1
|
Maragiannis K, Benz DC, Saguner AM, Breitenstein A, Michel J, Pazhenkottil AP, Kaufmann PA, Buechel RR, Giannopoulos AA. Cardiac CT for electrophysiological interventions. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025:10.1007/s10554-025-03397-8. [PMID: 40419831 DOI: 10.1007/s10554-025-03397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/30/2025] [Indexed: 05/28/2025]
Abstract
Cardiac computed tomography (CCT) holds an important role in the field of electrophysiology offering critical insights that enhance the management of arrhythmias through precise procedural planning and execution. It has furthermore established its role as a useful imaging modality in left atrial appendage closure procedures. This review discusses the current applications of CCT from pre-interventional assessment to post-interventional follow-up, emphasizing its utility in improving the safety and efficacy of electrophysiological and left atrial appendage occlusion interventions. It also explores the integration of CCT with advanced technologies such as electroanatomical mapping systems and the emergence of innovative imaging modalities, including three-dimensional cardiac computational modelling. CCT's evolving capabilities suggest a promising future in electrophysiology and left atrial occlusion procedures when combined with further technological advancements, including artificial intelligence software.
Collapse
Affiliation(s)
- Kosmas Maragiannis
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital, University of Zurich, Schlieren, 8952, Switzerland
| | - Alexander Breitenstein
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Jonathan Michel
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland.
| |
Collapse
|
2
|
Kawamura M, Shimojo M, Tatsugami F, Hirata K, Fujita S, Ueda D, Matsui Y, Fushimi Y, Fujioka T, Nozaki T, Yamada A, Ito R, Fujima N, Yanagawa M, Nakaura T, Tsuboyama T, Kamagata K, Naganawa S. Stereotactic arrhythmia radioablation for ventricular tachycardia: a review of clinical trials and emerging roles of imaging. JOURNAL OF RADIATION RESEARCH 2025; 66:1-9. [PMID: 39656944 PMCID: PMC11753837 DOI: 10.1093/jrr/rrae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Indexed: 12/17/2024]
Abstract
Ventricular tachycardia (VT) is a severe arrhythmia commonly treated with implantable cardioverter defibrillators, antiarrhythmic drugs and catheter ablation (CA). Although CA is effective in reducing recurrent VT, its impact on survival remains uncertain, especially in patients with extensive scarring. Stereotactic arrhythmia radioablation (STAR) has emerged as a novel treatment for VT in patients unresponsive to CA, leveraging techniques from stereotactic body radiation therapy used in cancer treatments. Recent clinical trials and case series have demonstrated the short-term efficacy and safety of STAR, although long-term outcomes remain unclear. Imaging techniques, such as electroanatomical mapping, contrast-enhanced magnetic resonance imaging and nuclear imaging, play a crucial role in treatment planning by identifying VT substrates and guiding target delineation. However, challenges persist owing to the complex anatomy and variability in target volume definitions. Advances in imaging and artificial intelligence are expected to improve the precision and efficacy of STAR. The exact mechanisms underlying the antiarrhythmic effects of STAR, including potential fibrosis and improvement in cardiac conduction, are still being explored. Despite its potential, STAR should be cautiously applied in prospective clinical trials, with a focus on optimizing dose delivery and understanding long-term outcomes. Collaborative efforts are necessary to standardize treatment strategies and enhance the quality of life for patients with refractory VT.
Collapse
Affiliation(s)
- Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho,Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
3
|
Trojani V, Grehn M, Botti A, Balgobind B, Savini A, Boda-Heggemann J, Miszczyk M, Elicin O, Krug D, Andratschke N, Schmidhalter D, van Elmpt W, Bogowicz M, de Areba Iglesias J, Dolla L, Ehrbar S, Fernandez-Velilla E, Fleckenstein J, Granero D, Henzen D, Hurkmans C, Kluge A, Knybel L, Loopeker S, Mirandola A, Richetto V, Sicignano G, Vallet V, van Asselen B, Worm E, Pruvot E, Verhoeff J, Fast M, Iori M, Blanck O. Refining Treatment Planning in STereotactic Arrhythmia Radioablation: Benchmark Results and Consensus Statement From the STOPSTORM.eu Consortium. Int J Radiat Oncol Biol Phys 2025; 121:218-229. [PMID: 39122095 DOI: 10.1016/j.ijrobp.2024.07.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.eu consortium was established to investigate and harmonize STAR in Europe. The primary goal of this benchmark study was to investigate current treatment planning practice within the STOPSTORM project as a baseline for future harmonization. METHODS AND MATERIALS Planning target volumes (PTVs) overlapping extracardiac organs-at-risk and/or cardiac substructures were generated for 3 STAR cases. Participating centers were asked to create single-fraction treatment plans with 25 Gy dose prescriptions based on in-house clinical practice. All treatment plans were reviewed by an expert panel and quantitative crowd knowledge-based analysis was performed with independent software using descriptive statistics for International Commission on Radiation Units and Measurements report 91 relevant parameters and crowd dose-volume histograms. Thereafter, treatment planning consensus statements were established using a dual-stage voting process. RESULTS Twenty centers submitted 67 treatment plans for this study. In most plans (75%) intensity modulated arc therapy with 6 MV flattening filter free beams was used. Dose prescription was mainly based on PTV D95% (49%) or D96%-100% (19%). Many participants preferred to spare close extracardiac organs-at-risk (75%) and cardiac substructures (50%) by PTV coverage reduction. PTV D0.035cm3 ranged from 25.5 to 34.6 Gy, demonstrating a large variety of dose inhomogeneity. Estimated treatment times without motion compensation or setup ranged from 2 to 80 minutes. For the consensus statements, a strong agreement was reached for beam technique planning, dose calculation, prescription methods, and trade-offs between target and extracardiac critical structures. No agreement was reached on cardiac substructure dose limitations and on desired dose inhomogeneity in the target. CONCLUSIONS This STOPSTORM multicenter treatment planning benchmark study not only showed strong agreement on several aspects of STAR treatment planning, but also revealed disagreement on others. To standardize and harmonize STAR in the future, consensus statements were established; however, clinical data are urgently needed for actionable guidelines for treatment planning.
Collapse
Affiliation(s)
- Valeria Trojani
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Andrea Botti
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Brian Balgobind
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland
| | - Olgun Elicin
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniel Schmidhalter
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Lukasz Dolla
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Domingo Granero
- Department of Radiation Oncology, Hospital General Valencia, Valencia, Spain
| | - Dominik Henzen
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands; Department of Electrical Engineering and Department of Applied Physics, Technical University Eindhoven, The Netherlands
| | - Anne Kluge
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Sandy Loopeker
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Gianluisa Sicignano
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Veronique Vallet
- Department of Radiophysics, Lausanne University Hospital, Lausanne, Switzerland
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost Verhoeff
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Iori
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
4
|
Mages C, Gampp H, Rahm AK, Hackbarth J, Pfeiffer J, Petersenn F, Kramp X, Kermani F, Zhang J, Pijnappels DA, de Vries AAF, Seidensaal K, Rhein B, Debus J, Ullrich ND, Frey N, Thomas D, Lugenbiel P. Cardiac stereotactic body radiotherapy to treat malignant ventricular arrhythmias directly affects the cardiomyocyte electrophysiology. Heart Rhythm 2025; 22:90-99. [PMID: 38936449 DOI: 10.1016/j.hrthm.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Promising as a treatment option for life-threatening ventricular arrhythmias, cardiac stereotactic body radiotherapy (cSBRT) has demonstrated early antiarrhythmic effects within days of treatment. The mechanisms underlying the immediate and short-term antiarrhythmic effects are poorly understood. OBJECTIVE We hypothesize that cSBRT has a direct antiarrhythmic effect on cellular electrophysiology through reprogramming of ion channel and gap junction protein expression. METHODS After exposure to 20 Gy of x-rays in a single fraction, neonatal rat ventricular cardiomyocytes were analyzed 24 and 96 hours postradiation to determine changes in conduction velocity, beating frequency, calcium transients, and action potential duration in both monolayers and single cells. In addition, the expression of gap junction proteins, ion channels, and calcium handling proteins was evaluated at protein and messenger RNA levels. RESULTS After irradiation with 20 Gy, neonatal rat ventricular cardiomyocytes exhibited increased beat rate and conduction velocity 24 and 96 hours after treatment. Messenger RNA and protein levels of ion channels were altered, with the most significant changes observed at the 96-hour mark. Upregulation of Cacna1c (Cav1.2), Kcnd3 (Kv4.3), Kcnh2 (Kv11.1), Kcnq1 (Kv7.1), Kcnk2 (K2P2.1), Kcnj2 (Kir2.1), and Gja1 (Cx43) was noted, along with improved gap junctional coupling. Calcium handling was affected, with increased Ryr2 ryanodin-rezeptor 2 and Slc8a1 Na+/Ca2+ exchanger expression and altered properties 96 hours posttreatment. Fibroblast and myofibroblast levels remained unchanged. CONCLUSION cSBRT modulates the expression of various ion channels, calcium handling proteins, and gap junction proteins. The described alterations in cellular electrophysiology may be the underlying cause of the immediate antiarrhythmic effects observed after cSBRT.
