1
|
Hong JP, Choi RJ, Shim JK, Kim K, Kim RN, Cho H, Kim SJ, Kim S, Kim NH, Park HH, Moon JH, Kim EH, Teo WY, Chung S, Chang JH, Kang SG. Synergistic combination of perphenazine and temozolomide suppresses patient-derived glioblastoma tumorspheres. Neuro Oncol 2025; 27:654-667. [PMID: 39392921 PMCID: PMC11889716 DOI: 10.1093/neuonc/noae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM), a primary malignant brain tumor, has a poor prognosis, even with standard treatments such as radiotherapy and chemotherapy. In this study, we explored the anticancer effects of the synergistic combination of perphenazine (PER), a dopamine receptor D2/3 (DRD2/3) antagonist, and temozolomide (TMZ), a standard treatment for GBM, in patient-derived human GBM tumorspheres (TSs). METHODS The biological effects of the combination of PER and TMZ in GBM TSs were assessed by measuring cell viability, ATP, stemness, invasiveness, and apoptosis. Changes in protein and mRNA expression were analyzed using western blotting and RNA sequencing. Co-administration of PER and TMZ was evaluated in vivo using a mouse orthotopic xenograft model. RESULTS The Severance dataset showed that DRD2 and DRD3 expressions were higher in tumor tissues than in the tumor-free cortex of patients with GBM. DRD2/3 knockout by CRISPR/Cas9 in patient-derived human GBM TSs inhibited cell growth and ATP production. The combined treatment with PER and TMZ resulted in superior effects on cell viability and ATP assays compared to those in single treatment groups. Flow cytometry, western blotting, and RNA sequencing confirmed elevated apoptosis in GBM TSs following combination treatment. Additionally, the combination of PER and TMZ downregulated the expression of protein and mRNA associated with stemness and invasiveness. In vivo evaluation showed that combining PER and TMZ extended the survival period of the mouse orthotopic xenograft model. CONCLUSIONS The synergistic combination of PER and TMZ has potential as a novel combination treatment strategy for GBM.
Collapse
Affiliation(s)
- Jun Pyo Hong
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ran Joo Choi
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Kyoung Shim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kibyeong Kim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ryong Nam Kim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - HyeJoung Cho
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Jin Kim
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Hwa Kim
- Department of Premedical, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hun Ho Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wan-Yee Teo
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea
| |
Collapse
|
2
|
He L, Azizad D, Bhat K, Ioannidis A, Hoffmann CJ, Arambula E, Eghbali M, Bhaduri A, Kornblum HI, Pajonk F. Radiation-induced cellular plasticity primes glioblastoma for forskolin-mediated differentiation. Proc Natl Acad Sci U S A 2025; 122:e2415557122. [PMID: 40009641 PMCID: PMC11892679 DOI: 10.1073/pnas.2415557122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma (GBM) is the deadliest brain cancer in adults, and all patients succumb to the tumor. While surgery followed by chemoradiotherapy delays disease progression, these treatments do not lead to tumor control, and targeted therapies or biologics have failed to further improve survival. Utilizing a transient radiation-induced state of multipotency, we used the adenylcyclase activator forskolin to alter the fate of irradiated glioma cells. The effects of the combined treatment on neuronal marker expression, cell cycle distribution, and proliferation were studied. Gene expression profiling was conducted using bulk RNA-seq. Changes in cell populations were investigated using single-cell RNA-seq. Effects on glioma stem cells (GSCs) were studied in extreme limiting dilution assays, and the effects on median survival were studied in both syngeneic and PDOX mouse models of GBM. The combined treatment induced the expression of neuronal markers in glioma cells, reduced proliferation, and led to a distinct gene expression profile. scRNA-seq revealed that the combined treatment forced glioma cells into a microglia- and neuron-like phenotype. In vivo, this treatment led to a loss of GSCs and prolonged median survival. Collectively, our data suggest that revisiting a differentiation therapy with forskolin in combination with radiation could lead to clinical benefit.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA90095
| | - Daria Azizad
- Department of Biological Chemistry at University of California, Los Angeles, CA90095
