1
|
Lo WCY, Boas CWV, Huynh TT, Klaas A, Grogan F, Strong L, Samson P, Robinson CG, Rogers BE, Bergom C. Using Integrin α vβ 6-Targeted Positron Emission Tomography Imaging to Longitudinally Monitor Radiation-Induced Pulmonary Fibrosis In Vivo. Int J Radiat Oncol Biol Phys 2025; 121:484-492. [PMID: 39284532 DOI: 10.1016/j.ijrobp.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a potentially serious and disabling late complication of radiation therapy. Monitoring RIPF progression is challenging due to the absence of early detection tools and the difficulty in distinguishing RIPF from other lung diseases using standard imaging methods. In the lungs, integrin αvβ6 is crucial in the development of RIPF, acting as a significant activator of transforming growth factor β after radiation injury. This study aimed to investigate integrin αvβ6-targeted positron emission tomography (PET) imaging ([64Cu]Cu-αvβ6-BP) to study RIPF development in vivo. METHODS AND MATERIALS We used a focal RIPF model (70 Gy delivered focally to a 3 mm spot in the lung) and a whole lung RIPF model (14 Gy delivered to the whole lung) in adult C57BL/6J mice. Small animal PET/computed tomography images were acquired 1 hour postinjection of 11.1 MBq of [64Cu]Cu-αvβ6-BP. Animals were imaged for 8 weeks in the focal RIPF model and 6 months in the whole lung RIPF model. Immunohistochemistry for integrin αvβ6 and trichrome staining were performed. RESULTS In the focal RIPF model, there was focal uptake of [64Cu]Cu-αvβ6-BP in the irradiated region at week 4 that progressively increased at weeks 6 and 8. In the whole lung RIPF model, minimal uptake of the probe was observed at 4 months post-radiation therapy, which significantly increased at months 5 and 6. Expression of integrin αvβ6 was validated histologically by immunohistochemistry in both models. CONCLUSIONS Integrin αvβ6-targeted PET imaging using [64Cu]Cu-αvβ6-BP can serve as a useful tool to identify RIPF in vivo.
Collapse
Affiliation(s)
- William C Y Lo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Cristian W Villas Boas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri; Department of Chemistry, Washington University in St Louis, St Louis, Missouri
| | - Amanda Klaas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Felicia Grogan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Lori Strong
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Pamela Samson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
2
|
Wehlte L, Walter J, Daisenberger L, Kuhnle F, Ingenerf M, Schmid-Tannwald C, Brendel M, Kauffmann-Guerrero D, Heinzerling L, Tufman A, Pfluger T, Völter F. The Association between the Body Mass Index, Chronic Obstructive Pulmonary Disease and SUV of the Non-Tumorous Lung in the Pretreatment [ 18F]FDG-PET/CT of Patients with Lung Cancer. Diagnostics (Basel) 2024; 14:1139. [PMID: 38893665 PMCID: PMC11171792 DOI: 10.3390/diagnostics14111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Background: A debate persists on the prognostic value of the pre-therapeutic standardized uptake value (SUV) of non-tumorous lung tissue for the risk assessment of therapy-related pneumonitis, with most studies lacking significant correlation. However, the influence of patient comorbidities on the pre-therapeutic lung SUV has not yet been systematically evaluated. Thus, we aimed to elucidate the association between comorbidities, biological variables and lung SUVs in pre-therapeutic [18F]FDG-PET/CT. Methods: In this retrospective study, the pre-therapeutic SUV in [18F]FDG-PET/CT was measured in non-tumorous areas of both lobes of the lung. SUVMEAN, SUVMAX and SUV95 were compared to a multitude of patient characteristics and comorbidities with Spearman's correlation analysis, followed by a Bonferroni correction and multilinear regression. Results: In total, 240 patients with lung cancer were analyzed. An elevated BMI was significantly associated with increased SUVMAX (β = 0.037, p < 0.001), SUVMEAN (β = 0.017, p < 0.001) and SUV95 (β = 0.028, p < 0.001). Patients with chronic obstructive pulmonary disease (COPD) showed a significantly decreased SUVMAX (β = -0.156, p = 0.001), SUVMEAN (β = -0.107, p < 0.001) and SUV95 (β = -0.134, p < 0.001). Multiple other comorbidities did not show a significant correlation with the SUV of the non-tumorous lung. Conclusions: Failure to consider the influence of BMI and COPD on the pre-therapeutic SUV measurements may lead to an erroneous interpretation of the pre-therapeutic SUV and subsequent treatment decisions in patients with lung cancer.
Collapse
Affiliation(s)
- Lukas Wehlte
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
| | - Julia Walter
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Lea Daisenberger
- Department of Dermatology and Allergy, LMU University Hospital, 80336 Munich, Germany
| | - Felix Kuhnle
- Department of Radiology, LMU University Hospital, 80336 Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, LMU University Hospital, 80336 Munich, Germany
| | | | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, LMU University Hospital, 80336 Munich, Germany
- Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen—European Metropolitan Region Nürnberg, CCC Alliance WERA, 91054 Erlangen, Germany
| | - Amanda Tufman
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
| | - Friederike Völter
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
| |
Collapse
|
3
|
Wang ZS, Wu J, Yuan G, Liu YB, He XP. Dual-energy computed tomography in the early evaluation of acute radiation pneumonia. Eur J Med Res 2024; 29:126. [PMID: 38365822 PMCID: PMC10870433 DOI: 10.1186/s40001-024-01650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE To investigate the value of dual-energy dual-source computed tomography (DSCT) in evaluating pulmonary perfusion changes before and after radiotherapy for esophageal cancer, and its clinical use in the early diagnosis of acute radiation pneumonia (ARP). METHODS We selected 45 patients with pathologically confirmed esophageal cancer who received radiotherapy (total irradiation dose of 60 Gy). Dual-energy DSCT scans were performed before and after radiotherapy and the normalized iodine concentrations (NIC) in the lung fields of the areas irradiated with doses of > 20 Gy, 10-20 Gy, 5-10 Gy, and < 5 Gy were measured. We also checked for the occurrence of ARP in the patients, and the differences in NIC values and NIC reduction rates before and after radiotherapy were calculated and statistically analyzed. RESULTS A total of 16 of the 45 patients developed ARP. The NIC values in the lung fields of all patients decreased at different degrees after radiotherapy, and the NIC values in the area where ARP developed, decreased significantly. The rate of NIC reduction and incidence rate of ARP increased gradually with the increasing irradiation dose, and the inter-group difference in NIC reduction rate was statistically significant (P < 0.05). Based on the receiver operating characteristic (ROC) curve analysis, the areas under the curves of NIC reduction rate versus ARP occurrence in the V5-10 Gy, V10-20 Gy, and V> 20 Gy groups were 0.780, 0.808, and 0.772, respectively. Sensitivity of diagnosis was 81.3%, 75.0%, and 68.8% and the specificity was 65.5%, 82.8%, and 79.3%, when taking 12.50%, 16.50%, and 26.0% as the diagnostic thresholds, respectively. The difference in NIC values in the lung fields of V<5 Gy before and after radiotherapy was not statistically significant (P > 0.05). CONCLUSION The dual-energy DSCT could effectively evaluate pulmonary perfusion changes after radiotherapy for esophageal cancer, and the NIC reduction rate was useful as a reference index to predict ARP and provide further reference for decisions in clinical practice.
