY DESIGN AND METHODS Cells and mice were exposed to X-rays at a dose of 6 Gy. Immunofluorescence was used to locate intracellular p65. For the protein and mRNA analyses, Western blotting and RT-qPCR-based assays were conducted accordingly. HE staining was used to observe pathological changes in tissues. DNA damage was detected by the comet assay and DNA ladder assay. Next, apoptosis was detected by flow cytometry and Hoechst staining. RESULTS Compared with the radiation group, the expression levels of p-p65 and c-Cas3 in the drug group were significantly down-regulated by OB 20 µg/ml. When the expression of p65 was suppressed in V79 and TC cells, OB did not significantly inhibit the activation of p65 or Cas3 in response to irradiation, nor did it significantly inhibit the phosphorylation of p65 and subsequent nuclear translocation. Overexpression of p65 in V79 and MTEC-1 cells resulted in OB significantly inhibiting the activation of p65 and Cas3, and the phosphorylation and translocation of p65 into the nucleus. At 3 d for V79 cells and 24 h for MTEC-1 cells after radiation, compared with the Cas3 over plasmid transfection group, the drug transfection group had no significant effect on reducing apoptosis. In p65+/- mice, expression of the p65 gene was knocked down, leading to increased tissue apoptosis and inflammation, and serious tissue pathological changes. The inhibition of p65 activation by OB after radiation exposure was not apparent in the thymus, although it was observed in the lung. CONCLUSIONS OB interfered with radiation injury by targeting and regulating p65/Cas3. Therefore, it has been concluded that p65 is an important target molecule for the treatment of radiation injury.
Collapse
Affiliation(s)
- Tao-Yang Wang
- School of food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong 277160, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yong-Jian Hu
- School of food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong 277160, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xia Wang
- College of Medical Laboratory, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yu-Feng Li
- Radiology Laboratory, Central laboratory, Rizhao people's Hospital, Rizhao, Shandong 276800, China
| | - Fan Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yi-di Yan
- Basic Medical school, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen-Tao Dou
- Basic Medical school, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Chen-Yi Cheng
- Basic Medical school, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ping Xu
- School of food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong 277160, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
10
|
Zhu J, Chen G, Niu K, Feng Y, Xie L, Qin S, Wang Z, Li J, Lang S, Zhuo W, Chen Z, Sun J. Efficacy and safety of recombinant human endostatin during peri-radiotherapy period in advanced non-small-cell lung cancer. Future Oncol 2022; 18:1077-1087. [PMID: 34986655 DOI: 10.2217/fon-2021-1239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: This study aimed to retrospectively investigate the efficacy and safety of recombinant human endostatin (Rh-endostatin) combined with radiotherapy in advanced non-small-cell lung cancer (NSCLC). Methods: Patients with unresectable stage III and IV NSCLC who treated with radiotherapy were enrolled. Patients who received Rh-endostatin infusion throughout the whole peri-radiotherapy period formed the Endostar group, and those who received no Rh-endostatin infusion were the control group. Results: The median progression-free survival was 8.0 and 4.4 months (hazard ratio: 0.53; 95% CI: 0.32-0.90; p = 0.019) and median overall survival was 40.0 and 13.1 months (hazard ratio: 0.53; 95% CI: 0.28-0.98; p = 0.045) for the Endostar and control groups, respectively. The Endostar group exhibited a numerically lower rate of radiation pneumonitis relapse, radiation pneumonitis death and pulmonary fibrosis. Conclusion: Rh-endostatin infusion throughout the peri-radiotherapy period enhanced radiosensitivity and showed better survival outcomes and a tendency toward fewer radiation-related pulmonary events in patients with NSCLC.