Collapse
Affiliation(s)
- Christine Mages
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; Informatics4Life Consortium (Institute for Informatics Heidelberg), Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; Informatics4Life Consortium (Institute for Informatics Heidelberg), Heidelberg, Germany
| | - Juline Hackbarth
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Pfeiffer
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Finn Petersenn
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Xenia Kramp
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Fatemeh Kermani
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg, Germany
| | - Juan Zhang
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel A Pijnappels
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bernhard Rhein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Nina D Ullrich
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg, Germany; Department of Physiology, University of Bern, Bern, Switzerland
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; Informatics4Life Consortium (Institute for Informatics Heidelberg), Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
van der Pol LHG, Blanck O, Grehn M, Blazek T, Knybel L, Balgobind BV, Verhoeff JJC, Miszczyk M, Blamek S, Reichl S, Andratschke N, Mehrhof F, Boda-Heggemann J, Tomasik B, Mandija S, Fast MF. Auto-contouring of cardiac substructures for Stereotactic arrhythmia radioablation (STAR): A STOPSTORM.eu consortium study. Radiother Oncol 2025; 202:110610. [PMID: 39489426 DOI: 10.1016/j.radonc.2024.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND/PURPOSE High doses to healthy cardiac substructures (CS) in stereotactic arrhythmia radioablation (STAR) raise concerns regarding potential treatment-induced cardio-toxicity. However, CS contours are not routinely created, hindering the understanding of the CS dose-effect relationships. To address this issue, the alignment of CS contouring was initiated within the STOPSTORM consortium. In this study, we developed and evaluated auto-contouring models trained to delineate CS and major vessels in ventricular tachycardia (VT) patients. METHODS Eight centres provided standard treatment planning computed tomography (CT) and/or contrast-enhanced CT datasets of 55 VT patients, each including 16 CS. Auto-contouring models were trained to contour either large structures or small structures. Dice Similarity Coefficient (DSC), 95 % Hausdorff distance (HD95) and volume ratio (VR) were used to evaluate model performance versus inter-observer variation (IOV) on seven VT patient test cases. Significant differences were tested using the Mann-Whitney U test. RESULTS The performance on the four chambers and the major vessels (median DSC: 0.88; HD95: 5.8-19.4 mm; VR: 1.09) was similar to the IOV (median DSC: 0.89; HD95: 4.8-14.0 mm; VR: 1.20). For the valves, model performance (median DSC: 0.37; HD95: 11.6 mm; VR: 1.63) was similar to the IOV (median DSC: 0.41; HD95: 12.4 mm; VR: 3.42), but slightly worse for the coronary arteries (median DSC: 0.33 vs 0.42; HD95: 24.4 mm vs 16.9 mm; VR: 1.93 vs 3.30). The IOV for these small structures remains large despite using contouring guidelines. CONCLUSION CS auto-contouring models trained on VT patient data perform similarly to IOV. This allows for time-efficient evaluation of CS as possible organs-at-risk.
Collapse
Affiliation(s)
- Luuk H G van der Pol
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tomáš Blazek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Lukáš Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Marcin Miszczyk
- Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland; IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Sabrina Reichl
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bartłomiej Tomasik
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Wang Y, Guan F, Ouyang F, Yuan H, Su M, Ding X. Heart ultrasound and biomechanical evaluation of radiation-induced heart toxicity using transthoracic echocardiogram (TTE) and dynamic mechanical analysis (DMA). PRECISION RADIATION ONCOLOGY 2024; 8:200-208. [PMID: 40337453 PMCID: PMC11934887 DOI: 10.1002/pro6.1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 05/09/2025] Open
Abstract
Radiation-induced heart disease (RIHD) is a serious complication but difficult to assess in patients undergoing thoracic radiotherapy (RT). We aim to analyze RIHD using heart ultrasound and elastic modulus, exploring relationships between functional, anatomical or biomechanical changes of the heart and radiation dose. Twenty BALB/c mice were divided into four groups (control, 10 Gy, 20 Gy and 25 Gy) with a single fraction of image-guided volumetric modulated arc radiotherapy (VMAT) to murine heart on a linear accelerator. Transthoracic echocardiography (TTE) was performed on a small-animal ultrasound imaging system with a handheld microscan transducer. E-wave/A-wave ratio (E/A) and myocardial performance index (MPI) for diastolic performance were noninvasively evaluated weekly, as well as ejection fraction (EF%), fractional shortening (FS%), left ventricle (LV) mass and heart wall thickening for systolic performance. At the end of the fifth week, all mice were sacrificed for elastic modulus measurement on a dynamic mechanical analyzer (DMA) and for histopathological staining. All experiments were conducted in accordance with the local institution's animal research committee guideline. Significant difference was observed in E/A ratio between the control and 25 Gy irradiated groups (1.8±0.5 and 0.7±0.9, respectively; p<0.05), indicating reduced diastolic performance and increased stiffness in left ventricle after high-dose heart radiation. Diastolic dysfunction in irradiated groups was also observed with significantly increased MPI. In contrast, posterior wall thickness, aortic peak velocity, heart rate, EF and FS were not significantly different after RT. Heart elasticity was reduced substantially with the increased radiation dose. HE and Masson Trichrome staining confirmed more fibrosis deposition in irradiated hearts. RIHD evaluation with ultrasound imaging noninvasively and biomechanical modulus measurement invasively in the image guided, precision dose-escalated murine heart irradiation is feasible. Increased myocardial stiffness, abnormal diastolic relaxation, more collagen deposition, and reduced tissue elasticity are observed in irradiated heart tissue. This study may facilitate our understanding of RIHD and facilitate improving patients' quality of life in the future.