Collapse
Affiliation(s)
- Zong-Sheng Wang
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, No. 6 of Zhenhua East Street, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Jing Wu
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, 222000, Jiangsu, China
| | - Gang Yuan
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, No. 6 of Zhenhua East Street, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Yong-Bao Liu
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, No. 6 of Zhenhua East Street, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Xiao-Ping He
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, No. 6 of Zhenhua East Street, Haizhou District, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
4
|
Gates EDH, Hippe DS, Vesselle HJ, Zeng J, Bowen SR. Independent association of metabolic tumor response on FDG-PET with pulmonary toxicity following risk-adaptive chemoradiation for unresectable non-small cell lung cancer: Inherent radiosensitivity or immune response? Radiother Oncol 2023; 185:109720. [PMID: 37244360 PMCID: PMC10525017 DOI: 10.1016/j.radonc.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND In the context of a phase II trial of risk-adaptive chemoradiation, we evaluated whether tumor metabolic response could serve as a correlate of treatment sensitivity and toxicity. METHODS Forty-five patients with AJCCv7 stage IIB-IIIB NSCLC enrolled on the FLARE-RT phase II trial (NCT02773238). [18F]fluorodeoxyglucose (FDG) PET-CT images were acquired prior to treatment and after 24 Gy during week 3. Patients with unfavorable on-treatment tumor response received concomitant boosts to 74 Gy total over 30 fractions rather than standard 60 Gy. Metabolic tumor volume and mean standardized uptake value (SUVmean) were calculated semi-automatically. Risk factors of pulmonary toxicity included concurrent chemotherapy regimen, adjuvant anti-PDL1 immunotherapy, and lung dosimetry. Incidence of CTCAE v4 grade 2+ pneumonitis was analyzed using the Fine-Gray method with competing risks of metastasis or death. Peripheral germline DNA microarray sequencing measured predefined candidate genes from distinct pathways: 96 DNA repair, 53 immunology, 38 oncology, 27 lung biology. RESULTS Twenty-four patients received proton therapy, 23 received ICI, 26 received carboplatin-paclitaxel, and 17 pneumonitis events were observed. Pneumonitis risk was significantly higher for patients with COPD (HR 3.78 [1.48, 9.60], p = 0.005), those treated with immunotherapy (HR 2.82 [1.03, 7.71], p = 0.043) but not with carboplatin-paclitaxel (HR 1.98 [0.71, 5.54], p = 0.19). Pneumonitis rates were similar among selected patients receiving 74 Gy radiation vs 60 Gy (p = 0.33), proton therapy vs photon (p = 0.60), or with higher lung dosimetric V20 (p = 0.30). Patients in the upper quartile decrease in SUVmean (>39.7%) were at greater risk for pneumonitis (HR 4.00 [1.54, 10.44], p = 0.005) and remained significant in multivariable analysis (HR 3.34 [1.23, 9.10], p = 0.018). Germline DNA gene alterations in immunology pathways were most frequently associated with pneumonitis. CONCLUSION Tumor metabolic response as measured by mean SUV is associated with increased pneumonitis risk in a clinical trial cohort of NSCLC patients independent of treatment factors. This may be partially attributed to patient-specific differences in immunogenicity.
Collapse
Affiliation(s)
- Evan D H Gates
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States; Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
5
|
Owen DR, Sun Y, Irrer JC, Schipper MJ, Schonewolf CA, Galbán S, Jolly S, Haken RKT, Galbán C, Matuszak M. Investigating the Incidence of Pulmonary Abnormalities as Identified by Parametric Response Mapping in Lung Cancer Patients Prior to Radiation Treatment. Adv Radiat Oncol 2022; 7:100980. [PMID: 35693252 PMCID: PMC9184868 DOI: 10.1016/j.adro.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Parametric response mapping (PRM) of high-resolution, paired inspiration and expiration computed tomography (CT) scans is a promising analytical imaging technique that is currently used in diagnostic applications and offers the ability to characterize and quantify certain pulmonary pathologies on a patient-specific basis. As one of the first studies to implement such a technique in the radiation oncology clinic, the goal of this work was to assess the feasibility for PRM analysis to identify pulmonary abnormalities in patients with lung cancer before radiation therapy (RT). Methods and Materials High-resolution, paired inspiration and expiration CT scans were acquired from 23 patients with lung cancer as part of routine treatment planning CT acquisition. When applied to the paired CT scans, PRM analysis classifies lung parenchyma, on a voxel-wise basis, as normal, small airways disease (SAD), emphysema, or parenchymal disease (PD). PRM classifications were quantified as a percent of total lung volume and were evaluated globally and regionally within the lung. Results PRM analysis of pre-RT CT scans was successfully implemented using a workflow that produced patient-specific maps and quantified specific phenotypes of pulmonary abnormalities. Through this study, a large prevalence of SAD and PD was demonstrated in this lung cancer patient population, with global averages of 10% and 17%, respectively. Moreover, PRM-classified normal and SAD in the region with primary tumor involvement were found to be significantly different from global lung values. When present, elevated levels of PD and SAD abnormalities tended to be pervasive in multiple regions of the lung, indicating a large burden of underlying disease. Conclusions Pulmonary abnormalities, as detected by PRM, were characterized in patients with lung cancer scheduled for RT. Although further study is needed, PRM is a highly accessible CT-based imaging technique that has the potential to identify local lung abnormalities associated with chronic obstructive pulmonary disease and interstitial lung disease. Further investigation in the radiation oncology setting may provide strategies for tailoring RT planning and risk assessment based on pre-existing PRM-based pathology.