Collapse
Affiliation(s)
- Jianbo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Guangpeng Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Kai Niu
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Yongdong Feng
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Lijiao Xie
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Si Qin
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Zhongyu Wang
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Jixi Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Song Lang
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Wenlei Zhuo
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Zhengtang Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| |
Collapse
|
11
|
Collie D, Wright SH, Del-Pozo J, Kay E, Schwarz T, Parys M, Lawrence J. Regional and organ-level responses to local lung irradiation in sheep. Sci Rep 2021; 11:9553. [PMID: 33953285 PMCID: PMC8099861 DOI: 10.1038/s41598-021-88863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Lung is a dose-limiting organ in radiotherapy. This may limit tumour control when effort is made in planning to limit the likelihood of radiation-induced lung injury (RILI). Understanding the factors that dictate susceptibility to radiation-induced pulmonary fibrosis will aid in the prevention and management of RILI, and may lead to more effective personalized radiotherapy treatment. As the interaction of regional and organ-level responses may shape the chronic consequences of RILI, we sought to characterise both aspects of the response in an ovine model. A defined volume of left pulmonary parenchyma was prescribed 5 fractions of 6 Gy within 14 days while the contralateral lung dose was constrained. Radiographic changes via computed tomography (CT) were documented to define differences in radio-exposed lung relative to non-exposed lung at d21, d63 and d171 (n = 2), and at d21, d147 and d227 (n = 2). Gross and histologic lung changes were evaluated in samples derived at necropsy examination to define the chronic pulmonary response to radiation. Irradiated lung demonstrated reduced radio-density and increased homogeneity as evidenced from texture based radiomic feature analysis, relative to the control lung. At necropsy, the radiation field was readily defined by pallor on the pleural surface, which was also evident on the cut surface of fixed lung specimens. The degree and homogeneity of pallor reflected the sparse presence of erythrocytes in alveolar septal capillaries of radiation-exposed lung. These changes contrasted with dilated and congested microvasculature in the contralateral control lung. Referencing data to measurements made in control lung volumes of sheep experiencing acute RILI indicated that interstitial collagen continues to deposit in the radio-exposed lung field. Overall lung vascularity increased during the chronic response, as evidenced by increased expression of endothelial cell marker (CD31); however, vascularity was consistently decreased in irradiated lung and was negatively correlated with lung collagen. Other organ-level responses included increased expression of alpha smooth muscle actin (ASMA), increased numbers of proliferating cells (Ki67 positive), and cells expressing the dendritic cell-lysosomal associated membrane protein (DC-LAMP) antigen. The chronic response to RILI in this model is effected at both the whole organ and local lung level. Whilst the long-term consequences of exposure to radiation involved the continued deposition of collagen in the radiation field, organ-level responses also included increased vascularization and increased expression of ASMA, Ki67 and DC-LAMP. Interrupting the interplay between these aspects may influence susceptibility to pulmonary fibrosis after radiotherapy. We advocate for the importance of large animal model systems in pursuing these opportunities to target local, organ-level and systemic mechanisms in parallel within the same subject over time.
Collapse
Affiliation(s)
- David Collie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK.
| | - Steven H Wright
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK
| | - Jorge Del-Pozo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK
| | - Elaine Kay
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK
- Small Animal Clinical Sciences, School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Tobias Schwarz
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK
| | - Magdalena Parys
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK
| | - Jessica Lawrence
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Edinburgh, EH25 9RG, UK
- Department of Veterinary Clinical Sciences, University of Minnesota, St Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Abdeltawab AA, Ali SA, Mostafa HG, Hassan MA. Predictive Factors Increasing the Risk of Radiation Toxicity in Patients with Early Breast Cancer. Asian Pac J Cancer Prev 2021; 22:145-149. [PMID: 33507692 PMCID: PMC8184170 DOI: 10.31557/apjcp.2021.22.1.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Radiation induces adverse events on healthy tissues which may be augmented by certain factors. This study aimed to assess patients; tumor and treatment-related factors which increase the risk of radiation-induced toxicity in breast cancer patients. METHODS This prospective study included postmenopausal early breast cancer patients treated at the clinical oncology department, Assiut University, Egypt between January 2015 and December 2018. Patients treated with mastectomy followed by conventional radiotherapy (25x 2 Gy) and either concurrent or sequential letrozole. Acute and late radiation toxicity was scored according to EORTC/RTOG and risk factors were analyzed. RESULTS A total of 75 patients were included in the study. After a median follow-up of 24 months, 12 patients had > grade 2 acute dermatitis, 5 patients had > grade 2 cardiac toxicity and 3 patients had > grade 2 lung toxicity. Multivariate analysis revealed that trastuzumab use was associated with a decrease risk of acute dermatitis (p= 0.01) but boost irradiation was significantly associated with increased risk of acute dermatitis (p= 0.01). Late toxicity > grade 2 was observed in 6 patients, 14 patients, and 2 patients for skin, heart, and lung respectively. CONCLUSION The use of boost irradiation was associated with increased risk of acute dermatitis, in the contrary; the use of trastuzumab seemed to be protective as observed in this study.