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Carter J. Hoffmann
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Evelyn Arambula
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Mansoureh Eghbali
- Department of Anesthesiology at University of California, Los Angeles, CA90095
| | - Aparna Bhaduri
- Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA90095
- Department of Biological Chemistry at University of California, Los Angeles, CA90095
| | - Harley I. Kornblum
- Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA90095
- Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior at University of California, Los Angeles, CA90095
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA90095
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of dopamine receptor antagonists and radiation on mouse neural stem/progenitor cells. Radiother Oncol 2024; 201:110562. [PMID: 39341503 PMCID: PMC11987595 DOI: 10.1016/j.radonc.2024.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Dopamine receptor antagonists have recently been identified as potential anti-cancer agents in combination with radiation, and a first drug of this class is in clinical trials against pediatric glioma. Radiotherapy causes cognitive impairment primarily by eliminating neural stem/progenitor cells and subsequent loss of neurogenesis, along with inducing inflammation, vascular damage, and synaptic alterations. Here, we tested the combined effects of dopamine receptor antagonists and radiation on neural stem/progenitor cells. METHODS Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of EGFP, the effects of dopamine receptor antagonists alone or in combination with radiation on neural stem/progenitor cells were assessed in sphere-formation assays, extreme limiting dilution assays, flow cytometry and real-time PCR in vitro and in vivo in both sexes. RESULTS We report that hydroxyzine and trifluoperazine exhibited sex-dependent effects on murine newborn neural stem/progenitor cells in vitro. In contrast, amisulpride, nemonapride, and quetiapine, when combined with radiation, significantly increased the number of neural stem/progenitor cells in both sexes. In vivo, trifluoperazine showed sex-dependent effects on adult neural stem/progenitor cells, while amisulpride demonstrated significant effects in both sexes. Further, amisulpride increased sphere forming capacity and stem cell frequency in both sexes when compared to controls. CONCLUSION We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exists, making it a novel combination therapy against glioblastoma. Normal tissue toxicity following this treatment scheme likely differs depending on age and sex and should be taken into consideration when designing clinical trials.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States.
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States; Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurosurgery, David Geffen School of Medicine at UCLA, United States
| |
Collapse
|
4
|
Thang M, Mellows C, Kass LE, Daglish S, Fennell EM, Mann BE, Mercer-Smith AR, Valdivia A, Graves LM, Hingtgen SD. Combining the constitutive TRAIL-secreting induced neural stem cell therapy with the novel anti-cancer drug TR-107 in glioblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200834. [PMID: 39045029 PMCID: PMC11263637 DOI: 10.1016/j.omton.2024.200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/27/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Sabrina Daglish
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Emily M.J. Fennell
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Breanna E. Mann
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alison R. Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shawn D. Hingtgen
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|
5
|
de la Nava D, Ausejo-Mauleon I, Laspidea V, Gonzalez-Huarriz M, Lacalle A, Casares N, Zalacain M, Marrodan L, García-Moure M, Ochoa MC, Tallon-Cobos AC, Hernandez-Osuna R, Marco-Sanz J, Dhandapani L, Hervás-Corpión I, Becher OJ, Nazarian J, Mueller S, Phoenix TN, van der Lugt J, Hernaez M, Guruceaga E, Koschmann C, Venneti S, Allen JE, Dun MD, Fueyo J, Gomez-Manzano C, Gallego Perez-Larraya J, Patiño-García A, Labiano S, Alonso MM. The oncolytic adenovirus Delta-24-RGD in combination with ONC201 induces a potent antitumor response in pediatric high-grade and diffuse midline glioma models. Neuro Oncol 2024; 26:1509-1525. [PMID: 38554031 PMCID: PMC11300018 DOI: 10.1093/neuonc/noae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq, and multiplexed immunofluorescence staining. RESULTS The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.