Collapse
Affiliation(s)
- Daniel R. Owen
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Corresponding author: Daniel 'Rocky' Owen, PhD
| | - Yilun Sun
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Departments of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Jim C. Irrer
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Stefanie Galbán
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Shruti Jolly
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - C.J. Galbán
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan
| | - M.M. Matuszak
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Liu X, Shao C, Fu J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021; 9:1181. [PMID: 34572367 PMCID: PMC8470495 DOI: 10.3390/biomedicines9091181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
7
|
Chen X, Sheikh K, Nakajima E, Lin CT, Lee J, Hu C, Hales RK, Forde PM, Naidoo J, Voong KR. Radiation Versus Immune Checkpoint Inhibitor Associated Pneumonitis: Distinct Radiologic Morphologies. Oncologist 2021; 26:e1822-e1832. [PMID: 34251728 PMCID: PMC8488797 DOI: 10.1002/onco.13900] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer may develop pneumonitis after thoracic radiotherapy (RT) and immune checkpoint inhibitors (ICIs). We hypothesized that distinct morphologic features are associated with different pneumonitis etiologies. MATERIALS AND METHODS We systematically compared computed tomography (CT) features of RT- versus ICI-pneumonitis. Clinical and imaging features were tested for association with pneumonitis severity. Lastly, we constructed an exploratory radiomics-based machine learning (ML) model to discern pneumonitis etiology. RESULTS Between 2009 and 2019, 82 patients developed pneumonitis: 29 after thoracic RT, 23 after ICI, and 30 after RT + ICI. Fifty patients had grade 2 pneumonitis, 22 grade 3, and 7 grade 4. ICI-pneumonitis was more likely bilateral (65% vs. 28%; p = .01) and involved more lobes (66% vs. 45% involving at least three lobes) and was less likely to have sharp border (17% vs. 59%; p = .004) compared with RT-pneumonitis. Pneumonitis morphology after RT + ICI was heterogeneous, with 47% bilateral, 37% involving at least three lobes, and 40% sharp borders. Among all patients, risk factors for severe pneumonitis included poor performance status, smoking history, worse lung function, and bilateral and multifocal involvement on CT. An ML model based on seven radiomic features alone could distinguish ICI- from RT-pneumonitis with an area under the receiver-operating curve of 0.76 and identified the predominant etiology after RT + ICI concordant with multidisciplinary consensus. CONCLUSION RT- and ICI-pneumonitis exhibit distinct spatial features on CT. Bilateral and multifocal lung involvement is associated with severe pneumonitis. Integrating these morphologic features in the clinical management of patients who develop pneumonitis after RT and ICIs may improve treatment decision-making. IMPLICATIONS FOR PRACTICE Patients with non-small cell lung cancer often receive thoracic radiation and immune checkpoint inhibitors (ICIs), both of which can cause pneumonitis. This study identified similarities and differences in pneumonitis morphology on computed tomography (CT) scans among pneumonitis due to radiotherapy (RT) alone, ICI alone, and the combination of both. Patients who have bilateral CT changes involving at least three lobes are more likely to have ICI-pneumonitis, whereas those with unilateral CT changes with sharp borders are more likely to have radiation pneumonitis. After RT and/or ICI, severe pneumonitis is associated with bilateral and multifocal CT changes. These results can help guide clinicians in triaging patients who develop pneumonitis after radiation and during ICI treatment.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erica Nakajima
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cheng Ting Lin
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chen Hu
- Division of Biostatistics, Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Russell K Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Khinh Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Mohan V, Bruin NM, van de Kamer JB, Sonke JJ, Vogel WV. The increasing potential of nuclear medicine imaging for the evaluation and reduction of normal tissue toxicity from radiation treatments. Eur J Nucl Med Mol Imaging 2021; 48:3762-3775. [PMID: 33687522 PMCID: PMC8484246 DOI: 10.1007/s00259-021-05284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
Radiation therapy is an effective treatment modality for a variety of cancers. Despite several advances in delivery techniques, its main drawback remains the deposition of dose in normal tissues which can result in toxicity. Common practices of evaluating toxicity, using questionnaires and grading systems, provide little underlying information beyond subjective scores, and this can limit further optimization of treatment strategies. Nuclear medicine imaging techniques can be utilised to directly measure regional baseline function and function loss from internal/external radiation therapy within normal tissues in an in vivo setting with high spatial resolution. This can be correlated with dose delivered by radiotherapy techniques to establish objective dose-effect relationships, and can also be used in the treatment planning step to spare normal tissues more efficiently. Toxicity in radionuclide therapy typically occurs due to undesired off-target uptake in normal tissues. Molecular imaging using diagnostic analogues of therapeutic radionuclides can be used to test various interventional protective strategies that can potentially reduce this normal tissue uptake without compromising tumour uptake. We provide an overview of the existing literature on these applications of nuclear medicine imaging in diverse normal tissue types utilising various tracers, and discuss its future potential.
