1
|
Varnava M, Tashiro M, Okamoto M, Ando K, Kubo N, Kawamura H, Onishi M, Shibuya K, Kumazawa T, Ohtaka T, Ohno T. Dose-Volume Constraints for Thoracic, Abdominal, and Pelvic Carbon Ion Radiotherapy: A Literature Review. Cancer Med 2025; 14:e70840. [PMID: 40156204 PMCID: PMC11953175 DOI: 10.1002/cam4.70840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Applying dose-volume constraints is extremely important in ensuring the safe use of radiotherapy. However, constraints for carbon ion radiotherapy (CIRT) have not been established yet. This review aims to summarize dose-volume constraints for thoracic, abdominal, and pelvic CIRT that have been identified through previous research based on the Japanese models for relative biological effectiveness (RBE). RESULTS Constraints are reported for the lungs, liver, stomach, gastrointestinal tract, rectum, sigmoid, bladder, nerves, rib, femoral head, sacrum, and skin. The constraints are classified into hard and soft to aid in determining whether priority should be given to the target coverage or organ-at-risk (OAR) sparing during treatment planning. CONCLUSIONS Further research is necessary to verify the applicability of the reported constraints and to identify constraints for the OARs that have not been investigated yet.
Collapse
Affiliation(s)
- Maria Varnava
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
| | | | - Masahiko Okamoto
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Ken Ando
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Nobutero Kubo
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Masahiro Onishi
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Kei Shibuya
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Takuya Kumazawa
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Takeru Ohtaka
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
2
|
Ma J, Dragojevic S, Remmes NB, Mendelson NL, Kloeber JA, Ebner DK, Wu Z, Gunn HJ, Merrell KW, Hallemeier CL, Haddock MG, Jethwa KR, Lou Z, Mutter RW, Callaghan CM. Linear energy transfer optimized proton therapy for rectal cancer. Radiother Oncol 2025; 207:110850. [PMID: 40101854 DOI: 10.1016/j.radonc.2025.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE To evaluate the feasibility and utility of an LET-optimized proton treatment planning algorithm in locally advanced rectal cancer and to assess whether the degree of LET-optimization achieved in clinical plans improves efficacy and toxicity in preclinical models. MATERIALS AND METHODS A series of five rectal cancer patients treated with standard 25 fraction clinical proton plans were re-planned using an LET-optimization treatment planning algorithm and evaluated for dosimetric endpoints. LET-optimized plans were generated using an algorithm which iteratively increases the weights of higher LET spots in GTV and lower LET in OARs. Murine and in vitro preclinical models of tumor efficacy and normal tissue toxicity were evaluated using comparable LETd range to that achieved in clinical LET-optimized plans. RESULTS LET-optimized proton plans increased dose-averaged LET (LETd) in the GTV and LET-weighted dose in the GTV, and CTV5625cGy V100% coverage. At the same time, LET-optimization also decreased mean LET-weighted dose to bladder and small bowel, as well as small bowel V30Gy(cc) compared to standard proton plans. Optimizing the LETd to a volume of GTV-3 mm further increased LETd compared to total GTV. LET-optimization in preclinical models increased tumor efficacy in colorectal cancer cell lines in vitro and decreased small bowel radiation enteropathy in murine models of normal tissue toxicity. CONCLUSIONS LET-optimized proton plans increased LETd in gross tumor while maintaining or improving target coverage and OAR sparing, with acceptable plan robustness. Preclinical models demonstrated that comparable LET-optimization may increase tumor efficacy and decrease normal tissue toxicity in rectal cancer.
Collapse
Affiliation(s)
- Jiasen Ma
- Mayo Clinic Department of Radiation Oncology, Rochester, MN, USA.
| | - Sonja Dragojevic
- Mayo Clinic Department of Radiation Oncology, Rochester, MN, USA
| | | | | | - Jake A Kloeber
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Daniel K Ebner
- Mayo Clinic Department of Radiation Oncology, Rochester, MN, USA
| | - Zheming Wu
- Mayo Clinic Department of Oncology, Rochester, MN, USA
| | - Heather J Gunn
- Mayo Clinic Department of Quantitative Health Sciences, Scottsdale, AZ, USA
| | | | | | | | - Krishan R Jethwa
- Mayo Clinic Department of Radiation Oncology, Rochester, MN, USA
| | - Zhenkun Lou
- Mayo Clinic Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | - Robert W Mutter
- Mayo Clinic Department of Radiation Oncology, Rochester, MN, USA; Mayo Clinic Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | | |
Collapse
|
3
|
Treechairusame T, Taweesedt PT. Carbon ion radiation therapy in prostate cancer: The importance of dosage. World J Radiol 2024; 16:696-699. [PMID: 39635316 PMCID: PMC11612798 DOI: 10.4329/wjr.v16.i11.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
In this article, we comment on the article by Ono et al. We focus specifically on the carbon ion radiotherapy studies and the method to calculate the dosing schedule. While photon hypofractionated radiotherapy in prostate cancer has demonstrated improvement in tumor control with reduced gastrointestinal toxicity compared to conventional radiotherapy, carbon ion radiotherapy (CIRT) offers additional physical and biological advantages. Recent findings, including those from Ono et al, have established new dose constraints of CIRT for prostate cancer treatment and risk factors for rectal bleeding. Due to limited data on CIRT dosing, this study underscores the need for more research to refine dose calculation methods and better understand their effects on clinical outcomes.