Collapse
Affiliation(s)
- Yuenan Wang
- Department of Therapeutic RadiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Fada Guan
- Department of Therapeutic RadiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Fukun Ouyang
- Department of CardiologyPeking University Shenzhen HospitalShenzhenGuangdong ProvinceP.R. China
| | - Hongyan Yuan
- Department of Mechanical and Aerospace EngineeringSouthern University of Science and TechnologyShenzhenGuangdong ProvinceP.R. China
| | - Ming Su
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont University HospitalCorewell HealthRoyal OakMichiganUSA
| |
Collapse
|
7
|
Cisneros Clavijo PE, Dunay Silva AA, Dorado Ramírez JM, Perez Correa JF, Montenegro Cadena YM, Martínez Arelio LA, Viñan Andino AV, Cortes Sanchez DR, Ramirez Castaño EA. Impact of Imaging and Pharmacological Treatment Strategies in Refractory Ventricular Tachycardia in Critically Ill Patients: A Systematic Review. Cureus 2024; 16:e76641. [PMID: 39886726 PMCID: PMC11779688 DOI: 10.7759/cureus.76641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 02/01/2025] Open
Abstract
Ventricular tachycardia (VT) is a life-threatening arrhythmia often leading to sudden cardiac death, particularly in critically ill patients. Refractory VT, characterized by recurrent episodes requiring intervention, poses unique challenges for management, necessitating advanced diagnostic and therapeutic strategies. This systematic review evaluates the impact of imaging and pharmacological treatments in managing refractory VT in critically ill patients. A systematic literature search was conducted using keywords such as "refractory ventricular tachycardia", "critical illness", "imaging techniques", "pharmacological treatments", "antiarrhythmic drugs", "ICD interventions", and "non-invasive therapy". Databases searched included PubMed, Google Scholar, and Cochrane Library, identifying 1590 publications. After screening, 11 studies meeting the inclusion criteria were included in this review. Oral procainamide significantly reduced VT episodes but caused severe side effects in certain patients. Noninvasive interventions such as transcutaneous magnetic stimulation (TcMS) and noninvasive electrophysiology-guided radioablation reduced VT burden and antiarrhythmic drug (AAD) use, with TcMS decreasing VT episodes in the sham group (P < 0.001). Stereotactic body radiation therapy (SBRT) and stereotactic arrhythmia radiotherapy (STAR) reduced VT episodes. Ultrasound-guided stellate ganglion blockade decreased VT episodes (P < 0.001) within 24 hours. Catheter ablation improved composite outcomes, including ICD shocks and heart failure hospitalizations, compared to AAD therapy. Quality of life significantly improved with noninvasive therapies, though SBRT presented rare complications like pneumonitis. Imaging and pharmacological interventions effectively reduce VT burden and ICD interventions while showing varying safety profiles. However, the limited sample sizes, short follow-up durations, and heterogeneity across studies highlight the need for further high-quality research to establish long-term efficacy and safety.
Collapse
Affiliation(s)
- Paulina Elizabeth Cisneros Clavijo
- Endovascular Surgery, Enrique Garcés Hospital, Quito, ECU
- Hemodynamics, General and Interventional Cardioangiology, Pontificia Universidad Católica del Ecuador, Quito, ECU
| | | | | | | | | | | | | | - Daniel Ricardo Cortes Sanchez
- Medicine, Universidad Surcolombiana, Neiva, COL
- Medicine, Hospital Universitario Hernando Moncaleano Perdomo, Neiva, COL
| | | |
Collapse
|
8
|
Botrugno C, Crico C, Iori M, Blanck O, Blamek S, Postema PG, Quesada A, Pruvot E, Verhoeff JJC, De Panfilis L. Patient vulnerability in stereotactic arrhythmia radioablation (STAR): a preliminary ethical appraisal from the STOPSTORM.eu consortium. Strahlenther Onkol 2024; 200:903-907. [PMID: 38652131 PMCID: PMC11442478 DOI: 10.1007/s00066-024-02230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024]
Abstract
This preliminary ethical appraisal from the STOPSTORM.eu consortium is meant to raise critical points that clinicians administering stereotactic arrhythmia radioablation should consider to meet the highest standards in medical ethics and thus promote quality of life of patients recruited for radiotherapy treatments at a stage in which they experience a significant degree of vulnerability.
Collapse
Affiliation(s)
- Carlo Botrugno
- Research Unit on Everyday Bioethics and Ethics of Science, Department of Legal Sciences, University of Florence, Florence, Italy
- Legal Medicine and Bioethics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Crico
- Legal Medicine and Bioethics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Fondazione IRCCS Istituto Tumori, Milano, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Heart Failure & Arrhythmias, Amsterdam Heart Center and Cardiovascular Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Aurelio Quesada
- Cardiology Department, Arrhythmias Unit, Consorcio Hospital General Universitario de Valencia, Faculty of Medicine, Catholic University of Valencia "San Vicente Martir", Valencia, Spain
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Radiotherapy, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ludovica De Panfilis
- Legal Medicine and Bioethics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
9
|
Zhang S, Hu L, Tang H, Liao L, Li X. Stereotactic arrhythmia radioablation (STAR) opens a new era in the treatment of arrhythmias? Front Cardiovasc Med 2024; 11:1449028. [PMID: 39399514 PMCID: PMC11469775 DOI: 10.3389/fcvm.2024.1449028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Tachyarrhythmias are common cardiovascular emergencies encountered in clinical practice. Among these, atrial fibrillation (AF) and ventricular tachycardia (VT) pose significant hazards due to their prevalence and severity. Initially, non-invasive pharmacological antiarrhythmic interventions were the primary treatment modality; however, due to their limited control rates and side effects, invasive therapies have been introduced in recent years. These include catheter ablation, alcohol ablation, cardiac implantable electronic devices, and heart transplantation. Nonetheless, for some patients, invasive treatments do not offer a definitive cure for arrhythmias and carry the risk of recurrence, especially with AF and VT, where the relapse rates are high and the treatment for VT is correlated with the type of tachycardia present. Currently, novel non-invasive treatment methods are emerging, with stereotactic radioablation therapy becoming an effective alternative for the management of refractory tachyarrhythmias. This review provides an overview of the application background of Stereotactic Arrhythmia Radioablation (STAR) therapy and promising results from its use in animal models and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xuping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Kovacs B, Lehmann HI, Manninger M, Saguner AM, Futyma P, Duncker D, Chun J. Stereotactic arrhythmia radioablation and its implications for modern cardiac electrophysiology: results of an EHRA survey. Europace 2024; 26:euae110. [PMID: 38666444 PMCID: PMC11086561 DOI: 10.1093/europace/euae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a treatment option for recurrent ventricular tachycardia/fibrillation (VT/VF) in patients with structural heart disease (SHD). The current and future role of STAR as viewed by cardiologists is unknown. The study aimed to assess the current role, barriers to application, and expected future role of STAR. An online survey consisting of 20 questions on baseline demographics, awareness/access, current use, and the future role of STAR was conducted. A total of 129 international participants completed the survey [mean age 43 ± 11 years, 25 (16.4%) female]. Ninety-one (59.9%) participants were electrophysiologists. Nine participants (7%) were unaware of STAR as a therapeutic option. Sixty-four (49.6%) had access to STAR, while 62 (48.1%) had treated/referred a patient for treatment. Common primary indications for STAR were recurrent VT/VF in SHD (45%), recurrent VT/VF without SHD (7.8%), or premature ventricular contraction (3.9%). Reported main advantages of STAR were efficacy in the treatment of arrhythmias not amenable to conventional treatment (49%) and non-invasive treatment approach with overall low expected acute and short-term procedural risk (23%). Most respondents have foreseen a future clinical role of STAR in the treatment of VT/VF with or without underlying SHD (72% and 75%, respectively), although only a minority expected a first-line indication for it (7% and 5%, respectively). Stereotactic arrhythmia radioablation as a novel treatment option of recurrent VT appears to gain acceptance within the cardiology community. Further trials are critical to further define efficacy, patient populations, as well as the appropriate clinical use for the treatment of VT.
Collapse
Affiliation(s)
- Boldizsar Kovacs
- Department of Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, 48109 MI, USA
- Department of Cardiology, University Heart Center Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Helge Immo Lehmann
- Department of Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, 48109 MI, USA
- Corrigan Minehan Heart Center, Massachusetts General Hospital, 55 Fruit St, Boston, 02114 MA, USA
| | - Martin Manninger
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Center Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Piotr Futyma
- Medical College, University of Rzeszów and St. Joseph’s Heart Rhythm Center, Rzeszów, Poland
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Julian Chun
- Cardioangiologisches Centrum Bethanien, Agaplesion Bethanien Krankenhaus, Frankfurt, Germany
| |
Collapse
|
11
|
Stanciulescu LA, Vatasescu R. Ventricular Tachycardia Catheter Ablation: Retrospective Analysis and Prospective Outlooks-A Comprehensive Review. Biomedicines 2024; 12:266. [PMID: 38397868 PMCID: PMC10886924 DOI: 10.3390/biomedicines12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Ventricular tachycardia is a potentially life-threatening arrhythmia associated with an overall high morbi-mortality, particularly in patients with structural heart disease. Despite their pivotal role in preventing sudden cardiac death, implantable cardioverter-defibrillators, although a guideline-based class I recommendation, are unable to prevent arrhythmic episodes and significantly alter the quality of life by delivering recurrent therapies. From open-heart surgical ablation to the currently widely used percutaneous approach, catheter ablation is a safe and effective procedure able to target the responsible re-entry myocardial circuit from both the endocardium and the epicardium. There are four main mapping strategies, activation, entrainment, pace, and substrate mapping, each of them with their own advantages and limitations. The contemporary guideline-based recommendations for VT ablation primarily apply to patients experiencing antiarrhythmic drug ineffectiveness or those intolerant to the pharmacological treatment. Although highly effective in most cases of scar-related VTs, the traditional approach may sometimes be insufficient, especially in patients with nonischemic cardiomyopathies, where circuits may be unmappable using the classic techniques. Alternative methods have been proposed, such as stereotactic arrhythmia radioablation or radiotherapy ablation, surgical ablation, needle ablation, transarterial coronary ethanol ablation, and retrograde coronary venous ethanol ablation, with promising results. Further studies are needed in order to prove the overall efficacy of these methods in comparison to standard radiofrequency delivery. Nevertheless, as the field of cardiac electrophysiology continues to evolve, it is important to acknowledge the role of artificial intelligence in both the pre-procedural planning and the intervention itself.