Collapse
Affiliation(s)
- Daniel de la Nava
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Iker Ausejo-Mauleon
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Virginia Laspidea
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Andrea Lacalle
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marta Zalacain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Lucía Marrodan
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marc García-Moure
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Maria C Ochoa
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Antonio Carlos Tallon-Cobos
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Reyes Hernandez-Osuna
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Javier Marco-Sanz
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Laasya Dhandapani
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Irati Hervás-Corpión
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Oren J Becher
- Jack Martin Fund Division of Pediatric Hematology-oncology, Mount Sinai, New York, USA
| | - Javad Nazarian
- Division of Oncology and Children’s Research Center, DIPG/DMG Research Center Zurich, University Children’s Hospital Zurich, Zurich, Switzerland
- Virginia Tech University, Washington, District of Columbia, USA
- Children’s National Health System, Center for Genetic Medicine Research, Washington, District of Columbia, USA
| | - Sabine Mueller
- University of California, San FranciscoSan Francisco, California, USA
- Division of Oncology and Children’s Research Center, DIPG/DMG Research Center Zurich, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Mikel Hernaez
- Bioinformatics Platform, Center for Applied Medical Research, University of Navarra (CIMA), Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, Center for Applied Medical Research, University of Navarra (CIMA), Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sriram Venneti
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Matthew D Dun
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Gallego Perez-Larraya
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Ana Patiño-García
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Sara Labiano
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marta M Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
6
|
He L, Ioannidis A, Hoffman CJ, Arambula E, Joshi P, Whitelegge J, Liau LM, Kornblum HI, Pajonk F. Activation of the Mevalonate Pathway in Response to Anti-cancer Treatments Drives Glioblastoma Recurrences Through Activation of Rac-1. CANCER RESEARCH COMMUNICATIONS 2024; 4:1566-1580. [PMID: 38837899 PMCID: PMC11197925 DOI: 10.1158/2767-9764.crc-24-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Glioblastoma (GBM) is the deadliest adult brain cancer. Under the current standard of care, almost all patients succumb to the disease and novel treatments are urgently needed. Recognizing that GBMs are addicted to cholesterol, past clinical trials have repurposed statins against GBM but failed. The purpose of this study was to test whether treatments that upregulate the cholesterol biosynthesis pathway in GBM would generate a metabolic vulnerability that can be exploited using statins and to determine the underlying mechanisms.Effects of radiotherapy and temozolomide or dopamine receptor antagonists on the mevalonate pathway in GBM were assessed in vitro and in vivo. The impact of statins on self-renewal of glioma stem cells and median survival was studied. Branches of the mevalonate pathway were probed to identify relevant effector proteins.Cells surviving combination treatments that converge in activating the immediate early response, universally upregulated the mevalonate pathway and increased stemness of GBM cells through activation of the Rho-GTPase Rac-1. Activation of the mevalonate pathway and Rac-1 was inhibited by statins, which led to improved survival in mouse models of glioblastoma when combined with radiation and drugs that target the glioma stem cell pool and plasticity of glioma cells.We conclude that a combination of dopamine receptor antagonists and statins could potentially improve radiotherapy outcome and warrants further investigation. SIGNIFICANCE Combination therapies that activate the mevalonate pathway in GBM cells after sublethal treatment enhance self-renewal and migratory capacity through Rac-1 activation, which creates a metabolic vulnerability that can be further potentially exploited using statins.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Carter J. Hoffman
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Evelyn Arambula
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Purva Joshi
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julian Whitelegge