Collapse
Affiliation(s)
- Teeradon Treechairusame
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pahnwat T Taweesedt
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States
- Sierra Pacific Mental Illness Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, United States
| |
Collapse
|
4
|
Ono T, Sato H, Miyasaka Y, Hagiwara Y, Yano N, Akamatsu H, Harada M, Ichikawa M. Correlation between dose-volume parameters and rectal bleeding after 12 fractions of carbon ion radiotherapy for prostate cancer. World J Radiol 2024; 16:256-264. [PMID: 39086610 PMCID: PMC11287435 DOI: 10.4329/wjr.v16.i7.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) is currently used to treat prostate cancer. Rectal bleeding is a major cause of toxicity even with CIRT. However, to date, a correlation between the dose and volume parameters of the 12 fractions of CIRT for prostate cancer and rectal bleeding has not been shown. Similarly, the clinical risk factors for rectal bleeding were absent after 12 fractions of CIRT. AIM To identify the risk factors for rectal bleeding in 12 fractions of CIRT for prostate cancer. METHODS Among 259 patients who received 51.6 Gy [relative biological effectiveness (RBE)], in 12 fractions of CIRT, 15 had grade 1 (5.8%) and nine had grade 2 rectal bleeding (3.5%). The dose-volume parameters included the volume (cc) of the rectum irradiated with at least x Gy (RBE) (Vx) and the minimum dose in the most irradiated x cc normal rectal volume (Dx). RESULTS The mean values of D6cc, D2cc, V10 Gy (RBE), V20 Gy (RBE), V30 Gy (RBE), and V40 Gy (RBE) were significantly higher in the patients with rectal bleeding than in those without. The cutoff values were D6cc = 34.34 Gy (RBE), D2cc = 46.46 Gy (RBE), V10 Gy (RBE) = 9.85 cc, V20 Gy (RBE) = 7.00 cc, V30 Gy (RBE) = 6.91 cc, and V40 Gy (RBE) = 4.26 cc. The D2cc, V10 Gy (RBE), and V20 Gy (RBE) cutoff values were significant predictors of grade 2 rectal bleeding. CONCLUSION The above dose-volume parameters may serve as guidelines for preventing rectal bleeding after 12 fractions of CIRT for prostate cancer.
Collapse
Affiliation(s)
- Takashi Ono
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiraku Sato
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata 990-9585, Japan
| | - Yasuhito Hagiwara
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Natsuko Yano
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiroko Akamatsu
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Mayumi Harada
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Mayumi Ichikawa
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
5
|
Hirai R, Mori S, Suyari H, Tsuji H, Ishikawa H. Optimizing 3DCT image registration for interfractional changes in carbon-ion prostate radiotherapy. Sci Rep 2023; 13:7448. [PMID: 37156901 PMCID: PMC10167266 DOI: 10.1038/s41598-023-34339-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
To perform setup procedures including both positional and dosimetric information, we developed a CT-CT rigid image registration algorithm utilizing water equivalent pathlength (WEPL)-based image registration and compared the resulting dose distribution with those of two other algorithms, intensity-based image registration and target-based image registration, in prostate cancer radiotherapy using the carbon-ion pencil beam scanning technique. We used the data of the carbon ion therapy planning CT and the four-weekly treatment CTs of 19 prostate cancer cases. Three CT-CT registration algorithms were used to register the treatment CTs to the planning CT. Intensity-based image registration uses CT voxel intensity information. Target-based image registration uses target position on the treatment CTs to register it to that on the planning CT. WEPL-based image registration registers the treatment CTs to the planning CT using WEPL values. Initial dose distributions were calculated using the planning CT with the lateral beam angles. The treatment plan parameters were optimized to administer the prescribed dose to the PTV on the planning CT. Weekly dose distributions using the three different algorithms were calculated by applying the treatment plan parameters to the weekly CT data. Dosimetry, including the dose received by 95% of the clinical target volume (CTV-D95), rectal volumes receiving > 20 Gy (RBE) (V20), > 30 Gy (RBE) (V30), and > 40 Gy (RBE) (V40), were calculated. Statistical significance was assessed using the Wilcoxon signed-rank test. Interfractional CTV displacement over all patients was 6.0 ± 2.7 mm (19.3 mm maximum standard amount). WEPL differences between the planning CT and the treatment CT were 1.2 ± 0.6 mm-H2O (< 3.9 mm-H2O), 1.7 ± 0.9 mm-H2O (< 5.7 mm-H2O) and 1.5 ± 0.7 mm-H2O (< 3.6 mm-H2O maxima) with the intensity-based image registration, target-based image registration, and WEPL-based image registration, respectively. For CTV coverage, the D95 values on the planning CT were > 95% of the prescribed dose in all cases. The mean CTV-D95 values were 95.8 ± 11.5% and 98.8 ± 1.7% with the intensity-based image registration and target-based image registration, respectively. The WEPL-based image registration was CTV-D95 to 99.0 ± 0.4% and rectal Dmax to 51.9 ± 1.9 Gy (RBE) compared to 49.4 ± 9.1 Gy (RBE) with intensity-based image registration and 52.2 ± 1.8 Gy (RBE) with target-based image registration. The WEPL-based image registration algorithm improved the target coverage from the other algorithms and reduced rectal dose from the target-based image registration, even though the magnitude of the interfractional variation was increased.