Collapse
Affiliation(s)
- V Mohan
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N M Bruin
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J B van de Kamer
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - J-J Sonke
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Saha A, Beasley M, Hatton N, Dickinson P, Franks K, Clarke K, Jain P, Teo M, Murray P, Lilley J. Clinical and dosimetric predictors of radiation pneumonitis in early-stage lung cancer treated with Stereotactic Ablative radiotherapy (SABR) - An analysis of UK's largest cohort of lung SABR patients. Radiother Oncol 2021; 156:153-159. [PMID: 33333139 DOI: 10.1016/j.radonc.2020.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Stereotactic Ablative Radiotherapy (SABR) is the standard treatment for early-stage medically inoperable lung cancer. Predictors of radiation pneumonitis (RP) in patients treated with SABR are poorly defined. In this study, we investigate clinical and dosimetric parameters, which can predict symptomatic RP in early-stage lung cancer patients treated with SABR. MATERIALS AND METHODS Patients treated with lung SABR between May 2009 and August 2018, in a single United Kingdom (UK) radiotherapy center were included. The patient's baseline characteristics, treatment details, and toxicity were retrieved from the electronic medical record. Dosimetric data was extracted from Xio and Monaco treatment planning systems. Patients were treated according to the UK SABR consortium guidelines. RP was graded retrospectively using Common Terminology Criteria for Adverse Events (CTCAE) version 4.0, based on available clinical and imaging information. Univariate and multivariate binary logistic regression was performed to determine predictive factors for grade ≥ 2 radiation pneumonitis, using Statistical Package for the Social Sciences (SPSS) statistics version 21 software. The goodness of fit was assessed using the Hosmer and Lemeshow test. The optimal diagnostic threshold was tested using the Receiver operating characteristics (ROC) curve. The chi-square test was carried out to test the different risk factors against the likelihood of developing grade ≥ 2 pneumonitis. RESULTS A total of 1266 patients included in the analysis. The median age of patients was 75 years. Six hundred sixty-six patients (52.6%) were female. Median follow up was 56 months. Sixty-five percent of patients received 55 Gy in 5 fractions. Forty-three percent of patients had Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 2 and 16.2% had PS of 3. The Median Charlson comorbidity index was 6 (range 2-11). Median Standardized Uptake Value (SUV) max of the tumor was 6.5. Four hundred two patients (31.8%) had confirmed histological diagnosis; other patients were treated based on a radiological diagnosis. The median tumor size was 20 mm (range 4 mm-63 mm). Median Planning Target Volume (PTV) was 30.3 cc. Median values of R100, R50, and D2cm were 1.1, 5.6, 32.8 Gy. The median value of mean lung dose, V20, and V12.5 were 3.9 Gy, 5 %and 9.3% respectively. Eighty-five (6.7%) patients developed symptomatic RP (grade ≥ 2) with only 5(0.4%) developing grade 3 RP. Five percent of patients developed rib fractures but only 28% of these were symptomatic. On univariate analysis lower lobe tumor location, larger tumor size, PTV, mean lung dose, lung V20Gy, and V12.5 Gy were significantly associated with grade ≥ 2 RP. On multivariate analysis, only mean lung dose was associated with grade ≥ 2 pneumonitis. ROC curve analysis showed optimal diagnostic threshold for tumour size, PTV, mean lung dose, V20 and V12.5; are 22.5 mm ((Area Under Curve (AUC)-0.565)), 27.15 cc (AUC-0.58), 3.7 Gy (AUC-0.633), 4.6% (AUC-0.597), 9.5% (AUC-0.616). The incidence of ≥grade 2 RP was significantly high for values higher than the ROC threshold. CONCLUSION SABR treatment resulted in a very low rate of grade 3 pneumonitis. Lower lobe tumor location, larger tumor size, PTV, mean lung dose, V20, and V12.5 were found to be significant predictors of symptomatic radiation pneumonitis.
Collapse
Affiliation(s)
- Animesh Saha
- Department of Oncology, Apollo Gleneagles Cancer Hospital, Kolkata, India.
| | - Matthew Beasley
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Nathaniel Hatton
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Peter Dickinson
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Kevin Franks
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Katy Clarke
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Pooja Jain
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Mark Teo
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Patrick Murray
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - John Lilley
- Department of Medical Physics, St James's University Hospital, Leeds, UK
| |
Collapse
|
10
|
Owen DR, Sun Y, Boonstra PS, McFarlane M, Viglianti BL, Balter JM, El Naqa I, Schipper MJ, Schonewolf CA, Ten Haken RK, Kong FMS, Jolly S, Matuszak MM. Investigating the SPECT Dose-Function Metrics Associated With Radiation-Induced Lung Toxicity Risk in Patients With Non-small Cell Lung Cancer Undergoing Radiation Therapy. Adv Radiat Oncol 2021; 6:100666. [PMID: 33817412 PMCID: PMC8010578 DOI: 10.1016/j.adro.2021.100666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Dose to normal lung has commonly been linked with radiation-induced lung toxicity (RILT) risk, but incorporating functional lung metrics in treatment planning may help further optimize dose delivery and reduce RILT incidence. The purpose of this study was to investigate the impact of the dose delivered to functional lung regions by analyzing perfusion (Q), ventilation (V), and combined V/Q single-photon-emission computed tomography (SPECT) dose-function metrics with regard to RILT risk in patients with non-small cell lung cancer (NSCLC) patients who received radiation therapy (RT). Methods and Materials SPECT images acquired from 88 patients with locally advanced NSCLC before undergoing conventionally fractionated RT were retrospectively analyzed. Dose was converted to the nominal dose equivalent per 2 Gy fraction, and SPECT intensities were normalized. Regional lung segments were defined, and the average dose delivered to each lung region was quantified. Three functional categorizations were defined to represent low-, normal-, and high-functioning lungs. The percent of functional lung category receiving ≥20 Gy and mean functional intensity receiving ≥20 Gy (iV20) were calculated. RILT was defined as grade 2+ radiation pneumonitis and/or clinical radiation fibrosis. A logistic regression was used to evaluate the association between dose-function metrics and risk of RILT. Results By analyzing V/Q normalized intensities and functional distributions across the population, a wide range in functional capability (especially in the ipsilateral lung) was observed in patients with NSCLC before RT. Through multivariable regression models, global lung average dose to the lower lung was found to be significantly associated with RILT, and Q and V iV20 were correlated with RILT when using ipsilateral lung metrics. Through a receiver operating characteristic analysis, combined V/Q low-function receiving ≥20 Gy (low-functioning V/Q20) in the ipsilateral lung was found to be the best predictor (area under the curce: 0.79) of RILT risk. Conclusions Irradiation of the inferior lung appears to be a locational sensitivity for RILT risk. The multivariable correlation between ipsilateral lung iV20 and RILT, as well as the association of low-functioning V/Q20 and RILT, suggest that irradiating low-functioning regions in the lung may lead to higher toxicity rates.