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
- Department of Psychiatry and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Linda M. Liau
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Harley I. Kornblum
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
- Department of Psychiatry and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
7
|
He L, Azizad D, Bhat K, Ioannidis A, Hoffmann CJ, Arambula E, Bhaduri A, Kornblum HI, Pajonk F. Radiation-Induced Cellular Plasticity: A Strategy for Combatting Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593985. [PMID: 38798647 PMCID: PMC11118449 DOI: 10.1101/2024.05.13.593985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Glioblastoma is the deadliest brain cancer in adults and almost all patients succumb to the tumor. While surgery followed by chemo-radiotherapy significantly delays disease progression, these treatments do not lead to long-term tumor control and targeted therapies or biologics have so far failed to further improve survival. Utilizing a transient radiation-induced state of multipotency we used the adenylcyclase activator forskolin to alter the cellular fate of glioma cells in response to radiation. The combined treatment induced the expression of neuronal markers in glioma cells, reduced proliferation and led to a distinct gene expression profile. scRNAseq revealed that the combined treatment forced glioma cells into a microglia- and neuron-like phenotypes. In vivo this treatment led to a loss of glioma stem cells and prolonged median survival in mouse models of glioblastoma. Collectively, our data suggest that revisiting a differentiation therapy with forskolin in combination with radiation could lead to clinical benefit.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
- Jonsson Comprehensive Cancer Center at UCLA
| | | | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Carter J. Hoffmann
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Evelyn Arambula
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Aparna Bhaduri
- Jonsson Comprehensive Cancer Center at UCLA
- Department of Biological Chemistry at UCLA
| | - Harley I. Kornblum
- Jonsson Comprehensive Cancer Center at UCLA
- NPI-Semel Institute for Neuroscience & Human Behavior at UCLA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
- Jonsson Comprehensive Cancer Center at UCLA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA
| |
Collapse
|
8
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Shi L, Chen H, Chen K, Zhong C, Song C, Huang Y, Wang T, Chen L, Li C, Huang A, Qi S, Li H, Lu Y. The DRD2 Antagonist Haloperidol Mediates Autophagy-Induced Ferroptosis to Increase Temozolomide Sensitivity by Promoting Endoplasmic Reticulum Stress in Glioblastoma. Clin Cancer Res 2023; 29:3172-3188. [PMID: 37249604 DOI: 10.1158/1078-0432.ccr-22-3971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Temozolomide resistance remains a major obstacle in the treatment of glioblastoma (GBM). The combination of temozolomide with another agent could offer an improved treatment option if it could overcome chemoresistance and prevent side effects. Here, we determined the critical drug that cause ferroptosis in GBM cells and elucidated the possible mechanism by which drug combination overcomes chemoresistance. EXPERIMENTAL DESIGN Haloperidol/temozolomide synergism was assessed in GBM cell lines with different dopamine D2 receptor (DRD2) expression in vitro and in vivo. Inhibitors of ferroptosis, autophagy, endoplasmic reticulum (ER) stress and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) were used to validate the specific mechanisms by which haloperidol and temozolomide induce ferroptosis in GBM cells. RESULTS In the present work, we demonstrate that the DRD2 level is increased by temozolomide in a time-dependent manner and is inversely correlated with temozolomide sensitivity in GBM. The DRD2 antagonist haloperidol, a butylbenzene antipsychotic, markedly induces ferroptosis and effectively enhances temozolomide efficacy in vivo and in vitro. Mechanistically, haloperidol suppressed the effect of temozolomide on cAMP by antagonizing DRD2 receptor activity, and the increases in cAMP/PKA triggered ER stress, which led to autophagy and ferroptosis. Furthermore, elevated autophagy mediates downregulation of FTH1 expression at the posttranslational level in an autophagy-dependent manner and ultimately leads to ferroptosis. CONCLUSIONS Our results provide experimental evidence for repurposing haloperidol as an effective adjunct therapy to inhibit adaptive temozolomide resistance to enhance the efficacy of chemoradiotherapy in GBM, a strategy that may have broad prospects for clinical application.