Collapse
Affiliation(s)
- Laura Adina Stanciulescu
- Cardio-Thoracic Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Radu Vatasescu
- Cardio-Thoracic Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania
| |
Collapse
|
12
|
Kawamura M, Shimojo M, Inden Y, Kamomae T, Okudaira K, Komada T, Aoki S, Shindo Y, Yasui R, Yanagi Y, Okumura M, Yamada T, Kozai Y, Oie Y, Kato Y, Ishihara S, Murohara T, Naganawa S. Stereotactic radiotherapy for ventricular tachycardia: A study protocol. F1000Res 2023; 12:798. [PMID: 38204487 PMCID: PMC10776963 DOI: 10.12688/f1000research.138758.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Background Currently, the standard curative treatment for ventricular tachycardia (VT) and ventricular fibrillation (VF) is radiofrequency catheter ablation. However, when the VT circuit is deep in the myocardium, the catheter may not be delivered, and a new, minimally invasive treatment using different energies is desired. Methods This is a protocol paper for a feasibility study designed to provide stereotactic radiotherapy for refractory VT not cured by catheter ablation after at least one catheter ablation. The primary end point is to evaluate the short-term safety of this treatment and the secondary endpoint is to evaluate its efficacy as assessed by the reduction in VT episode. Cyberknife M6 radiosurgery system will be used for treatment, and the prescribed dose to the target will be 25Gy in one fraction. The study will be conducted on three patients. Conclusion Since catheter ablation is the only treatment option for VT that is covered by insurance in Japan, there is currently no other treatment for VT/VF that cannot be cured by catheter ablation. We hope that this feasibility study will provide hope for patients who are currently under the stress of ICD activation. Trial registration The study has been registered in the Japan Registry of Clinical Trials (jRCTs042230030).
Collapse
Affiliation(s)
- Mariko Kawamura
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Masafumi Shimojo
- Cardiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Yasuya Inden
- Cardiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Takeshi Kamomae
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Kuniyasu Okudaira
- Radiological Technology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Tomohiro Komada
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Sumire Aoki
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Yurika Shindo
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Ryotaro Yasui
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Yusuke Yanagi
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Masayuki Okumura
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Takehiro Yamada
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Yuka Kozai
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Yumi Oie
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Yutaka Kato
- Radiological Technology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Shunichi Ishihara
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Toyoaki Murohara
- Cardiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| | - Shinji Naganawa
- Radiology, Nagoya University Hospital, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
13
|
Balgobind BV, Visser J, Grehn M, Marquard Knap M, de Ruysscher D, Levis M, Alcantara P, Boda-Heggemann J, Both M, Cozzi S, Cvek J, Dieleman EMT, Elicin O, Giaj-Levra N, Jumeau R, Krug D, Algara López M, Mayinger M, Mehrhof F, Miszczyk M, Pérez-Calatayud MJ, van der Pol LHG, van der Toorn PP, Vitolo V, Postema PG, Pruvot E, Verhoeff JC, Blanck O. Refining critical structure contouring in STereotactic Arrhythmia Radioablation (STAR): Benchmark results and consensus guidelines from the STOPSTORM.eu consortium. Radiother Oncol 2023; 189:109949. [PMID: 37827279 DOI: 10.1016/j.radonc.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND PURPOSE In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established.
Collapse
Affiliation(s)
- Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University, Maastricht, the Netherlands
| | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| | - Pino Alcantara
- Department of Radiation Oncology, Hospital Clínico San Carlos, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy; Radiation Oncology Department, Centre Léon Bérard, Lyon, France
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Edith M T Dieleman
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niccolò Giaj-Levra
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Raphaël Jumeau
- Department of Radio-Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Manuel Algara López
- Department of Radiotherapy, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | - Luuk H G van der Pol
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
14
|
Kovacs B, Mayinger M, Ehrbar S, Fesslmeier D, Ahmadsei M, Sazgary L, Manka R, Alkadhi H, Ruschitzka F, Duru F, Papachristofilou A, Sticherling C, Blamek S, Gołba KS, Guckenberger M, Saguner AM, Andratschke N. Dose escalation for stereotactic arrhythmia radioablation of recurrent ventricular tachyarrhythmia - a phase II clinical trial. Radiat Oncol 2023; 18:185. [PMID: 37941012 PMCID: PMC10634182 DOI: 10.1186/s13014-023-02361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Stereotactic arrhythmia radioablation (STAR) is delivered with a planning target volume (PTV) prescription dose of 25 Gy, mostly to the surrounding 75-85% isodose line. This means that the average and maximum dose received by the target is less than 35 Gy, which is the minimum threshold required to create a homogenous transmural fibrosis. Similar to catheter ablation, the primary objective of STAR should be transmural fibrosis to prevent heterogenous intracardiac conduction velocities and the occurrence of sustained ventricular arrhythmias (sVA) caused by reentry. We hypothesize that the current dose prescription used in STAR is inadequate for the long-term prevention of sVA and that a significant increase in dose is necessary to induce transmural scar formation. OBJECTIVE A single arm, multi-center, phase II, dose escalation prospective clinical trial employing the i3 + 3 design is being conducted to examine the safety of a radiation dose-escalation strategy aimed at inducing transmural scar formation. The ultimate objective of this trial is to decrease the likelihood of sVA recurrence in patients at risk. METHODS Patients with ischemic or non-ischemic cardiomyopathy and recurrent sVA, with an ICD and history of ≥ 1 catheter ablation for sVA will be included. This is a prospective, multicenter, one-arm, dose-escalation trial utilizing the i3 + 3 design, a modified 3 + 3 specifically created to overcome limitations in traditional dose-finding studies. A total of 15 patients will be recruited. The trial aims to escalate the ITV dose from 27.0 Gy to an ITV prescription dose-equivalent level of maximum 35.1 Gy by keeping the PTV prescription dose constant at 25 Gy while increasing the dose to the target (i.e. the VT substrate without PTV margin) by step-wise reduction of the prescribing isodose line (85% down to 65%). The primary outcome of this trial is safety measured by registered radiation associated adverse events (AE) up to 90 days after study intervention including radiation associated serious adverse events graded as at least 4 or 5 according to CTCAE v5, radiation pneumonitis or pericarditis requiring hospitalization and decrease in LVEF ≥ 10% as assessed by echocardiography or cardiac MRI at 90 days after STAR. The sample size was determined assuming an acceptable primary outcome event rate of 20%. Secondary outcomes include sVA burden at 6 months after STAR, time to first sVA recurrence, reduction in appropriate ICD therapies, the need for escalation of antiarrhythmic drugs, non-radiation associated safety and patient reported outcome measures such as SF-36 and EQ5D. DISCUSSION DEFT-STAR is an innovative prospective phase II trial that aims to evaluate the optimal radiation dose for STAR in patients with therapy-refractory sVA. The trial has obtained IRB approval and focuses on determining the safe and effective radiation dose to be employed in the STAR procedure. TRIAL REGISTRATION NCT05594368.