Collapse
Affiliation(s)
- Daniel R Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yilun Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Philip S Boonstra
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Matthew McFarlane
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Benjamin L Viglianti
- Department of Radiology, University of Michigan, Ann Arbor, Michigan.,Veterans Administration, Nuclear Medicine Service, Ann Arbor Michigan
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Matthew J Schipper
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | | | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Feng-Ming S Kong
- Hong Kong University Shenzhen Hospital and Queen Mary Hospital, Hong Kong University Li Ka Shing Medical School, Department of Clinical Oncology, Hong Kong.,Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Pandey BN. Low-dose radiation therapy for coronavirus disease-2019 pneumonia: Is it time to look beyond apprehensions? Ann Thorac Med 2020; 15:199-207. [PMID: 33381234 PMCID: PMC7720738 DOI: 10.4103/atm.atm_433_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) has become a global health crisis. Mortality associated with COVID-19 is characterized mainly by acute respiratory distress syndrome (ARDS), sepsis, pneumonia, and respiratory failure. The pathogenesis of the disease is known to be associated with pro-inflammatory processes after virus infection. Hence, various therapeutic strategies are being developed to control the inflammation and cytokine storm in COVID-19 patients. Recently, low-dose radiation therapy (LDRT) has been suggested for the treatment of pneumonia/ADRS in COVID-19 patients through irradiation of lungs by gamma/X-ray. In this direction, a few clinical trials have also been initiated. However, a few recent publications have raised some concerns regarding LDRT, especially about possibilities of activation/aggressiveness of virus (severe acute respiratory syndrome coronavirus 2 in case of COVID-19), lung injury and risk of second cancer after low-dose therapy. The present manuscript is an attempt to analyze these apprehensions based on cited references and other available literature, including some from our laboratory. At this point, LDRT may be not the first line of therapy. However, based on existing anti-inflammatory evidence of LDRT, it needs encouragement as an adjuvant therapy and for more multi-centric clinical trials. In addition, it would be worth combining LDRT with other anti-inflammatory therapies, which would open avenues for multi-modal therapy of pneumonia/ARDS in COVID-19 patients. The mode of irradiation (local lung irradiation or whole-body irradiation) and the window period after infection of the virus, need to be optimized using suitable animal studies for effective clinical outcomes of LDRT. However, considering ample evidence, it is time to look beyond the apprehensions if a low dose of radiation could be exploited for better management of COVID-19 patients.
Collapse
Affiliation(s)
- Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Frerker B, Hildebrandt G. <p>Distinguishing Radiation Pneumonitis from Local Tumour Recurrence Following SBRT for Lung Cancer</p>. REPORTS IN MEDICAL IMAGING 2020. [DOI: 10.2147/rmi.s176901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Salomaa S, Cardis E, Bouffler SD, Atkinson MJ, Hamada N. Low dose radiation therapy for COVID-19 pneumonia: is there any supportive evidence? Int J Radiat Biol 2020; 96:1224-1227. [DOI: 10.1080/09553002.2020.1762020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Elisabeth Cardis
- Campus Mar, Barcelona Biomedical Research Park (PRBB), Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, C/Sinesio Delgado, Madrid, Spain
| | - Simon D. Bouffler
- Public Health England Centre for Radiation, Chemical and Environmental Hazards, Oxon, UK
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz-Center Munich, National Research Centre for Health and Environment, Neuherberg, Germany
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
14
|
Hou TC, Dai KY, Wu MC, Hua KL, Tai HC, Huang WC, Chen YJ. Bio-physic constraint model using spatial registration of delta 18F-fluorodeoxyglucose positron emission tomography/computed tomography images for predicting radiation pneumonitis in esophageal squamous cell carcinoma patients receiving neoadjuvant chemoradiation. Onco Targets Ther 2019; 12:6439-6451. [PMID: 31496743 PMCID: PMC6698165 DOI: 10.2147/ott.s205803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study integrated clinical outcomes and radiomics of advanced thoracic esophageal squamous cell carcinoma patients receiving neoadjuvant concurrent chemoradiotherapy (NACCRT) to establish a novel constraint model for predicting radiation pneumonitis (RP). PATIENTS AND METHODS We conducted a retrospective review for thoracic advanced esophageal cancer patients who received NACCRT. From 2013 to 2018, 89 patients were eligible for review. Staging workup and response evaluation included positron emission tomography/computed tomography (PET/CT) scans and endoscopic ultrasound. Patients received RT with 48 Gy to gross tumor and 43.2 Gy to elective nodal area in simultaneous integrated boost method divided in 24 fractions. Weekly platinum-based chemotherapy was administered concurrently. Side effects were evaluated using CTCAE v4. Images of 2-fluoro-2-deoxyglucose PET/CT before and after NACCRT were registered to planning CT images to create a region of interest for dosimetry parameters that spatially matched RP-related regions, including V10, V20, V50%, V27, and V30. Correlation between bio-physic parameters and toxicity was used to establish a constraint model for avoiding RP. RESULTS Among the investigated cohort, clinical downstaging, complete pathological response, and 5-year overall survival rates were 59.6%, 40%, and 34.4%, respectively. Multivariate logistic regression analysis demonstrated that each individual set standardized uptake value ratios (SUVRs), neither pre- nor post-NACCRT, was not predictive. Interestingly, cutoff increments of 6.2% and 8.9% in SUVRs (delta-SUVR) in registered V20 and V27 regions were powerful predictors for acute and chronic RP, respectively. CONCLUSION Spatial registration of metabolic and planning CT images with delta-radiomics analysis using fore-and-aft image sets can establish a unique bio-physic prediction model for avoiding RP in esophageal cancer patients receiving NACCRT.