Collapse
Affiliation(s)
- Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanning Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunxiang Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengzong Zhong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Yifeng Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chiyang Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Annie Huang
- Brain Tumor Research Center, SickKids Hospital, Toronto, Canada
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuntao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Amjadi O, Hedayatizadeh-Omran A, Zaboli E, Ghaffari-Hamedani MM, Janbabaei G, Ahangari G. Dopamine receptors gene overexpression in the microenvironment of invasive gastric cancer and its potential implications. Mol Biol Rep 2023; 50:6529-6542. [PMID: 37330941 DOI: 10.1007/s11033-023-08541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common cancer worldwide and the most commonly diagnosed cancer in Iran. The nervous system provides proximity to tumor cells by releasing neurotransmitters such as dopamine and presenting them to the corresponding receptor-bearing tumors. While nerve fibers infiltrate the tumor microenvironment, little is known about the expression levels of dopamine (DA), dopamine receptors (DRs), and catechol-O-methyltransferase (COMT) in GC patients. METHODS DRs and COMT expression were analyzed in 45 peripheral blood mononuclear cells (PBMCs) and 20 paired tumor and adjacent tissue of GC patients by quantitative polymerase chain reaction. DA was measured in plasma specimens using enzyme-linked immunosorbent assay. Protein-protein interaction analysis was carried out to identify GC-related hub genes. RESULTS Increased expression of DRD1-DRD3 was found in tumor specimens compared with adjacent non-cancerous specimens (P < 0.05). A positive correlation was found between DRD1 and DRD3 expression (P = 0.009); DRD2 and DRD3 expression (P = 0.04). Plasma levels of dopamine were significantly lower in patients (1298 pg/ml) than in controls (4651 pg/ml). DRD1-DRD4 and COMT were up-regulated in PBMCs of patients compared with controls (P < 0.0001). Bioinformatic analyses showed 30 hub genes associated with Protein kinase A and extracellular signal-regulated kinase signaling pathways. CONCLUSIONS The findings indicated dysregulation of DRs and COMT mRNA expression in GC and suggest that the brain- gastrointestinal axis may mediate gastric cancer development. Network analysis revealed that combination treatments could be considered for optimizing and improving the precision treatment of GC.
Collapse
Affiliation(s)
- Omolbanin Amjadi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O. Box: 1497716316, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ghasem Janbabaei
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O. Box: 1497716316, Iran.
| |
Collapse
|
11
|
He L, Ioannidis A, Arambula E, Hoffman CJ, Joshi P, Kathiravan A, Whitelegge J, Liau LM, Kornblum HI, Pajonk F. Activation of the mevalonate pathway in response to anti-cancer treatments drives glioblastoma recurrences through activation of Rac-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550205. [PMID: 37546917 PMCID: PMC10402033 DOI: 10.1101/2023.07.23.550205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the deadliest adult brain cancer. Under the current standard of care almost all patients succumb to the disease and novel treatments are urgently needed. Dopamine receptor antagonists have been shown to target cancer cell plasticity in GBM and repurposing these FDA-approved drugs in combination with radiation improves the efficacy of radiotherapy in glioma models. In cells surviving this combination treatment the mevalonate pathway is upregulated at the transcriptional and functional level. Here we report that glioblastoma treatments that converge in the immediate early response to radiation through activation of the MAPK cascade universally upregulate the mevalonate pathway and increase stemness of GBM cells through activation of the Rho-GTPase Rac-1. Activation of the mevalonate pathway and Rac-1 is inhibited by statins, which leads to improved survival in mouse models of glioblastoma when combined with radiation and drugs that target the glioma stem cell pool and plasticity of glioma cells.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Evelyn Arambula
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Carter J. Hoffman
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Purva Joshi
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | | | - Julian Whitelegge
- Jonsson Comprehensive Cancer Center at UCLA
- Department of Psychiatry and Human Behavior, David Geffen School of Medicine at UCLA
| | - Linda M. Liau
- Jonsson Comprehensive Cancer Center at UCLA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA
| | - Harley I. Kornblum
- Jonsson Comprehensive Cancer Center at UCLA