Collapse
Affiliation(s)
- Boldizsar Kovacs
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Debra Fesslmeier
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Maiwand Ahmadsei
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Lorraine Sazgary
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Zurich, Switzerland
| | - Robert Manka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Zurich, Switzerland
- Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University Zurich, Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University Zurich, Zurich, Switzerland
| | | | | | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Krzysztof S Gołba
- Department of Electrocardiology, Upper Silesian Heart Center, Medical University of Silesia, Katowice, Poland
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | | | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Mages C, Steinfurt J, Rahm AK, Thomas D, Majidi R, Kehrle F, André F, Seidensaal K, Rhein B, Wengenmayer T, Gressler A, Westermann D, Herzog R, Debus J, Frey N, Lugenbiel P. Recurrent ventricular tachycardia originating from the "left ventricular summit" effectively eliminated by stereotactic irradiation - A case report. HeartRhythm Case Rep 2023; 9:802-807. [PMID: 38023678 PMCID: PMC10667122 DOI: 10.1016/j.hrcr.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Christine Mages
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Johannes Steinfurt
- Department of Cardiology and Angiology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ann-Kathrin Rahm
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Reyhaneh Majidi
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Florian Kehrle
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- InspirationLabs GmbH, Heidelberg, Germany
| | - Florian André
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bernhard Rhein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Gressler
- Department of Cardiology and Angiology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Herzog
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Norbert Frey
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Lugenbiel
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- Informatics for Life Consortium, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Herrera Siklody C, Schiappacasse L, Jumeau R, Reichlin T, Saguner AM, Andratschke N, Elicin O, Schreiner F, Kovacs B, Mayinger M, Huber A, Verhoeff JJC, Pascale P, Solana Muñoz J, Luca A, Domenichini G, Moeckli R, Bourhis J, Ozsahin EM, Pruvot E. Recurrences of ventricular tachycardia after stereotactic arrhythmia radioablation arise outside the treated volume: analysis of the Swiss cohort. Europace 2023; 25:euad268. [PMID: 37695314 PMCID: PMC10551232 DOI: 10.1093/europace/euad268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
AIMS Stereotactic arrhythmia radioablation (STAR) has been recently introduced for the management of therapy-refractory ventricular tachycardia (VT). VT recurrences have been reported after STAR but the mechanisms remain largely unknown. We analysed recurrences in our patients after STAR. METHODS AND RESULTS From 09.2017 to 01.2020, 20 patients (68 ± 8 y, LVEF 37 ± 15%) suffering from refractory VT were enrolled, 16/20 with a history of at least one electrical storm. Before STAR, an invasive electroanatomical mapping (Carto3) of the VT substrate was performed. A mean dose of 23 ± 2 Gy was delivered to the planning target volume (PTV). The median ablation volume was 26 mL (range 14-115) and involved the interventricular septum in 75% of patients. During the first 6 months after STAR, VT burden decreased by 92% (median value, from 108 to 10 VT/semester). After a median follow-up of 25 months, 12/20 (60%) developed a recurrence and underwent a redo ablation. VT recurrence was located in the proximity of the treated substrate in nine cases, remote from the PTV in three cases and involved a larger substrate over ≥3 LV segments in two cases. No recurrences occurred inside the PTV. Voltage measurements showed a significant decrease in both bipolar and unipolar signal amplitude after STAR. CONCLUSION STAR is a new tool available for the treatment of VT, allowing for a significant reduction of VT burden. VT recurrences are common during follow-up, but no recurrences were observed inside the PTV. Local efficacy was supported by a significant decrease in both bipolar and unipolar signal amplitude.
Collapse
Affiliation(s)
| | - Luis Schiappacasse
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphaël Jumeau
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Boldizsar Kovacs
- Department of Cardiology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Adrian Huber
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrizio Pascale
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Jorge Solana Muñoz
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Adrian Luca
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Domenichini
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Moeckli
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Esat M Ozsahin
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Etienne Pruvot
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
17
|
Keyt LK, Atwood T, Bruggeman A, Mundt AJ, Feld GK, Krummen DE, Ho G. Successful Noninvasive 12-Lead ECG Mapping-Guided Radiotherapy of Inaccessible Ventricular Tachycardia Substrate Due to Mechanical Valves. JACC Case Rep 2023; 15:101870. [PMID: 37283824 PMCID: PMC10240275 DOI: 10.1016/j.jaccas.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 06/08/2023]
Abstract
In patients presenting with refractory ventricular tachycardia (VT) and aortic and mitral mechanical prosthetic valves, traditional catheter ablation is challenging. We describe a case in which a novel noninvasive computational electrocardiogram mapping algorithm localized VT sources originating from substrate near the mechanical valves, in which stereotactic ablative radiotherapy eliminated VT in 1.5-year follow-up. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| | - Todd Atwood
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, California, USA
| | - Andrew Bruggeman
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, California, USA
| | - Arno J. Mundt
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, California, USA
| | - Gregory K. Feld
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| | - David E. Krummen
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| | - Gordon Ho
- Department of Medicine, Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Krug D, Zaman A, Eidinger L, Grehn M, Boda-Heggemann J, Rudic B, Mehrhof F, Boldt LH, Hohmann S, Merten R, Buergy D, Fleckenstein J, Kluge A, Rogge A, Both M, Rades D, Tilz RR, Olbrich D, König IR, Siebert FA, Schweikard A, Vonthein R, Bonnemeier H, Dunst J, Blanck O. Radiosurgery for ventricular tachycardia (RAVENTA): interim analysis of a multicenter multiplatform feasibility trial. Strahlenther Onkol 2023:10.1007/s00066-023-02091-9. [PMID: 37285038 DOI: 10.1007/s00066-023-02091-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/23/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Single-session cardiac stereotactic radiation therapy (SBRT) has demonstrated promising results for patients with refractory ventricular tachycardia (VT). However, the full safety profile of this novel treatment remains unknown and very limited data from prospective clinical multicenter trials are available. METHODS The prospective multicenter multiplatform RAVENTA (radiosurgery for ventricular tachycardia) study assesses high-precision image-guided cardiac SBRT with 25 Gy delivered to the VT substrate determined by high-definition endocardial and/or epicardial electrophysiological mapping in patients with refractory VT ineligible for catheter ablation and an implanted cardioverter defibrillator (ICD). Primary endpoint is the feasibility of full-dose application and procedural safety (defined as an incidence of serious [grade ≥ 3] treatment-related complications ≤ 5% within 30 days after therapy). Secondary endpoints comprise VT burden, ICD interventions, treatment-related toxicity, and quality of life. We present the results of a protocol-defined interim analysis. RESULTS Between 10/2019 and 12/2021, a total of five patients were included at three university medical centers. In all cases, the treatment was carried out without complications. There were no serious potentially treatment-related adverse events and no deterioration of left ventricular ejection fraction upon echocardiography. Three patients had a decrease in VT episodes during follow-up. One patient underwent subsequent catheter ablation for a new VT with different morphology. One patient with local VT recurrence died 6 weeks after treatment in cardiogenic shock. CONCLUSION The interim analysis of the RAVENTA trial demonstrates early initial feasibility of this new treatment without serious complications within 30 days after treatment in five patients. Recruitment will continue as planned and the study has been expanded to further university medical centers. TRIAL REGISTRATION NUMBER NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. Study start: October 1, 2019.