Collapse
Affiliation(s)
- Tien-Chi Hou
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Kun-Yao Dai
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ming-Che Wu
- Department of Nuclear Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Kai-Lung Hua
- Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hung-Chi Tai
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, Division of Thoracic Surgery, Mackay Memorial Hospital, Taipei City10449, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung40402, Taiwan
| |
Collapse
|
15
|
Chaudhuri AA, Chen K, Diehn M, Loo BW. Stereotactic Ablative Radiotherapy for Central and Ultra-Central Lung Tumors. ACTA ACUST UNITED AC 2019; 3. [PMID: 33880444 DOI: 10.21037/tro.2019.05.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) has emerged as a standard-of-care treatment for patients with early stage non-small cell lung cancer (NSCLC) who are poor surgical candidates. Current evidence supports the consensus that lung SABR with BED ≥100 Gy leads to high local tumor control, and that the treatment is generally well-tolerated when applied to peripheral lung tumors. However, several studies present conflicting evidence for the treatment of central and ultra-central lung tumors, with some showing superb outcomes and others showing concerning rates of morbidity and mortality. Therefore, treatment of central and especially ultra-central lung tumors with SABR remains controversial. In this review, we aim to present the existing evidence for SABR treatment of central and ultra-central lung tumors and delineate the factors that could lead to significant toxicity.
Collapse
Affiliation(s)
- Aadel A Chaudhuri
- Department of Radiation Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Computer Science & Engineering, Washington University, St. Louis, MO, USA
| | - Kevin Chen
- Department of Radiation Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Maximilian Diehn
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Dreyer J, Bremer M, Henkenberens C. Comorbidity indexing for prediction of the clinical outcome after stereotactic body radiation therapy in non-small cell lung cancer. Radiat Oncol 2018; 13:213. [PMID: 30390700 PMCID: PMC6215615 DOI: 10.1186/s13014-018-1156-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose To determine the prognostic impact of comorbidity and age in medically inoperable early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) using the age-adjusted Charlson Comorbidity Index (aCCI). Patients and methods Between November 2008 and January 2015, 196 consecutive patients with medically inoperable NSCLC were treated with SBRT at a single institution. The prescribed isocenter dose was either 60.0 Gray (Gy) in six fractions for central lung cancer or 56.25 Gy in three fractions for peripheral lung cancer. Baseline comorbidities were retrospectively retrieved according to available outclinic medical records as well as the hospital information system. The aCCI was scored for each patient and subjected according to outcome and toxicity as well as all of the single items of the aCCI and other clinical parameters using univariate and multivariate analysis. Results Thirty-one point 6 % (62/196) of patients were deceased, of whom 17.3% (34/196) died due to lung cancer and 14.3% (28/196) due to comorbidities. The median overall survival (OS) was 15.0 months (95% CI [11.9–18.1]), whereas the median cancer-specific survival (CSS) was not reached. An aCCI ≥7 compared with an aCCI ≤6 was significantly associated with an increased risk of death (HR 1.79, 95% CI [1.02–2.80], p = 0.04) and cancer-specific death (HR 9.26, 95% CI [4.83–24.39], p < 0.001), respectively. Neither OS nor CCS were significantly associated with age, sex, side (left vs. right), lobe, localization (central vs. peripheral), packyears, TNM, or any item of the aCCI. Considering the 14.3% (28/196) of deceased patients who died due to comorbidities, aCCI ≥9 was significantly associated with non-cancer-related death (HR 3.12, 95% CI [1.22–8.33], p = 0.02). The observed cumulative rate of radiation pneumonitis (RP) ≥2 was 12.7% (25/196). The aCCI had no statistical association with RP. Conclusion Advanced age and numerous comorbidities characterizing this patient population were successfully assessed using the aCCI in terms of survival. Therefore, we recommend that age and comorbidity be indexed using the aCCI as a simple scoring system for all patients treated with SBRT for lung cancer.
Collapse
Affiliation(s)
- Julia Dreyer
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Bremer
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Jain V, Berman AT. Radiation Pneumonitis: Old Problem, New Tricks. Cancers (Basel) 2018; 10:E222. [PMID: 29970850 PMCID: PMC6071030 DOI: 10.3390/cancers10070222] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is a major treatment modality for management of non-small cell lung cancer. Radiation pneumonitis is a dose limiting toxicity of radiotherapy, affecting its therapeutic ratio. This review presents patient and treatment related factors associated with the development of radiation pneumonitis. Research focusing on reducing the incidence of radiation pneumonitis by using information about lung ventilation, imaging-based biomarkers as well as normal tissue complication models is discussed. Recent advances in our understanding of molecular mechanisms underlying lung injury has led to the development of several targeted interventions, which are also explored in this review.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Grootjans W, de Geus-Oei LF, Bussink J. Image-guided adaptive radiotherapy in patients with locally advanced non-small cell lung cancer: the art of PET. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:369-384. [PMID: 29869486 DOI: 10.23736/s1824-4785.18.03084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With a worldwide annual incidence of 1.8 million cases, lung cancer is the most diagnosed form of cancer in men and the third most diagnosed form of cancer in women. Histologically, 80-85% of all lung cancers can be categorized as non-small cell lung cancer (NSCLC). For patients with locally advanced NSCLC, standard of care is fractionated radiotherapy combined with chemotherapy. With the aim of improving clinical outcome of patients with locally advanced NSCLC, combined and intensified treatment approaches are increasingly being used. However, given the heterogeneity of this patient group with respect to tumor biology and subsequent treatment response, a personalized treatment approach is required to optimize therapeutic effect and minimize treatment induced toxicity. Medical imaging, in particular positron emission tomography (PET), before and during the course radiotherapy is increasingly being used to personalize radiotherapy. In this setting, PET imaging can be used to improve delineation of target volumes, employ molecularly-guided dose painting strategies, early response monitoring, prediction and monitoring of treatment-related toxicity. The concept of PET image-guided adaptive radiotherapy (IGART) is an interesting approach to personalize radiotherapy for patients with locally advanced NSCLC, which might ultimately contribute to improved clinical outcomes and reductions in frequency of treatment-related adverse events in this patient group. In this review, we provide a comprehensive overview of available clinical data supporting the use of PET imaging for IGART in patients with locally advanced NSCLC.