Collapse
Affiliation(s)
- Ryusuke Hirai
- National Institutes for Quantum Science and Technology, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, Inage-ku, Chiba, 263-8555, Japan
- Corporate Research and Development Center, Toshiba Corporation, Kanagawa, 212-8582, Japan
- Department of Information and Image Sciences, Faculty of Engineering, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Shinichiro Mori
- National Institutes for Quantum Science and Technology, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, Inage-ku, Chiba, 263-8555, Japan.
| | - Hiroki Suyari
- Department of Information and Image Sciences, Faculty of Engineering, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Fukata K, Kawamura H, Kubo N, Kanai T, Torikoshi M, Nakano T, Tashiro M, Ohno T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys Med 2021; 90:6-12. [PMID: 34521017 DOI: 10.1016/j.ejmp.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022] Open
Abstract
This retrospective study assessed the treatment planning data and clinical outcomes for 152 prostate cancer patients: 76 consecutive patients treated by carbon-ion radiation therapy and 76 consequtive patients treated by moderate hypo-fractionated intensity-modulated photon radiation therapy. These two modalities were compared using linear quadratic model equivalent doses in 2 Gy per fraction for rectal or rectal wall dose-volume histogram, 3.6 Gy per fraction-converted rectal dose-volume histogram, normal tissue complication probability model, and actual clinical outcomes. Carbon-ion radiation therapy was predicted to have a lower probability of rectal adverse events than intensity-modulated photon radiation therapy based on dose-volume histograms and normal tissue complication probability model. There was no difference in the clinical outcome of rectal adverse events between the two modalities compared in this study.
Collapse
Affiliation(s)
- Kyohei Fukata
- Cancer Center, School of Medicine, Keio University, Tokyo, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan.
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tatsuaki Kanai
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masami Torikoshi
- Gunma University Heavy Ion Medical Center, Gunma, Japan; International Science and Technology Center, Nur-Sultan, Kazakhstan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan; Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
7
|
Magalhaes Martins P, Freitas H, Tessonnier T, Ackermann B, Brons S, Seco J. Towards real-time PGS range monitoring in proton therapy of prostate cancer. Sci Rep 2021; 11:15331. [PMID: 34321492 PMCID: PMC8319377 DOI: 10.1038/s41598-021-93612-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Proton therapy of prostate cancer (PCPT) was linked with increased levels of gastrointestinal toxicity in its early use compared to intensity-modulated radiation therapy (IMRT). The higher radiation dose to the rectum by proton beams is mainly due to anatomical variations. Here, we demonstrate an approach to monitor rectal radiation exposure in PCPT based on prompt gamma spectroscopy (PGS). Endorectal balloons (ERBs) are used to stabilize prostate movement during radiotherapy. These ERBs are usually filled with water. However, other water solutions containing elements with higher atomic numbers, such as silicon, may enable the use of PGS to monitor the radiation exposure of the rectum. Protons hitting silicon atoms emit prompt gamma rays with a specific energy of 1.78 MeV, which can be used to monitor whether the ERB is being hit. In a binary approach, we search the silicon energy peaks for every irradiated prostate region. We demonstrate this technique for both single-spot irradiation and real treatment plans. Real-time feedback based on the ERB being hit column-wise is feasible and would allow clinicians to decide whether to adapt or continue treatment. This technique may be extended to other cancer types and organs at risk, such as the oesophagus.