Collapse
Affiliation(s)
- Asmaa A Abdeltawab
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | | | | |
Collapse
|
13
|
Nakajima Y, Kadoya N, Kimura T, Hioki K, Jingu K, Yamamoto T. Variations Between Dose-Ventilation and Dose-Perfusion Metrics in Radiation Therapy Planning for Lung Cancer. Adv Radiat Oncol 2020; 5:459-465. [PMID: 32529141 PMCID: PMC7280081 DOI: 10.1016/j.adro.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Currently, several active clinical trials of functional lung avoidance radiation therapy using different imaging modalities for ventilation or perfusion are underway. Patients with lung cancer often show ventilation-perfusion mismatch, whereas the significance of dose-function metric remains unclear. The aim of the present study was to compare dose-ventilation metrics with dose-perfusion metrics for radiation therapy plan evaluation. Methods and Materials Pretreatment 4-dimensional computed tomography and 99mTc-macroaggregated albumin single-photon emission computed tomography perfusion images of 60 patients with lung cancer treated with radiation therapy were analyzed. Ventilation images were created using the deformable image registration of 4-dimensional computed tomography image sets and image analysis for regional volume changes as a surrogate for ventilation. Ventilation and perfusion images were converted into percentile distribution images. Analyses included Pearson’s correlation coefficient and comparison of agreements between the following dose-ventilation and dose-perfusion metrics: functional mean lung dose and functional percent lung function receiving 5, 10, 20, 30, and 40 Gy (fV5, fV10, fV20, fV30, and fV40, respectively). Results Overall, the dose-ventilation metrics were greater than the dose-perfusion metrics (ie, fV20, 26.3% ± 9.9% vs 23.9% ± 9.8%). Correlations between the dose-ventilation and dose-perfusion metrics were strong (range, r = 0.94-0.97), whereas the agreements widely varied among patients, with differences as large as 6.6 Gy for functional mean lung dose and 11.1% for fV20. Paired t test indicated that the dose-ventilation and dose-perfusion metrics were significantly different. Conclusions Strong correlations were present between the dose-ventilation and dose-perfusion metrics. However, the agreement between the dose-ventilation and dose-perfusion metrics widely varied among patients, suggesting that ventilation-based radiation therapy plan evaluation may not be comparable to that based on perfusion. Future studies should elucidate the correlation of dose-function metrics with clinical pulmonary toxicity metrics.
Collapse
Affiliation(s)
- Yujiro Nakajima
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazunari Hioki
- Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan.,Graduate School of Health Science, Kumamoto University, Kumamoto, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
14
|
Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-Induced Lung Injury: Assessment and Management. Chest 2019; 156:150-162. [PMID: 30998908 PMCID: PMC8097634 DOI: 10.1016/j.chest.2019.03.033] [Citation(s) in RCA: 364] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Radiation-induced lung injury (RILI) encompasses any lung toxicity induced by radiation therapy (RT) and manifests acutely as radiation pneumonitis and chronically as radiation pulmonary fibrosis. Because most patients with thoracic and breast malignancies are expected to undergo RT in their lifetime, many with curative intent, the population at risk is significant. Furthermore, indications for thoracic RT are expanding given the advent of stereotactic body radiation therapy (SBRT) or stereotactic ablative radiotherapy (SABR) for early-stage lung cancer in nonsurgical candidates as well as oligometastatic pulmonary disease from any solid tumor. Fortunately, the incidence of serious pulmonary complications from RT has decreased secondary to advances in radiation delivery techniques. Understanding the temporal relationship between RT and injury as well as the patient, disease, and radiation factors that help distinguish RILI from other etiologies is necessary to prevent misdiagnosis. Although treatment of acute pneumonitis is dependent on clinical severity and typically responds completely to corticosteroids, accurately diagnosing and identifying patients who may progress to fibrosis is challenging. Current research advances include high-precision radiation techniques, an improved understanding of the molecular basis of RILI, the development of small and large animal models, and the identification of candidate drugs for prevention and treatment.