- Department of Psychiatry and Human Behavior, David Geffen School of Medicine at UCLA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
- Jonsson Comprehensive Cancer Center at UCLA
| |
Collapse
|
12
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of Dopamine Receptor Antagonists and Radiation on Mouse Neural Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524632. [PMID: 36712018 PMCID: PMC9882258 DOI: 10.1101/2023.01.18.524632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Dopamine receptor antagonists are psychotropic drugs that have been originally developed against psychiatric disorders. We recently identified dopamine receptor antagonists as potential anti-cancer agents and some have entered clinical trials against glioblastoma. Radiotherapy is known to cause cognitive impairment in patients receiving cranial irradiation through the elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Methods Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of enhanced green fluorescent protein, the effects of dopamine receptor antagonists alone or in combination with radiation on murine neural stem/progenitor cells were assessed in sphere-formation assays, flow cytometry and immunofluorescence in vitro and in vivo . Results We report that several dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells both in vitro and in vivo . Hydroxyzine, trifluoperazine, amisulpride, nemonapride or quetiapine alone or in combination with radiation significantly increased the number of neural stem/progenitor cells in female neurospheres but not in male mice. Dopamine receptor antagonists either protected neural stem/progenitor cells from radiation or expanded the stem cell pool, thus indicating that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Conclusions We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exist, making it a novel combination therapy against glioblastoma. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be taken into consideration when designing clinical trials. Key Points - Neural stem/progenitor cells show sex-dependent sensitivity to dopamine receptor antagonists- Dopamine receptor antagonists active against GBM increase Neural stem/progenitor cells counts. Importance of the Study Combination therapy of dopamine receptor antagonists with radiation have entered clinical trials against glioblastoma but the normal tissue toxicity of this combination has not been fully explored yet. Here we present evidence that some dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells either by protecting neural stem/progenitor cells from radiation or inducing an expansion of the stem cell pool, suggesting that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be further explored in clinical trials.
Collapse
|
13
|
Zhou P, Wu C, Ma C, Luo T, Yuan J, Zhou P, Wei Z. Identification of an endoplasmic reticulum stress-related gene signature to predict prognosis and potential drugs of uterine corpus endometrial cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4018-4039. [PMID: 36899615 DOI: 10.3934/mbe.2023188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uterine corpus endometrial cancer (UCEC) is the sixth most common female cancer worldwide, with an increasing incidence. Improving the prognosis of patients living with UCEC is a top priority. Endoplasmic reticulum (ER) stress has been reported to be involved in tumor malignant behaviors and therapy resistance, but its prognostic value in UCEC has been rarely investigated. The present study aimed to construct an ER stress-related gene signature for risk stratification and prognosis prediction in UCEC. The clinical and RNA sequencing data of 523 UCEC patients were extracted from TCGA database and were randomly assigned into a test group (n = 260) and training group (n = 263). An ER stress-related gene signature was established by LASSO and multivariate Cox regression in the training group and validated by Kaplan-Meier survival analysis, Receiver Operating Characteristic (ROC) curves and nomograms in the test group. Tumor immune microenvironment was analyzed by CIBERSORT algorithm and single-sample gene set enrichment analysis. R packages and the Connectivity Map database were used to screen the sensitive drugs. Four ERGs (ATP2C2, CIRBP, CRELD2 and DRD2) were selected to build the risk model. The high-risk group had significantly reduced overall survival (OS) (P < 0.05). The risk model had better prognostic accuracy than clinical factors. Tumor-infiltrating immune cells analysis depicted that CD8+ T cells and regulatory T cells were more abundant in the low-risk group, which may be related to better OS, while activated dendritic cells were active in the high-risk group and associated with unfavorable OS. Several kinds of drugs sensitive to the high-risk group were screened out. The present study constructed an ER stress-related gene signature, which has the potential to predict the prognosis of UCEC patients and have implications for UCEC treatment.