Collapse
Affiliation(s)
- David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany.
| | - Adrian Zaman
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Lina Eidinger
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Melanie Grehn
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Judit Boda-Heggemann
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Boris Rudic
- Universitätsmedizin Mannheim, Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Medizinische Klinik mit Schwerpunkt Kardiologie (CVK), Abteilung für Elektrophysiologie und Rhythmologie, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Stephan Hohmann
- Hannover Herzrhythmus Centrum, Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Roland Merten
- Klinik für Strahlentherapie und Spezielle Onkologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Daniel Buergy
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Jens Fleckenstein
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Rogge
- Klinisches Ethikkomitee, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Marcus Both
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Dirk Rades
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Roland Richard Tilz
- Klinik für Rhythmologie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Denise Olbrich
- Zentrum für Klinische Studien, Universität zu Lübeck, Lübeck, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Frank-Andre Siebert
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Achim Schweikard
- Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Lübeck, Germany
| | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
- Klinik für Kardiologie, Helios Klinik Cuxhaven, Cuxhaven, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| |
Collapse
|
19
|
Bhaskaran A, De Silva K, Kumar S. Contemporary updates on ventricular arrhythmias: from mechanisms to management. Intern Med J 2023; 53:892-906. [PMID: 36369893 PMCID: PMC10947276 DOI: 10.1111/imj.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 03/20/2024]
Abstract
Ventricular arrhythmias (VAs) are a group of heart rhythm disorders that can be life-threatening and cause significant morbidity. VA in the presence of structural heart disease (SHD) has distinct prognostic implications and requires a comprehensive and multifaceted approach for investigation and management. Early specialist referral should be considered for all patients with VA. Particular urgency is recommended in patients with syncope, nonsustained/sustained VA on Holter monitor and SHD on cardiac imaging because of the heightened risk of sudden cardiac death. Comprehensive phenotyping is recommended for most patients with VA, encompassing noninvasive cardiac functional testing, multimodality imaging and genetic testing in select circumstances. Management of idiopathic VA is guided heavily by symptom burden and the presence of ventricular systolic impairment. In SHD, guideline-directed heart failure therapy and device implantation are critical considerations. Whilst commonly used and well-established, antiarrhythmic drugs can be hampered by toxicity and failure of adequate arrhythmia control. Catheter ablation is increasingly being considered a feasible first-line alternative to medical therapy, where outcomes are influenced by disease aetiology and scar burden in SHD. Catheter ablation is associated with reduced arrhythmia recurrence and burden and improved quality of life at follow-up.
Collapse
Affiliation(s)
- Ashwin Bhaskaran
- Department of CardiologyWestmead HospitalSydneyNew South WalesAustralia
- Westmead Applied Research CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Kasun De Silva
- Department of CardiologyWestmead HospitalSydneyNew South WalesAustralia
- Westmead Applied Research CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Saurabh Kumar
- Department of CardiologyWestmead HospitalSydneyNew South WalesAustralia
- Westmead Applied Research CentreUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
20
|
Guarracini F, Tritto M, Di Monaco A, Mariani MV, Gasperetti A, Compagnucci P, Muser D, Preda A, Mazzone P, Themistoclakis S, Carbucicchio C. Stereotactic Arrhythmia Radioablation Treatment of Ventricular Tachycardia: Current Technology and Evolving Indications. J Cardiovasc Dev Dis 2023; 10:jcdd10040172. [PMID: 37103051 PMCID: PMC10143260 DOI: 10.3390/jcdd10040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Ventricular tachycardia in patients with structural heart disease is a significant cause of morbidity and mortality. According to current guidelines, cardioverter defibrillator implantation, antiarrhythmic drugs, and catheter ablation are established therapies in the management of ventricular arrhythmias but their efficacy is limited in some cases. Sustained ventricular tachycardia can be terminated by cardioverter-defibrillator therapies although shocks in particular have been demonstrated to increase mortality and worsen patients' quality of life. Antiarrhythmic drugs have important side effects and relatively low efficacy, while catheter ablation, even if it is actually an established treatment, is an invasive procedure with intrinsic procedural risks and is frequently affected by patients' hemodynamic instability. Stereotactic arrhythmia radioablation for ventricular arrhythmias was developed as bail-out therapy in patients unresponsive to traditional treatments. Radiotherapy has been mainly applied in the oncological field, but new current perspectives have developed in the field of ventricular arrhythmias. Stereotactic arrhythmia radioablation provides an alternative non-invasive and painless therapeutic strategy for the treatment of previously detected cardiac arrhythmic substrate by three-dimensional intracardiac mapping or different tools. Since preliminary experiences have been reported, several retrospective studies, registries, and case reports have been published in the literature. Although, for now, stereotactic arrhythmia radioablation is considered an alternative palliative treatment for patients with refractory ventricular tachycardia and no other therapeutic options, this research field is currently extremely promising.
Collapse
Affiliation(s)
| | - Massimo Tritto
- Electrophysiology and Cardiac Pacing Unit, Humanitas Mater Domini Hospital, 21053 Castellanza, Italy
| | - Antonio Di Monaco
- Cardiology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Alessio Gasperetti
- Department of Cardiology, ASST-Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Daniele Muser
- Cardiothoracic Department, University Hospital, 33100 Udine, Italy
| | - Alberto Preda
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Patrizio Mazzone
- Cardiothoracovascular Department, Electrophysiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Sakis Themistoclakis
- Department of Cardiothoracic, Vascular Medicine and Intensive Care, Dell'Angelo Hospital, Mestre, 30174 Venice, Italy
| | - Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| |
Collapse
|
21
|
Grehn M, Mandija S, Miszczyk M, Krug D, Tomasik B, Stickney KE, Alcantara P, Alongi F, Anselmino M, Aranda RS, Balgobind BV, Boda-Heggemann J, Boldt LH, Bottoni N, Cvek J, Elicin O, De Ferrari GM, Hassink RJ, Hazelaar C, Hindricks G, Hurkmans C, Iotti C, Jadczyk T, Jiravsky O, Jumeau R, Kristiansen SB, Levis M, López MA, Martí-Almor J, Mehrhof F, Møller DS, Molon G, Ouss A, Peichl P, Plasek J, Postema PG, Quesada A, Reichlin T, Rordorf R, Rudic B, Saguner AM, ter Bekke RMA, Torrecilla JL, Troost EGC, Vitolo V, Andratschke N, Zeppenfeld K, Blamek S, Fast M, de Panfilis L, Blanck O, Pruvot E, Verhoeff JJC. STereotactic Arrhythmia Radioablation (STAR): the Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary consortium (STOPSTORM.eu) and review of current patterns of STAR practice in Europe. Europace 2023; 25:1284-1295. [PMID: 36879464 PMCID: PMC10105846 DOI: 10.1093/europace/euac238] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 03/08/2023] Open
Abstract
The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs.