Collapse
Affiliation(s)
- Alexander N Hanania
- Department of Radiation Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Walker Mainwaring
- Department of Radiation Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Yohannes T Ghebre
- Department of Radiation Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX.
| | - Michelle Ludwig
- Department of Radiation Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Long-term quality of life in inoperable non-small cell lung cancer patients treated with conventionally fractionated compared to hyperfractionated accelerated radiotherapy – Results of the randomized CHARTWEL trial. Radiother Oncol 2018; 126:283-290. [DOI: 10.1016/j.radonc.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
|
16
|
Farr KP, Khalil AA, Møller DS, Bluhme H, Kramer S, Morsing A, Grau C. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC. Radiother Oncol 2017; 126:307-311. [PMID: 29203289 DOI: 10.1016/j.radonc.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE To examine radiation-induced changes in regional lung perfusion per dose level in 58 non-small-cell lung cancer (NSCLC) patients treated with intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS NSCLC patients receiving chemo-radiotherapy (RT) of minimum 60 Gy were included prospectively in the study. Lung perfusion single-photon emission computed tomography (SPECT/CT) was performed before and serially after RT. Changes (relative to baseline, %) in regional lung perfusion were correlated with regional dose. Toxicity outcome was radiation pneumonitis (RP) CTC grades 2-5. RESULTS Perfusion changes were associated with dose. Dose-dependent reduction in regional perfusion was observed at 3, 6 and 12 months of follow-up. Relative perfusion loss per dose bin was 4% at 1 month, 14% at 3 months, 13% at 6 months and 21% at 12 months after RT. In patients with RP, perfusion reduction was larger in high dose lung regions, compared to those without RP. Low dose regions, on the contrary, revealed perfusion gain in the patients with RP. CONCLUSION Progressive dose dependent perfusion loss is manifested on SPECT up to 12 months following IMRT. These findings suggest that the dynamic change in perfusion may have prognostic value in predicting radiation pneumonitis in NSCLC patients treated with IMRT.
Collapse
Affiliation(s)
| | - Azza A Khalil
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Ditte S Møller
- Department of Medical Physics, Aarhus University Hospital, Denmark
| | - Henrik Bluhme
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Stine Kramer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Anni Morsing
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Cai Grau
- Department of Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
17
|
Chi A, Chen H, Wen S, Yan H, Liao Z. Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: A systematic review and hypothesis-generating meta-analysis. Radiother Oncol 2017; 123:346-354. [PMID: 28545956 DOI: 10.1016/j.radonc.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess hypo-fractionated particle beam therapy (PBT)'s efficacy relative to that of photon stereotactic body radiotherapy (SBRT) for early stage (ES) non-small cell lung cancer (NSCLC). METHODS Eligible studies were identified through extensive searches of the PubMed, Medline, Google-scholar, and Cochrane library databases from 2000 to 2016. Original English publications of ES NSCLC were included. A meta-analysis was performed to compare the survival outcome, toxicity profile, and patterns of failure following each treatment. RESULTS 72 SBRT studies and 9 hypo-fractionated PBT studies (mostly single-arm) were included. PBT was associated with improved overall survival (OS; p=0.005) and progression-free survival (PFS; p=0.01) in the univariate meta-analysis. The OS benefit did not reach its statistical significance after inclusion of operability into the final multivariate meta-analysis (p=0.11); while the 3-year local control (LC) still favored PBT (p=0.03). CONCLUSION Although hypo-fractionated PBT may lead to additional clinical benefit when compared with photon SBRT, no statistically significant survival benefit from PBT over SBRT was observed in the treatment of ES NSCLC in this hypothesis-generating meta-analysis after adjusting for potential confounding variables.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, China.
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, China
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, USA.
| | - Haijuan Yan
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
18
|
Luo Y, El Naqa I, McShan DL, Ray D, Lohse I, Matuszak MM, Owen D, Jolly S, Lawrence TS, Kong FMS, Ten Haken RK. Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis. Radiother Oncol 2017; 123:85-92. [PMID: 28237401 DOI: 10.1016/j.radonc.2017.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/05/2017] [Accepted: 02/05/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND In non-small-cell lung cancer radiotherapy, radiation pneumonitis≥grade 2 (RP2) depends on patients' dosimetric, clinical, biological and genomic characteristics. METHODS We developed a Bayesian network (BN) approach to explore its potential for interpreting biophysical signaling pathways influencing RP2 from a heterogeneous dataset including single nucleotide polymorphisms, micro RNAs, cytokines, clinical data, and radiation treatment plans before and during the course of radiotherapy. Model building utilized 79 patients (21 with RP2) with complete data, and model testing used 50 additional patients with incomplete data. A developed large-scale Markov blanket approach selected relevant predictors. Resampling by k-fold cross-validation determined the optimal BN structure. Area under the receiver-operating characteristics curve (AUC) measured performance. RESULTS Pre- and during-treatment BNs identified biophysical signaling pathways from the patients' relevant variables to RP2 risk. Internal cross-validation for the pre-BN yielded an AUC=0.82 which improved to 0.87 by incorporating during treatment changes. In the testing dataset, the pre- and during AUCs were 0.78 and 0.82, respectively. CONCLUSIONS Our developed BN approach successfully handled a high number of heterogeneous variables in a small dataset, demonstrating potential for unraveling relevant biophysical features that could enhance prediction of RP2, although the current observations would require further independent validation.