Collapse
Affiliation(s)
- Paulo Magalhaes Martins
- German Cancer Research Center - DKFZ, Heidelberg, Germany.
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| | - Hugo Freitas
- German Cancer Research Center - DKFZ, Heidelberg, Germany
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin Ackermann
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joao Seco
- German Cancer Research Center - DKFZ, Heidelberg, Germany.
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Zhao J, Chen Z, Wu X, Xing Y, Li Y. Study of an Online Plan Verification Method and the Sensitivity of Plan Delivery Accuracy to Different Beam Parameter Errors in Proton and Carbon Ion Radiotherapy. Front Oncol 2021; 11:666141. [PMID: 34123830 PMCID: PMC8193983 DOI: 10.3389/fonc.2021.666141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
For scanning beam particle therapy, the plan delivery accuracy is affected by spot size deviation, position deviation and particle number deviation. Until now, all plan verification systems available for particle therapy have been designed for pretreatment verification. The purpose of this study is to introduce a method for online plan delivery accuracy checks and to evaluate the sensitivity of plan delivery accuracy to different beam parameter errors. A program was developed using MATLAB to reconstruct doses from beam parameters recorded in log files and to compare them with the doses calculated by treatment planning system (TPS). Both carbon ion plans and proton plans were evaluated in this study. The dose reconstruction algorithm is verified by comparing the dose from the TPS with the reconstructed dose under the same beam parameters. The sensitivity of plan delivery accuracy to different beam parameter errors was analyzed by comparing the dose reconstructed from the pseudo plans that manually added errors with the original plan dose. For the validation of dose reconstruction algorithm, mean dose difference between the reconstructed dose and the plan dose were 0.70% ± 0.24% and 0.51% ± 0.25% for carbon ion beam and proton beam, respectively. According to our simulation, the delivery accuracy of the carbon ion plan is more sensitive to spot position deviation and particle number deviation, and the delivery accuracy of the proton plan is more sensitive to spot size deviation. To achieve a 90% gamma pass rate with 3 mm/3% criteria, the average spot size deviation, position deviation, particle number deviation should be within 23%, 1.9 mm, and 1.5% and 20%, 2.1 mm, and 1.6% for carbon ion beam and proton beam, respectively. In conclusion, the method that we introduced for online plan delivery verification is feasible and reliable. The sensitivity of plan delivery accuracy to different errors was clarified for our system. The methods used in this study can be easily repeated in other particle therapy centers.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhi Chen
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianwei Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ying Xing
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yongqiang Li
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
9
|
Normal tissue complication probability (NTCP) models of acute urinary toxicity (AUT) following carbon ion radiotherapy (CIRT) for prostate cancer. Radiother Oncol 2020; 156:69-79. [PMID: 33309999 DOI: 10.1016/j.radonc.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To estimate the Lyman Kutcher Burman (LKB) and multivariate NTCP models predicting the AUT of prostate cancer treated with CIRT. MATERIALS AND METHODS A cohort of 154 prostate adenocarcinoma patients were retrospectively analyzed. The AUT levels were graded according to CTCAE 4.03. Based on dosimetric parameters and/or clinical factors, a set of variables with best-fit values determined in the two models was validated by the area under the receiver operating characteristic curve (AUC) and used to correlate the predicted and observed NTCP rates for both levels and related endpoints. RESULT 59 (38.3%) patients experienced AUT. For LKB model, the equivalent uniform doses (EUDs) were calculated to be 62.0 GyE (following V61.5 > 1.7%) and 61.2 GyE (following maximum dose > 63.0 GyE) with predicted NTCP rates of 37.0% (AUC: 0.71) and 15.6% (AUC: 0.65) for AUT G1&2 and G2 of bladder. While for the multivariate model, the predicted NTCP rates was 37.1% (AUC: 0.70) and 20.2% (AUC: 0.64) for AUT G1&2 and G2, associated with V61 and V65, respectively. Nocturia was associated with bladder volume and maximum dose for G1&2, with patient's age and maximum bladder dose for G2. Other predictable endpoints were associated with V≥61. The predicted NTCPs agree with the observed complication rates for bladder and its wall. CONCLUSIONS The LKB model successfully predicted the NTCP rates of both AUT levels and urgency urination. The multivariate model predicted well on both levels and nocturia. Decreasing high bladder dose volume may reduce the incidence of AUT.