Collapse
Affiliation(s)
- Pei Zhou
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ting Luo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jing Yuan
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
14
|
Frosina G. Most recent update of preclinical and clinical data on radioresistance and radiosensitivity of high-grade gliomas-a radiation oncologist's perspective. Strahlenther Onkol 2023; 199:1-21. [PMID: 36445383 DOI: 10.1007/s00066-022-02020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE This review article discusses the studies concerning advances in radiotherapy of high-grade gliomas published in the second half of 2021. METHODS A literature search was performed in PubMed using the terms ("gliom* and radio*") and time limits 1 July 2021-31 December 2021. The articles were then manually selected for relevance to the analyzed topics. RESULTS Considerable progress has been made in the preclinical field on the mechanisms of radioresistance and radiosensitization of high-grade gliomas (HGG). However, fewer early-phase (I/II) clinical trials have been performed and, of the latter, even fewer have produced results that justify moving to phase III. In the 6‑month period under consideration, no studies were published that would lead to a change in clinical practice and the overall survival (OS) of patients remained similar to that of 2005, the year in which it increased significantly for the last time thanks to introduction of the alkylating agent temozolomide. CONCLUSION After 17 years of stalemate in improving the OS of patients with HGG, an in-depth analysis of the causes should be carried out in order to identify whether the research efforts conducted so far, including in the radiotherapeutic field, have been the most effective or require improvement. In our opinion, in addition to the therapeutic difficulties related to the biology of HGG tumors (e.g., high infiltrating capacity, multiple resistance mechanisms, blood-brain barrier), some public research policy choices may also play a role, especially in consideration of the limited interest of the pharmaceutical industry in the field of rare cancers.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
15
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
16
|
Nguyen T, Mueller S, Malbari F. Review: Neurological Complications From Therapies for Pediatric Brain Tumors. Front Oncol 2022; 12:853034. [PMID: 35480100 PMCID: PMC9035987 DOI: 10.3389/fonc.2022.853034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor treatment over the past decades. Recently, new treatment modalities have emerged for the management of pediatric brain tumors. These therapies range from novel radiotherapy techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer therapies. These treatments are currently investigated with the goal of improving survival and decreasing morbidity. However, compared to traditional therapies, these novel modalities are not as well elucidated and similarly has the potential to cause significant short and long-term sequelae, impacting quality of life. Treatment complications are commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced complications is the focus of new trials, specifically improving neurocognitive outcomes. The aim of this review is to explore the pathophysiology underlying treatment related neurologic side effects, highlight associated complications, and describe the future direction of brain tumor protocols. Increasing awareness of these neurologic complications from novel therapies underscores the need for quality-of-life metrics and considerations in clinical trials to decrease associated treatment-induced morbidity.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Pediatrics, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Thien Nguyen,
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of San Francisco, San Francisco, CA, United States
| | - Fatema Malbari
- Division of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
MMP14 Contributes to HDAC Inhibition-Induced Radiosensitization of Glioblastoma. Int J Mol Sci 2021; 22:ijms221910403. [PMID: 34638754 PMCID: PMC8508883 DOI: 10.3390/ijms221910403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment method of GBM. However, the intrinsic radioresistance of GBM cells is a key reason of poor therapeutic efficiency. Recently, many studies have shown that using the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) in radiotherapy may improve the prognosis of GBM patients, but the underlying molecular mechanisms remain unclear. In this study, Gene Expression Omnibus (GEO) datasets GSE153982 and GSE131956 were analyzed to evaluate radiation-induced changes of gene expression in GBM without or with SAHA treatment, respectively. Additionally, the survival-associated genes of GBM patients were screened using the Chinese Glioma Genome Atlas (CGGA) database. Taking the intersection of these three datasets, 11 survival-associated genes were discovered to be activated by irradiation and regulated by SAHA. The expressions of these genes were further verified in human GBM cell lines U251, T98G, and U251 homologous radioresistant cells (U251R) by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It was found that MMP14 mRNA was considerably highly expressed in the radioresistant cell lines and was reduced by SAHA treatment. Transfection of MMP14 siRNA (siMMP14) suppressed cell survivals of these GBM cells after irradiation. Taken together, our results reveal for the first time that the MMP14 gene contributed to SAHA-induced radiosensitization of GBM.
Collapse
|