Collapse
Affiliation(s)
- Yi Luo
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Issam El Naqa
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Daniel L McShan
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Dipankar Ray
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Ines Lohse
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Martha M Matuszak
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Dawn Owen
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Shruti Jolly
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | - Theodore S Lawrence
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States
| | | | - Randall K Ten Haken
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States.
| |
Collapse
|
19
|
Matuszak MM, Matrosic C, Jarema D, McShan DL, Stenmark MH, Owen D, Jolly S, Kong FMS, Ten Haken RK. Priority-driven plan optimization in locally advanced lung patients based on perfusion SPECT imaging. Adv Radiat Oncol 2016; 1:281-289. [PMID: 28740898 PMCID: PMC5514230 DOI: 10.1016/j.adro.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
Purpose Limits on mean lung dose (MLD) allow for individualization of radiation doses at safe levels for patients with lung tumors. However, MLD does not account for individual differences in the extent or spatial distribution of pulmonary dysfunction among patients, which leads to toxicity variability at the same MLD. We investigated dose rearrangement to minimize the radiation dose to the functional lung as assessed by perfusion single photon emission computed tomography (SPECT) and maximize the target coverage to maintain conventional normal tissue limits. Methods and materials Retrospective plans were optimized for 15 patients with locally advanced non-small cell lung cancer who were enrolled in a prospective imaging trial. A staged, priority-based optimization system was used. The baseline priorities were to meet physical MLD and other dose constraints for organs at risk, and to maximize the target generalized equivalent uniform dose (gEUD). To determine the benefit of dose rearrangement with perfusion SPECT, plans were reoptimized to minimize the generalized equivalent uniform functional dose (gEUfD) to the lung as the subsequent priority. Results When only physical MLD is minimized, lung gEUfD was 12.6 ± 4.9 Gy (6.3-21.7 Gy). When the dose is rearranged to minimize gEUfD directly in the optimization objective function, 10 of 15 cases showed a decrease in lung gEUfD of >20% (lung gEUfD mean 9.9 ± 4.3 Gy, range 2.1-16.2 Gy) while maintaining equivalent planning target volume coverage. Although all dose-limiting constraints remained unviolated, the dose rearrangement resulted in slight gEUD increases to the cord (5.4 ± 3.9 Gy), esophagus (3.0 ± 3.7 Gy), and heart (2.3 ± 2.6 Gy). Conclusions Priority-driven optimization in conjunction with perfusion SPECT permits image guided spatial dose redistribution within the lung and allows for a reduced dose to the functional lung without compromising target coverage or exceeding conventional limits for organs at risk.
Collapse
Affiliation(s)
- Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan
| | - Charles Matrosic
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan
| | - David Jarema
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel L McShan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Matthew H Stenmark
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Chaudhuri AA, Binkley MS, Rigdon J, Carter JN, Aggarwal S, Dudley SA, Qian Y, Kumar KA, Hara WY, Gensheimer M, Nair VS, Maxim PG, Shultz DB, Bush K, Trakul N, Le QT, Diehn M, Loo BW, Guo HH. Pre-treatment non-target lung FDG-PET uptake predicts symptomatic radiation pneumonitis following Stereotactic Ablative Radiotherapy (SABR). Radiother Oncol 2016; 119:454-60. [PMID: 27267049 DOI: 10.1016/j.radonc.2016.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine if pre-treatment non-target lung FDG-PET uptake predicts for symptomatic radiation pneumonitis (RP) following lung stereotactic ablative radiotherapy (SABR). METHODS We reviewed a 258 patient database from our institution to identify 28 patients who experienced symptomatic (grade ⩾ 2) RP after SABR, and compared them to 57 controls who did not develop symptomatic RP. We compared clinical, dosimetric and functional imaging characteristics between the 2 cohorts including pre-treatment non-target lung FDG-PET uptake. RESULTS Median follow-up time was 26.9 months. Patients who experienced symptomatic RP had significantly higher non-target lung FDG-PET uptake as measured by mean SUV (p < 0.0001) than controls. ROC analysis for symptomatic RP revealed area under the curve (AUC) of 0.74, with sensitivity 82.1% and specificity 57.9% with cutoff mean non-target lung SUV > 0.56. Predictive value increased (AUC of 0.82) when mean non-target lung SUV was combined with mean lung dose (MLD). We developed a 0-2 point model using these 2 variables, 1 point each for SUV > 0.56 or MLD > 5.88 Gy equivalent dose in 2 Gy per fraction (EQD2), predictive for symptomatic RP in our cohort with hazard ratio 10.01 for score 2 versus 0 (p < 0.001). CONCLUSIONS Patients with elevated pre-SABR non-target lung FDG-PET uptake are at increased risk of symptomatic RP after lung SABR. Our predictive model suggests patients with mean non-target lung SUV > 0.56 and MLD > 5.88 Gy EQD2 are at highest risk. Our predictive model should be validated in an external cohort before clinical implementation.