Collapse
|
10
|
Marcello M, Denham JW, Kennedy A, Haworth A, Steigler A, Greer PB, Holloway LC, Dowling JA, Jameson MG, Roach D, Joseph DJ, Gulliford SL, Dearnaley DP, Sydes MR, Hall E, Ebert MA. Relationships between rectal and perirectal doses and rectal bleeding or tenesmus in pooled voxel-based analysis of 3 randomised phase III trials. Radiother Oncol 2020; 150:281-292. [PMID: 32745667 DOI: 10.1016/j.radonc.2020.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed to identify anatomically-localised regions where planned radiotherapy dose is associated with gastrointestinal toxicities in healthy tissues throughout the pelvic anatomy. MATERIALS AND METHODS Planned dose distributions for up to 657 patients of the Trans Tasman Radiation Oncology Group 03.04 RADAR trial were deformably registered onto a single exemplar computed tomography dataset. Voxel-based multiple comparison permutation dose difference testing, Cox regression modelling and LASSO feature selection were used to identify regions where dose-increase was associated with grade ≥2 rectal bleeding (RB) or tenesmus, according to the LENT/SOMA scale. This was externally validated by registering dose distributions from the RT01 (n = 388) and CHHiP (n = 241) trials onto the same exemplar and repeating the tests on each of these data sets, and on all three datasets combined. RESULTS Voxel-based Cox regression and permutation dose difference testing revealed regions where increased dose was correlated with gastrointestinal toxicity. Grade ≥2 RB was associated with posteriorly extended lateral beams that manifested high doses (>55 Gy) in a small rectal volume adjacent to the clinical target volume. A correlation was found between grade ≥2 tenesmus and increased low-intermediate dose (∼25 Gy) at the posterior beam region, including the posterior rectum and perirectal fat space (PRFS). CONCLUSIONS The serial response of the rectum with respect to RB has been demonstrated in patients with posteriorly extended lateral beams. Similarly, the parallel response of the PRFS with respect to tenesmus has been demonstrated in patients treated with the posterior beam.
Collapse
Affiliation(s)
- Marco Marcello
- Department of Physics, University of Western Australia, Crawley, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia.
| | - James W Denham
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Angel Kennedy
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Camperdown, Australia
| | - Allison Steigler
- Prostate Cancer Trials Group, School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, Australia; Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, Australia
| | - Lois C Holloway
- Department of Medical Physics, Liverpool Cancer Centre, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, Australia; Centre for Medical Radiation Physics, University of Wollongong, Australia
| | - Jason A Dowling
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, Australia; CSIRO, Herston, Australia
| | - Michael G Jameson
- Department of Medical Physics, Liverpool Cancer Centre, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, Australia; Centre for Medical Radiation Physics, University of Wollongong, Australia; Cancer Research Team, Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Dale Roach
- Department of Medical Physics, Liverpool Cancer Centre, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, Australia; Cancer Research Team, Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - David J Joseph
- School of Surgery, University of Western Australia, Crawley, Australia; 5D Clinics, Claremont, Australia; GenesisCare WA, Wembley, Australia
| | - Sarah L Gulliford
- Radiotherapy Department, University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - David P Dearnaley
- Academic UroOncology Unit, The Institute of Cancer Research and the Royal Marsden NHS Trust, London, Australia
| | - Mathew R Sydes
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College, London, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, Sutton, United Kingdom
| | - Martin A Ebert
- Department of Physics, University of Western Australia, Crawley, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia; 5D Clinics, Claremont, Australia
| |
Collapse
|
11
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
12
|
Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers (Basel) 2019; 12:cancers12010046. [PMID: 31877802 PMCID: PMC7016830 DOI: 10.3390/cancers12010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
The clinical application of different relative biological effectiveness (RBE) models for carbon ion RBE-weighted dose calculation hinders a global consensus in defining normal tissue constraints. This work aims to update the local effect model (LEM)-based constraints for the rectum using microdosimetric kinetic model (mMKM)-defined values, relying on RBE translation and the analysis of long-term clinical outcomes. LEM-optimized plans of treated patients, having suffered from prostate adenocarcinoma (n = 22) and sacral chordoma (n = 41), were recalculated with the mMKM using an in-house developed tool. The relation between rectum dose-volume points in the two RBE systems (DLEM|v and DMKM|v) was fitted to translate new LEM-based constraints. Normal tissue complication probability (NTCP) values, predicting late rectal toxicity, were obtained by applying published parameters. No late rectal toxicity events were reported within the patient cohort. The rectal toxicity outcome was confirmed using dosimetric analysis: DMKMVHs lay largely below original constraints; the translated DLEM|v values were 4.5%, 8.3%, 18.5%, and 35.4% higher than the nominal DMKM|v of the rectum volume, v-1%, 5%, 10% and 20%. The average NTCP value ranged from 5% for the prostate adenocarcinoma, to 0% for the sacral chordoma group. The redefined constraints, to be confirmed prospectively with clinical data, are DLEM|5cc ≤ 61 Gy(RBE) and DLEM|1cc ≤ 66 Gy(RBE).