Collapse
Affiliation(s)
- Willem Grootjans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands -
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Lee HJ, Zeng J, Vesselle HJ, Patel SA, Rengan R, Bowen SR. Correlation of Functional Lung Heterogeneity and Dosimetry to Radiation Pneumonitis using Perfusion SPECT/CT and FDG PET/CT Imaging. Int J Radiat Oncol Biol Phys 2018; 102:1255-1264. [PMID: 30108002 DOI: 10.1016/j.ijrobp.2018.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/18/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To apply a previously designed framework for predicting radiation pneumonitis by using pretreatment lung function heterogeneity metrics, anatomic dosimetry, and functional lung dosimetry derived from 2 imaging modalities within the same cohort. METHODS AND MATERIALS Treatment planning computed tomography (CT) scans were co-registered with pretreatment [99mTc] macro-aggregated albumin perfusion single-photon positron emission tomography (SPECT)/CT scans and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT scans of 28 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥2 (Common Terminology Criteria for Adverse Events, v. 4). Anatomic dosimetric parameters (mean lung dose [MLD], volume receiving ≥20 Gy [V20]) were collected from treatment planning scans. Baseline functional lung heterogeneity parameters and functional lung dose-volume parameters were calculated from pretreatment SPECT/CT and FDG PET/CT scans. Functional heterogeneity parameters calculated over the tumor-subtracted lung included skewness, kurtosis, and coefficient of variation from perfusion SPECT and FDG PET and the global lung parenchymal glycolysis and mean standardized uptake value from FDG PET. Functional dose-volume parameters calculated in regions of highly functional lung, defined on perfusion (p) or SUV (s) images, included mean lung dose (pMLD, sMLD) and V20 (pV20, sV20). Fraction of integral lung function receiving ≥20 Gy (pF20, sF20) was also calculated. Equivalent doses in 2 Gy per fraction (EQD2) were calculated to account for differences in treatment regimens and dose fractionation (EQD2Lung). RESULTS Two anatomic dosimetric parameters (MLD, V20) and 4 functional dosimetric parameters (pMLD, pV20, pF20, sF20) were significant predictors of grade ≥2 pneumonitis (area under the curve >0.84; P < .05). Dose-independent functional lung heterogeneity metrics were not associated with pneumonitis incidence. At thresholds of 100% sensitivity and 65% to 91% specificity, corresponding to maximum prediction accuracy for pneumonitis, these parameters had the following cutoff values: MLD = 13.6 Gy EQD2Lung, V20 = 25%, pMLD = 13.2 Gy EQD2Lung, pV20 = 15%, pF20 = 17%, and sF20 = 25%. Significant parameters MLD, V20, pF20, and sF20 were not cross-correlated to significant parameters pMLD and pV20, indicating that they may offer independently predictive information (Spearman ρ < 0.7). CONCLUSIONS We reported differences in anatomic and functional lung dosimetry between patients with and without pneumonitis in this limited patient cohort. Adding selected independent functional lung parameters may risk stratify patients for pneumonitis. Validation studies are ongoing in a prospective functional lung avoidance trial at our institution.
Collapse
Affiliation(s)
- Howard J Lee
- Duke University School of Medicine, Durham, North Carolina
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Shilpen A Patel
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington; Department of Radiology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
20
|
Yue J, Shi Q, Xu T, Jeter M, Chen TY, Komaki R, Gomez DR, Pan T, Cleeland CS, Liao Z, Wang XS. Patient-reported lung symptoms as an early signal of impending radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation: an observational study. Qual Life Res 2018; 27:1563-1570. [PMID: 29549533 PMCID: PMC5953814 DOI: 10.1007/s11136-018-1834-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Clinician ratings of concurrent chemoradiation (CRT)-induced radiation pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC) are based on both imaging and patient-reported lung symptoms. We compared the value of patient-reported outcomes versus normal-lung uptake of 18F-fluoro-2-deoxyglucose in positron emission computed tomography (FDG PET/CT) during the last week of treatment, for indicating the development of grade ≥ 2 RP within 4 months of CRT completion. METHODS 132 patients with NSCLC-reported RP-related symptoms (coughing, shortness of breath) repeatedly using the validated MD Anderson Symptom Inventory lung cancer module. Of these patients, 68 had FDG PET/CT scans that were analyzed for normal-lung mean standardized FDG uptake values (SUVmean) before, during, and up to 4 months after CRT. Clinicians rated RP using CTCAE version 3. Logistic regression models examined potential predictors for developing CTCAE RP ≥ 2. RESULTS For the entire sample, patient-rated RP-related symptoms during the last week of CRT correlated with clinically meaningful CTCAE RP ≥ 2 post-CRT (OR 2.74, 95% CI 1.25-5.99, P = 0.012), controlled for sex, age, mean lung radiation dose, comorbidity, and baseline symptoms. Moderate/severe patient-rated RP-related symptom score (≥ 4 on a 0-10 scale, P = 0.001) and normal-lung FDG uptake (SUVmean > 0.78, P = 0.002) in last week of CRT were equally strong predictors of post-CRT CTCAE RP ≥ 2 (C-index = 0.78, 0.77). CONCLUSIONS During the last week of CRT, routine assessment of moderate-to-severe RP-related symptoms provides a simple way to identify patients with NSCLC who may be at risk for developing significant post-CRT RP, especially when PET/CT images of normal-lung FDG uptake are not available.
Collapse
Affiliation(s)
- Jinbo Yue
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Qiuling Shi
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melenda Jeter
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting-Yu Chen
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tinsu Pan
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles S Cleeland
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1422, Houston, TX, 77030, USA.
| | - Xin Shelley Wang
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Ueyama T, Arimura T, Takumi K, Nakamura F, Higashi R, Ito S, Fukukura Y, Umanodan T, Nakajo M, Koriyama C, Yoshiura T. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio. Br J Radiol 2018; 91:20170453. [PMID: 29565649 DOI: 10.1259/bjr.20170453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. METHODS We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. RESULTS The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. CONCLUSION PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.