Collapse
Affiliation(s)
- Aadel A Chaudhuri
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Joseph Rigdon
- Quantitative Sciences Unit, Stanford University School of Medicine, United States
| | - Justin N Carter
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Sonya Aggarwal
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Sara A Dudley
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Yushen Qian
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Kiran A Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Wendy Y Hara
- Department of Radiation Oncology, Stanford University School of Medicine, United States; Stanford Cancer Institute, Stanford University School of Medicine, United States
| | - Michael Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Viswam S Nair
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, United States
| | - Peter G Maxim
- Department of Radiation Oncology, Stanford University School of Medicine, United States; Stanford Cancer Institute, Stanford University School of Medicine, United States
| | - David B Shultz
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Canada
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, United States
| | - Nicholas Trakul
- Department of Radiation Oncology, University of Southern California School of Medicine, United States
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, United States; Stanford Cancer Institute, Stanford University School of Medicine, United States
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, United States; Stanford Cancer Institute, Stanford University School of Medicine, United States; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, United States.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, United States; Stanford Cancer Institute, Stanford University School of Medicine, United States.
| | - Haiwei Henry Guo
- Department of Radiology and Nuclear Medicine, Stanford University School of Medicine, United States.
| |
Collapse
|
21
|
De Bari B, Deantonio L, Bourhis J, Prior JO, Ozsahin M. Should we include SPECT lung perfusion in radiotherapy treatment plans of thoracic targets? Evidences from the literature. Crit Rev Oncol Hematol 2016; 102:111-7. [PMID: 27132077 DOI: 10.1016/j.critrevonc.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To report the available data about the potential impact of integrating lung perfusion SPECT/CT in treatment plans optimization for the irradiation of thoracic targets. MATERIALS AND METHODS We searched in the PubMed and Scopus databases, English-written articles published from 2000 to June 2015 dealing with the integration of perfusion SPECT/CT in radiotherapy. RESULTS We found and analyzed 16 research articles (10 dosimetric, 6 clinical) for a total of 578 patients. Available data suggest dosimetric and clinical improvements when perfusion SPEC/CT is integrated in the radiotherapy treatment planing of selected patients with thoracic targets. In particular, patients presenting emphysema and/or large areas of deficit of perfusion show the most important improvements. Moreover, some studies show different risk of radiation pneumonitis (RP) depending on the localization of the tumor in the lungs: patients with low-located tumors, present an increased risk of RP, and functional data could be a benefit in treatment plan optimization. Unfortunately, none of the available studies finally reports any dosimetric constraint, which could be used in the clinical practice, even if most of them used the cut-off of the 30% of the maximal perfusion value to define the well-functioning lung. CONCLUSIONS Published data support the integration of lung perfusion scintigraphy in some selected categories of patients. Prospective studies should be designed to define the best candidates, and to assess the clinical advantage of this kind of optimization.
Collapse
Affiliation(s)
- Berardino De Bari
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Letizia Deantonio
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Medicine Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Mahmut Ozsahin
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland.
| |
Collapse
|
22
|
Baumann M, Overgaard J. Bridging the valley of death: The new Radiotherapy & Oncology section “First in man – Translational innovations in radiation oncology”. Radiother Oncol 2016; 118:217-9. [DOI: 10.1016/j.radonc.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
23
|
Yamamoto T, Kabus S, Bal M, Keall P, Benedict S, Daly M. The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother Oncol 2016; 118:227-31. [DOI: 10.1016/j.radonc.2015.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/27/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
|