Collapse
Affiliation(s)
- Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Bartłomiej Tomasik
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdansk, M. Sklodowskiel-Curie 3a, Gdansk 80210, Poland
| | - Kristine E Stickney
- Research Support Office, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Pino Alcantara
- Department of Radiation Oncology, Hospital Clínico San Carlos, Faculty of Medicine, University Complutense of Madrid, Profesor Martin Lagos, Madrid 28040, Spain
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, University of Brescia, Via San Zeno in Monte 23, Verona 37129, Italy
| | - Matteo Anselmino
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Via Giuseppe Verdi 8, Torino 10124, Italy
- Department of Medical Sciences, University of Turin, Via Verdi 8, Torino 10124, Italy
| | - Ricardo Salgado Aranda
- Electrophysiology Unit, Department of Cardiology, Hospital Clínico San Carlos Madrid, Professor Martin Lagos, Madrid 28040, Spain
| | - Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Leif-Hendrik Boldt
- Department of Rhythmology, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicola Bottoni
- Cardiology Arrhythmology Center, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Listopadu 1790, Ostrava Poruba 70852, Czech Republic
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Via Giuseppe Verdi 8, Torino 10124, Italy
| | - Rutger J Hassink
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Struempellstrasse 39, Leipzig 04289, Germany
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Michelangelolaan 2, Eindhoven 5623 EJ, The Netherlands
| | - Cinzia Iotti
- Radiation Oncology Unit, Clinical Cancer Centre, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Tomasz Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ul. Poniatowskiego 15, Katowice 40055, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Otakar Jiravsky
- Cardiocenter, Hospital Agel Trinec Podlesi and Masaryk University, Konska 453, Trinec 73961, Czech Republic
| | - Raphaël Jumeau
- Department of Radio-Oncology, Lausanne University Hospital, Rue du Bugnon 21, Lausanne 1011, Switzerland
| | - Steen Buus Kristiansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Mario Levis
- Department of Oncology, University of Torino, Via Giuseppe Verdi 8, Torino 10124, Italy
| | - Manuel Algara López
- Department of Radiation Oncology, Hospital del Mar, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques, Paseo Maritim 25-29, Barcelona 08003, Spain
| | - Julio Martí-Almor
- Department of Cardiology, Hospital del Mar, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques, Paseo Maritim 25-29, Barcelona 08003, Spain
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ditte Sloth Møller
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Giulio Molon
- Department of Cardiology, IRCCS Sacro Cuore Don Calabria Hospital, Via San Zeno in Monte 23, Verona 37129, Italy
| | - Alexandre Ouss
- Department of Cardiology, Catharina Hospital, Michelangelolaan 2, Eindhoven 5623 EJ, The Netherlands
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Videnska 9, Prague 14000, Czech Republic
| | - Jiri Plasek
- Department of Cardiovascular Medicine, University Hospital Ostrava, Listopadu 1790. Ostrava Poruba 70852, Czech Republic
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | - Aurelio Quesada
- Arrhythmia Unit, Department of Cardiology, Consorcio Hospital General Universitario de Valencia, Av Tres Cruces 2, Valencia 46014, Spain
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Roberto Rordorf
- Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Camillo Golgi Avenue 5, Pavia 27100, Italy
| | - Boris Rudic
- Department of Medicine I, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Ardan M Saguner
- Arrhythmia Unit, Department of Cardiology, University Hospital Zurich, Ramistrasse 71, Zurich 8006, Switzerland
| | - Rachel M A ter Bekke
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - José López Torrecilla
- Department of Radiation Oncology, Hospital General Valencia, Av Tres Cruces 2, Valencia 46014, Spain
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus. Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, Dresden 01307, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Strada Campeggi 53, Pavia PV27100, Italy
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Ramistrasse 71, Zurich 8006, Switzerland
| | - Katja Zeppenfeld
- Unit of Clinical Electrophysiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Ludovica de Panfilis
- Bioethics Unit, Azienda Unità Sanitaria Locale—IRCCS, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, Lausanne 1011, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
22
|
Scanavacca MI, Pisani CF, Salvajoli B, Kulchetscki RM, Mayrink MP, Salvajoli JV, Kalil R. Stereotactic Body Radiation Therapy for Recurrent Ventricular Tachycardia in Chagas Disease: First Case in Latin America. Arq Bras Cardiol 2023; 120:e20220614. [PMID: 36921153 PMCID: PMC10263457 DOI: 10.36660/abc.20220614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 03/03/2023] Open
Affiliation(s)
- Mauricio I. Scanavacca
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilUnidade de Arritmia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Cristiano F. Pisani
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilUnidade de Arritmia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Bernardo Salvajoli
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilServiço de Radioterapia, Instituto do Câncer (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Rodrigo M. Kulchetscki
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilUnidade de Arritmia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Marina P. Mayrink
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilUnidade de Arritmia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - João Victor Salvajoli
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilServiço de Radioterapia, Instituto do Câncer (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Roberto Kalil
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilUnidade de Arritmia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| |
Collapse
|
23
|
Mayinger M, Boda-Heggemann J, Mehrhof F, Krug D, Hohmann S, Xie J, Ehrbar S, Kovacs B, Merten R, Grehn M, Zaman A, Fleckenstein J, Kaestner L, Buergy D, Rudic B, Kluge A, Boldt LH, Dunst J, Bonnemeier H, Saguner AM, Andratschke N, Blanck O, Schweikard A. Quality assurance process within the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial for the fusion of electroanatomical mapping and radiotherapy planning imaging data in cardiac radioablation. Phys Imaging Radiat Oncol 2022; 25:100406. [PMID: 36655216 PMCID: PMC9841340 DOI: 10.1016/j.phro.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
A novel quality assurance process for electroanatomical mapping (EAM)-to-radiotherapy planning imaging (RTPI) target transport was assessed within the multi-center multi-platform framework of the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. A stand-alone software (CARDIO-RT) was developed to enable platform independent registration of EAM and RTPI of the left ventricle (LV), based on pre-generated radiotherapy contours (RTC). LV-RTC were automatically segmented into the American-Heart-Association 17-segment-model and a manual 3D-3D method based on EAM 3D-geometry data and a semi-automated 2D-3D method based on EAM screenshot projections were developed. The quality of substrate transfer was evaluated in five clinical cases and the structural analyses showed substantial differences between manual target transfer and target transport using CARDIO-RT.
Collapse
Affiliation(s)
- Michael Mayinger
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland,Corresponding author.
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Mehrhof
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Hohmann
- Department of Cardiology and Angiology, Hannover Heart Rhythm Center, Hannover Medical School, Hannover, Germany
| | - Jingyang Xie
- Institute for Robotics and Cognitive Systems, Univesity of Lübeck, Lübeck, Germany
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Boldizsar Kovacs
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Switzerland
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Adrian Zaman
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Kaestner
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Boris Rudic
- Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kluge
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Department of Cardiology, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, Univesity of Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Cozzi S, Bottoni N, Botti A, Trojani V, Alì E, Finocchi Ghersi S, Cremaschi F, Iori F, Ciammella P, Iori M, Iotti C. The Use of Cardiac Stereotactic Radiation Therapy (SBRT) to Manage Ventricular Tachycardia: A Case Report, Review of the Literature and Technical Notes. J Pers Med 2022; 12:jpm12111783. [PMID: 36579492 PMCID: PMC9694192 DOI: 10.3390/jpm12111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND among cardiac arrhythmias, ventricular tachycardia (VT) is one that can lead to cardiac death, although significant progress has been made in its treatment, including the use of implantable cardioverter-defibrillators (ICD) and radiofrequency catheter ablation. Nevertheless, long-term recurrence rates remain in about half of patients and drastically impact the patient's quality of life. Moreover, recurrent ICD shocks are painful and are associated with higher mortality and worsening of heart failure. Recently, more and more experiences are demonstrating potential efficacy in the use of stereotactic body radiotherapy (SBRT) (also called cardiac radio-ablation) to treat this condition. In this paper, we report our experience in the use of cardiac radio-ablation for the treatment of refractory ventricular tachycardia with a focus on the technique used, along with a review of the literature and technical notes. CASE PRESENTATION an 81-year-old male patient with a long history of non-ischemic dilated cardiomyopathy and mechanical mitral prosthesis underwent a biventricular cardioverter defibrillator implant after atrial ventricular node ablation. At the end of 2021, the number of tachycardias increased significantly to about 10 episodes per day. After failure of medical treatment and conventional RT catheter ablation, the patient was treated with SBRT for a total dose of 25 Gy in a single session at the site of the ectopic focus. No acute toxicity was recorded. After SBRT (follow-up 7 months) no other VT episodes were recorded. CONCLUSION SBRT appears to be safe and leads to a rapid reduction in arrhythmic storms as treatment for VT without acute toxicity, representing one of the most promising methods for treating VT storms.