Collapse
Affiliation(s)
- Tomoko Ueyama
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Takeshi Arimura
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Koji Takumi
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Fumihiko Nakamura
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Ryutaro Higashi
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Soichiro Ito
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Yoshihiko Fukukura
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Tomokazu Umanodan
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Masanori Nakajo
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Chihaya Koriyama
- 2 Department of Epidemiology and Preventive Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Takashi Yoshiura
- 1 Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| |
Collapse
|
22
|
Medical physics in radiation Oncology: New challenges, needs and roles. Radiother Oncol 2017; 125:375-378. [PMID: 29150160 DOI: 10.1016/j.radonc.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022]
|
23
|
Zhou C, Jones B, Moustafa M, Schwager C, Bauer J, Yang B, Cao L, Jia M, Mairani A, Chen M, Chen L, Debus J, Abdollahi A. Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model. Radiat Oncol 2017; 12:172. [PMID: 29116014 PMCID: PMC5678815 DOI: 10.1186/s13014-017-0912-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/27/2017] [Indexed: 01/26/2023] Open
Abstract
Background Normal lung tissue tolerance constitutes a limiting factor in delivering the required dose of radiotherapy to cure thoracic and chest wall malignancies. Radiation-induced lung fibrosis (RILF) is considered a critical determinant for late normal tissue complications. While RILF mouse models are frequently approached e.g., as a single high dose thoracic irradiation to investigate lung fibrosis and candidate modulators, a systematic radiobiological characterization of RILF mouse model is urgently needed to compare relative biological effectiveness (RBE) of particle irradiation with protons, helium-, carbon and oxygen ions now available at HIT. We aimed to study the dose-response relationship and fractionation effect of photon irradiation in development of pulmonary fibrosis in C57BL/6 mouse. Methods Lung fibrosis was evaluated 24 weeks after single and fractionated whole thoracic irradiation by quantitative assessment of lung alterations using CT. The fibrosis index (FI) was determined based on 3D-segmentation of the lungs considering the two key fibrosis parameters affected by ionizing radiation i.e., a dose/fractionation dependent reduction of the total lung volume and increase of the mean lung density. Results The effective dose required to induce 50% of the maximal possible fibrosis (ED50) was 14.55 ± 0.34Gy and 27.7 ± 1.22Gy, for single and five- fractions irradiation, respectively. Applying a deterministic model an α/β = 4.49 ± 0.38 Gy for the late lung radiosensitivity was determined. Intriguingly, we found that a linear-quadratic model could be applied to in-vivo log transformed fibrosis (FI) vs. irradiation doses. The LQ model revealed an α/β for lung radiosensitivity of 4.4879 Gy for single fraction and 3.9474 for 5-fractions. Our FI based data were in good agreement with a meta-analysis of previous lung radiosensitivity data derived from different clinical endpoints and various mouse strains. The effect of fractionation on RILF development was further estimated by the biologically effective dose (BED) model with threshold BED (BEDTr) = 30.33 Gy and BEDED50 = 61.63 Gy, respectively. Conclusion The systematic radiobiological characterization of RILF in the C57BL/6 mouse reported in this study marks an important step towards precise estimation of dose-response for development of lung fibrosis. These radiobiological parameters combined with a large repertoire of genetically engineered C57BL/6 mouse models, build a solid foundation for further biologically individualized risk assessment of RILF and functional RBE prediction on novel of particle qualities. Electronic supplementary material The online version of this article (10.1186/s13014-017-0912-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Zhou
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany. .,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, Radiation Oncology, University of Oxford, Oxford, UK
| | - Mahmoud Moustafa
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Christian Schwager
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany
| | - Bing Yang
- Physics Institute University of Heidelberg, Heidelberg, Germany
| | - Liji Cao
- Inviscan SAS, Strasbourg, France
| | - Min Jia
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Italian National Center for Oncological Hadron Therapy (CNAO), Pavia, Italy
| | - Ming Chen
- Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juergen Debus
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
24
|
Dhami G, Zeng J, Vesselle HJ, Kinahan PE, Miyaoka RS, Patel SA, Rengan R, Bowen SR. Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry. Strahlenther Onkol 2017; 193:410-418. [PMID: 28255667 PMCID: PMC5406240 DOI: 10.1007/s00066-017-1114-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To design and apply a framework for predicting symptomatic radiation pneumonitis in patients undergoing thoracic radiation, using both pretreatment anatomic and perfused lung dose-volume parameters. MATERIALS AND METHODS Radiation treatment planning CT scans were coregistered with pretreatment [99mTc]MAA perfusion SPECT/CT scans of 20 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥ 2 (CTCAE v4 grading system). Anatomic lung dose-volume parameters were collected from the treatment planning scans. Perfusion dose-volume parameters were calculated from pretreatment SPECT/CT scans. Equivalent doses in 2 Gy per fraction were calculated in the lung to account for differences in treatment regimens and spatial variations in lung dose (EQD2lung). RESULTS Anatomic lung dosimetric parameters (MLD) and functional lung dosimetric parameters (pMLD70%) were identified as candidate predictors of grade ≥ 2 radiation pneumonitis (AUC > 0.93, p < 0.01). Pairing of an anatomic and functional dosimetric parameter (e. g., MLD and pMLD70%) may further improve prediction accuracy. Not all individuals with high anatomic lung dose (MLD > 13.6 GyEQD2lung, 19.3 Gy for patients receiving 60 Gy in 30 fractions) developed radiation pneumonitis, but all individuals who also had high mean dose to perfused lung (pMLD70% > 13.3 GyEQD2) developed radiation pneumonitis. CONCLUSIONS The preliminary application of this framework revealed differences between anatomic and perfused lung dosimetry in this limited patient cohort. The addition of perfused lung parameters may help risk stratify patients for radiation pneumonitis, especially in treatment plans with high anatomic mean lung dose. Further investigations are warranted.
Collapse
Affiliation(s)
- Gurleen Dhami
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Paul E Kinahan
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Shilpen A Patel
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA.
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA.
| |
Collapse
|