Collapse
|
13
|
Palma G, Monti S, Conson M, Pacelli R, Cella L. Normal tissue complication probability (NTCP) models for modern radiation therapy. Semin Oncol 2019; 46:210-218. [PMID: 31506196 DOI: 10.1053/j.seminoncol.2019.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Mathematical models of normal tissue complication probability (NTCP) able to robustly predict radiation-induced morbidities (RIM) play an essential role in the identification of a personalized optimal plan, and represent the key to maximizing the benefits of technological advances in radiation therapy (RT). Most modern RT techniques pose, however, new challenges in estimating the risk of RIM. The aim of this report is to schematically review NTCP models in the framework of advanced radiation therapy techniques. Issues relevant to hypofractionated stereotactic body RT and ion beam therapy are critically reviewed. Reirradiation scenarios for new or recurrent malignances and NTCP are also illustrated. A new phenomenological approach to predict RIM is suggested.
Collapse
Affiliation(s)
- Giuseppe Palma
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Serena Monti
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Laura Cella
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy.
| |
Collapse
|
14
|
Dale JE, Molinelli S, Vitolo V, Vischioni B, Bonora M, Magro G, Pettersen HES, Mairani A, Hasegawa A, Dahl O, Valvo F, Fossati P. Optic nerve constraints for carbon ion RT at CNAO - Reporting and relating outcome to European and Japanese RBE. Radiother Oncol 2019; 140:175-181. [PMID: 31310888 DOI: 10.1016/j.radonc.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Until now, carbon ion RT (CIRT) dose constraints for the optic nerve (ON) have only been validated and reported in the NIRS RBE-weighted dose (DNIRS). The aim of this work is to improve CNAO's RBE-weighted dose (DLEM) constraints by analyzing institutional toxicity data and by relating it to DNIRS. MATERIAL AND METHODS A total of 65 ONs from 38 patients treated with CIRT to the head and neck region in the period 2013-14 were analyzed. The absorbed dose (DAbs) of the treatment plans was reproduced and subsequently both DLEM and DNIRS were applied, thus relating CNAO clinical toxicity to DNIRS. RESULTS Median FU was 47 (26-67) months. Visual acuity was preserved for the 56 ONs in which the old constraints were respected. Three ONs developed visual decline at DLEM|1% ≥71 Gy(RBE)/DLEM|20% ≥68 Gy(RBE), corresponding to DNIRS|1% ≥68 Gy(RBE)/DNIRS|20% ≥62 Gy(RBE). Dose recalculation revealed that NIRS constraints of DNIRS|1% ≤40 Gy(RBE)/DNIRS|20% ≤28 Gy(RBE) corresponded to DLEM|1% ≤50 Gy(RBE)/DLEM|20% ≤40 Gy(RBE). Reoptimization of treatment plans with these new DLEM constraints showed that the dose distribution still complied with NIRS constraints when evaluated in DNIRS. However, due to uncertainties in the method, and to comply with the EQD2-based constraints used at GSI/HIT, a more moderate constraint relaxation to DLEM|1% ≤45 Gy(RBE)/DLEM|20% ≤37 Gy(RBE) has been implemented in CNAO clinical routine since October 2018. CONCLUSION New DLEM constraints for the ON were derived by analyzing CNAO toxicity data and by linking our results to the experience of NIRS and GSI/HIT. This work demonstrates the value of recalculating and reporting results in both DLEM and DNIRS.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Norway.
| | | | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Andrea Mairani
- National Center of Oncological Hadrontherapy, Pavia, Italy; Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Azusa Hasegawa
- National Center of Oncological Hadrontherapy, Pavia, Italy; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Norway
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
15
|
Radiotherapy in Asia: Making progress step by step. Radiother Oncol 2018; 129:1-2. [PMID: 30001934 DOI: 10.1016/j.radonc.2018.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022]
|
16
|
Yonai S, Matsufuji N, Akahane K. Monte Carlo study of out-of-field exposure in carbon-ion radiotherapy with a passive beam: Organ doses in prostate cancer treatment. Phys Med 2018; 51:48-55. [DOI: 10.1016/j.ejmp.2018.04.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
|
17
|
Okonogi N, Fukahori M, Wakatsuki M, Ohkubo Y, Kato S, Miyasaka Y, Tsuji H, Nakano T, Kamada T. Dose constraints in the rectum and bladder following carbon-ion radiotherapy for uterus carcinoma: a retrospective pooled analysis. Radiat Oncol 2018; 13:119. [PMID: 29941040 PMCID: PMC6019512 DOI: 10.1186/s13014-018-1061-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Background Carbon-ion radiotherapy (C-ion RT) provides better dose distribution in cancer treatment compared to photons. Additionally, carbon-ion beams provide a higher biological effectiveness, and thus a higher tumor control probability. However, information regarding the dose constraints for organs at risk in C-ion RT is limited. This study aimed to determine the predictive factors for late morbidities in the rectum and bladder after carbon-ion C-ion RT for uterus carcinomas. Methods Between June 1995 and January 2010, 134 patients with uterus carcinomas were treated with C-ion RT with curative intent; prescription doses of 52.8–74.4 Gy (relative biological effectiveness) were delivered in 20–24 fractions. Of these patients, 132 who were followed up for > 6 months were analyzed. We separated the data in two subgroups, a 24 fractions group and a 20 fractions group. Late morbidities, proctitis, and cystitis were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer criteria. The correlations of clinical and dosimetric parameters, V10–V60, D5cc, D2cc, and Dmax, with the incidence of ≥grade 1 morbidities were retrospectively analyzed. Results In the 24 fractions group, the 3-year actuarial occurrence rates of ≥grade 1 rectal and bladder morbidities were 64 and 9%, respectively. In addition, in the 20 fractions group, the 3-year actuarial occurrence rates of ≥grade 1 rectal and bladder morbidities were 32 and 19%, respectively. Regarding the dose–volume histogram data on the rectum, the D5cc and D2cc were significantly higher in patients with ≥grade 1 proctitis than in those without morbidity. In addition, the D5cc for the bladder was significantly higher in patients with ≥grade 1 cystitis than in those without morbidity. Results of univariate analyses showed that D2cc of the rectum was correlated with the development of ≥grade 1 late proctitis. Moreover, D5cc of the bladder was correlated with the development of ≥grade 1 late cystitis. Conclusions The present study identified the dose–volume relationships in C-ion RT regarding the occurrence of late morbidities in the rectum and bladder. Assessment of the factors discussed herein would be beneficial in preventing late morbidities after C-ion RT for pelvic malignancies. Trial registration Retrospectively registered (NIRS: 16–040). Electronic supplementary material The online version of this article (10.1186/s13014-018-1061-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noriyuki Okonogi
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Mai Fukahori
- Quality Control Section, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Masaru Wakatsuki
- Department of Radiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yu Ohkubo
- Department of Radiation Oncology, Saku Central Hospital Advanced Care Center, 3400-28 Nakagomi, Saku-shi, Nagano, 385-0051, Japan
| | - Shingo Kato
- Department of Radiation Oncology, Saitama Medical University, International Medical Center, 1397-1 yamane. Hidaka-shi, Saitama, 350-1241, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Tsuji
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tadashi Kamada
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
18
|
Matsufuji N. Selection of carbon beam therapy: biophysical models of carbon beam therapy. JOURNAL OF RADIATION RESEARCH 2018; 59:i58-i62. [PMID: 29528425 PMCID: PMC5868195 DOI: 10.1093/jrr/rry014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/05/2018] [Indexed: 11/06/2024]
Abstract
Variation in the relative biological effectiveness (RBE) within the irradiation field of a carbon beam makes carbon-ion radiotherapy unique and advantageous in delivering the therapeutic dose to a deep-seated tumor, while sparing surrounding normal tissues. However, it is crucial to consider the RBE, not only in designing the dose distribution during treatment planning, but also in analyzing the clinical response retrospectively. At the National Institute of Radiological Sciences, the RBE model was established based on the response of human salivary gland cells. The response was originally handled with a linear-quadratic model, and later with a microdosimetric kinetic model. Retrospective analysis with a tumor-control probability model of non-small cell cancer treatment revealed a steep dose response in the tumor, and that the RBE of the tumor was adequately estimated using the model. A commonly used normal tissue complication probability model has not yet fully been accountable for the variable RBE of carbon ions; however, analysis of rectum injury after prostate cancer treatment suggested a highly serial-organ structure for the rectum, and a steep dose response similar to that observed for tumors.
Collapse
Affiliation(s)
- Naruhiro Matsufuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Inaniwa T, Kanematsu N, Noda K, Kamada T. Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization. Phys Med Biol 2017; 62:5180-5197. [DOI: 10.1088/1361-6560/aa68d7] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Kanematsu N, Inaniwa T. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation. Phys Med Biol 2017; 62:1062-1075. [DOI: 10.1088/1361-6560/62/3/1062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5:901-952. [DOI: 10.1039/c7bm00008a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with four different types of carbon allotrope based nanosystems and summarizes the results of recent studies that are likely to have applications in cancer theranostics. We discuss the applications of these nanosystems for cancer imaging, drug delivery, hyperthermia, and PDT/TA/PA.
Collapse
Affiliation(s)
- Shine Augustine
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology
- Delhi Technological University
- Delhi 110042
- India
| | - Manish Srivastava
- Department of Physics & Astrophysics
- University of Delhi
- Delhi 110007
- India
| | - Monica Sharma
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Asmita Das
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Bansi D. Malhotra
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| |
Collapse
|
22
|
Stokkevåg CH, Fukahori M, Nomiya T, Matsufuji N, Engeseth GM, Hysing LB, Ytre-Hauge KS, Rørvik E, Szostak A, Muren LP. Modelling of organ-specific radiation-induced secondary cancer risks following particle therapy. Radiother Oncol 2016; 120:300-6. [PMID: 27424291 DOI: 10.1016/j.radonc.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/20/2016] [Accepted: 07/03/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Radiation-induced cancer is a serious late effect that may follow radiotherapy. A considerable uncertainty is associated with carcinogenesis from photon-based treatment, and even less established when including relative biological effectiveness (RBE) for particle therapy. The aim of this work was therefore to estimate and in particular explore relative risks (RR) of secondary cancer (SC) following particle therapy as applied in treatment of prostate cancer. MATERIAL AND METHODS RRs of radiation-induced SC in the bladder and rectum were estimated using a bell-shaped dose-response model incorporating RBE and fractionation effects. The risks from volumetric modulated arc therapy (VMAT) were compared to intensity-modulated proton therapy (IMPT) and scanning carbon ions for ten patients. RESULTS The mean estimated RR (95% CI) of SC for VMAT/C-ion was 1.31 (0.65-2.18) for the bladder and 0.58 (0.41-0.80) for the rectum. Corresponding values for VMAT/IMPT were 1.72 (1.06-2.37) and 1.10 (0.78-1.43). The radio-sensitivity parameter α had the strongest influence on the results with decreasing RR for increasing values of α. CONCLUSION Based on the wide spread in RR between patients and variations across the included parameter values, the risk profiles of the rectum and bladder were not dramatically different for the investigated radiotherapy techniques.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Norway.
| | - Mai Fukahori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Takuma Nomiya
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan; Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Naruhiro Matsufuji
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Grete May Engeseth
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv B Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Norway
| | - Artur Szostak
- Department of Physics and Technology, University of Bergen, Norway
| | - Ludvig P Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| |
Collapse
|
23
|
Dréan G, Acosta O, Ospina JD, Fargeas A, Lafond C, Corrégé G, Lagrange JL, Créhange G, Simon A, Haigron P, de Crevoisier R. Identification of a rectal subregion highly predictive of rectal bleeding in prostate cancer IMRT. Radiother Oncol 2016; 119:388-97. [PMID: 27173457 DOI: 10.1016/j.radonc.2016.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/14/2016] [Accepted: 04/16/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE To identify rectal subregions at risks (SRR) highly predictive of 3-year rectal bleeding (RB) in prostate cancer IMRT. MATERIALS AND METHODS Overall, 173 prostate cancer patients treated with IMRT/IGRT were prospectively analyzed, divided into "training" (n=118) and "validation" cohorts (n=53). Dose-volume histograms (DVHs) were calculated in three types of rectal subregions: "geometric", intuitively defined (hemi-rectum,…); "personalized", obtained by non-rigid registration followed by voxel-wise statistical analysis (SRRp); "generic", mapped from SRRps, located within 8×8 rectal subsections (SRRg). DVHs from patients with and without RB were compared and used for toxicity prediction. RESULTS Training cohort SRRps were primarily within the inferior anterior hemi-rectum and upper anal canal, with 3.8Gy mean dose increase for Grade⩾1 RB patients. The SRRg, representing 15% of the absolute rectal volume, was located in 10 inferior-anterior rectal subsections. V18-V70 for SRRps and V58-V65 for SRRg were significantly higher for RB patients than non-RB. Maximum areas under the curve (AUCs) for SRRp and SRRg RB prediction were 71% and 64%, respectively. The validation cohort confirmed the predictive value of SRRg for Grade⩾1 RB. The total cohort confirmed the predictive value of SRRg for Grade⩾2 RB. Geometrical subregions were not RB predictors. CONCLUSION The inferior-anterior hemi anorectum was highly predictive of RB.
Collapse
Affiliation(s)
- Gaël Dréan
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France
| | - Oscar Acosta
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France
| | - Juan D Ospina
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France
| | - Auréline Fargeas
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France
| | - Caroline Lafond
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France; Département de radiothérapie, Centre Eugène Marquis, Rennes, France
| | | | - Jean-L Lagrange
- Hôpital Henri Mondor, France; UPEC, Université Paris Est Créteil, France
| | | | - Antoine Simon
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France
| | - Pascal Haigron
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France
| | - Renaud de Crevoisier
- INSERM 1099, Rennes, France; LTSI, Université de Rennes 1, Rennes, France; Département de radiothérapie, Centre Eugène Marquis, Rennes, France.
| |
Collapse
|