Collapse
Affiliation(s)
- Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Nicola Bottoni
- Department of Cardiology, Arrhythmology Center, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence:
| | - Valeria Trojani
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Emanuele Alì
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Sebastiano Finocchi Ghersi
- Radiation Oncolgy Unit, AOU Sant’Andrea, Facoltà di Medicina e Psicologia, Università La Sapienza, 00185 Rome, Italy
| | - Federica Cremaschi
- Engineer Clinical Specialist, Biosense Webster, Pratica di Mare, Pomezia, 00071 Rome, Italy
| | - Federico Iori
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
25
|
Nardone V, D’Ippolito E, Grassi R, Sangiovanni A, Gagliardi F, De Marco G, Menditti VS, D’Ambrosio L, Cioce F, Boldrini L, Salvestrini V, Greco C, Desideri I, De Felice F, D’Onofrio I, Grassi R, Reginelli A, Cappabianca S. Non-Oncological Radiotherapy: A Review of Modern Approaches. J Pers Med 2022; 12:1677. [PMID: 36294816 PMCID: PMC9605240 DOI: 10.3390/jpm12101677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Despite being usually delivered in oncological patients, radiotherapy can be used as a successful treatment for several non-malignant disorders. Even though this use of radiotherapy has been scarcely investigated since the 1950s, more recent interest has actually shed the light on this approach. Thus, the aim of this narrative review is to analyze the applications of non-oncological radiotherapy in different disorders. Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used. This review contains a narrative report and a critical discussion of non-oncological radiotherapy approaches. In conclusion, non-oncological radiotherapy is a safe and efficacious approach to treat several disorders that needs to be further investigated and used in clinical practice.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Emma D’Ippolito
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Federico Gagliardi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giuseppina De Marco
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | | | - Luca D’Ambrosio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Fabrizio Cioce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Luca Boldrini
- Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Viola Salvestrini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Carlo Greco
- Department of Radiation Oncology, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Francesca De Felice
- Radiation Oncology, Policlinico Umberto I “Sapienza” University of Rome, Viale Regina Elena 326, 00161 Rome, Italy
| | - Ida D’Onofrio
- Radiation Oncology, Ospedale del Mare, ASL Napoli 1 Centro, 80147 Naples, Italy
| | - Roberto Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
26
|
Volpato G, Compagnucci P, Cipolletta L, Parisi Q, Valeri Y, Carboni L, Giovagnoni A, Dello Russo A, Casella M. Safety and Efficacy of Stereotactic Arrhythmia Radioablation for the Treatment of Ventricular Tachycardia: A Systematic Review. Front Cardiovasc Med 2022; 9:870001. [PMID: 36072869 PMCID: PMC9441659 DOI: 10.3389/fcvm.2022.870001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Catheter ablation (CA) is a fundamental therapeutic option for the treatment of recurrent ventricular arrhythmias. Notwithstanding the tremendous improvements in the available technology and the increasing amount of evidence in support of CA, in some patients the procedure fails, or is absolutely contraindicated due to technical or clinical issues. In these cases, the clinical management of patients is highly challenging, and mainly involves antiarrhythmic drugs escalation. Over the last 5 years, stereotactic arrhythmia radioablation (STAR) has been introduced into clinical practice, with several small studies reporting favorable arrhythmia-free outcomes, without severe side effects at a short to mid-term follow-up. In the present systematic review, we provide an overview of the available studies on stereotactic arrhythmia radioablation, by describing the potential indications and technical aspects of this promising therapy.
Collapse
Affiliation(s)
- Giovanni Volpato
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
- *Correspondence: Giovanni Volpato,
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Laura Cipolletta
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
| | - Quintino Parisi
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
| | - Yari Valeri
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
| | - Laura Carboni
- Cardiac Surgery Anesthesia and Critical Care Unit, University Hospital “Ospedali Riuniti”, Ancona, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital “Ospedali Riuniti”, Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
27
|
Kovacs B, Mayinger M, Andratschke N, Saguner AM. Stereotactic arrhythmia radioablation: competitor or adjunct to catheter ablation? Eur Heart J 2022; 43:3279-3281. [PMID: 35947872 DOI: 10.1093/eurheartj/ehac435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Boldizsar Kovacs
- Arrhythmia Unit, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Arrhythmia Unit, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Pavone C, Scacciavillani R, Narducci ML, Cellini F, Pelargonio G, Bencardino G, Perna F, Spera F, Pinnacchio G, Sanna T, Valentini V, Crea F. Successful ventricular tachycardia radioablation in a patient with previous chemical pleurodesis: A case report. Front Cardiovasc Med 2022; 9:937090. [PMID: 35924213 PMCID: PMC9339650 DOI: 10.3389/fcvm.2022.937090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Stereotactic arrhythmia radioablation (STAR) is a novel technique for the ablation of ventricular tachycardia in patients with contraindications to standard procedures, i.e., radiofrequency ablation. Case presentation We report the case of a 73-year-old man with non-ischemic dilated cardiomyopathy and recurrent VT episodes. Electroanatomic mapping showed VT prevalently of epicardial origin, but direct epicardial access through subxyphoid puncture could not be performed due to pleuropericardial adhesions from a past history of chemical pleurodesis. STAR was performed, with no VT recurrence at 6 months follow-up. Conclusions Previous experiences with STAR have demonstrated its importance in the management of patients with refractory VT in whom other ablation strategies were not successful. Our case report highlights the use of STAR as a second choice in a patient with an unfavorable VT anatomical location and technical limitations to an optimal radiofrequency ablation. Moreover, it confirms STAR's effectiveness in the ablation of complex transmural lesions, which are more often associated with non-ischemic structural heart disease.
Collapse
Affiliation(s)
- Chiara Pavone
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Chiara Pavone
| | - Roberto Scacciavillani
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Maria Lucia Narducci
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- Maria Lucia Narducci
| | - Francesco Cellini
- Unit of Oncological Radiotherapy, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Gemma Pelargonio
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Gianluigi Bencardino
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Francesco Perna
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Francesco Spera
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Gaetano Pinnacchio
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Tommaso Sanna
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Vincenzo Valentini
- Unit of Oncological Radiotherapy, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Agostino Gemelli University Polyclinic (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
29
|
Franzetti J, Volpe S, Catto V, Conte E, Piccolo C, Pepa M, Piperno G, Camarda AM, Cattani F, Andreini D, Tondo C, Jereczek-Fossa BA, Carbucicchio C. Stereotactic Radiotherapy Ablation and Atrial Fibrillation: Technical Issues and Clinical Expectations Derived From a Systematic Review. Front Cardiovasc Med 2022; 9:849201. [PMID: 35592393 PMCID: PMC9110686 DOI: 10.3389/fcvm.2022.849201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aim The purpose of this study is to collect available evidence on the feasibility and efficacy of stereotactic arrhythmia radio ablation (STAR), including both photon radiotherapy (XRT) and particle beam therapy (PBT), in the treatment of atrial fibrillation (AF), and to provide cardiologists and radiation oncologists with a practical overview on this topic. Methods Three hundred and thirty-five articles were identified up to November 2021 according to preferred reporting items for systematic reviews and meta-analyses criteria; preclinical and clinical studies were included without data restrictions or language limitations. Selected works were analyzed for comparing target selection, treatment plan details, and the accelerator employed, addressing workup modalities, acute and long-term side-effects, and efficacy, defined either by the presence of scar or by the absence of AF recurrence. Results Twenty-one works published between 2010 and 2021 were included. Seventeen studies concerned XRT, three PBT, and one involved both. Nine studies (1 in silico and 8 in vivo; doses ranging from 15 to 40 Gy) comprised a total of 59 animals, 12 (8 in silico, 4 in vivo; doses ranging from 16 to 50 Gy) focused on humans, with 9 patients undergoing STAR: average follow-up duration was 5 and 6 months, respectively. Data analysis supported efficacy of the treatment in the preclinical setting, whereas in the context of clinical studies the main favorable finding consisted in the detection of electrical scar in 4/4 patients undergoing specific evaluation; the minimum dose for efficacy was 25 Gy in both humans and animals. No acute complication was recorded; severe side-effects related to the long-term were observed only for very high STAR doses in 2 animals. Significant variability was evidenced among studies in the definition of target volume and doses, and in the management of respiratory and cardiac target motion. Conclusion STAR is an innovative non-invasive procedure already applied for experimental treatment of ventricular arrhythmias. Particular attention must be paid to safety, rather than efficacy of STAR, given the benign nature of AF. Uncertainties persist, mainly regarding the definition of the treatment plan and the role of the target motion. In this setting, more information about the toxicity profile of this new approach is compulsory before applying STAR to AF in clinical practice.
Collapse
Affiliation(s)
- Jessica Franzetti
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Volpe
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Stefania Volpe, , orcid.org/0000-0003-0498-2964
| | - Valentina Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Edoardo Conte
- Cardiovascular Computed Tomography and Radiology Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Consiglia Piccolo
- Unit of Medical Physics, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Matteo Pepa
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Gaia Piperno
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Anna Maria Camarda
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Daniele Andreini
- Cardiovascular Computed Tomography and Radiology Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Milan, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
30
|
Kashani R, Cao M, Carlson DJ. Radiation Therapy for the Treatment of Cardiac Arrhythmias. Int J Radiat Oncol Biol Phys 2022; 112:577-580. [DOI: 10.1016/j.ijrobp.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Lee J, Bates M, Shepherd E, Riley S, Henshaw M, Metherall P, Daniel J, Blower A, Scoones D, Wilkinson M, Richmond N, Robinson C, Cuculich P, Hugo G, Seller N, McStay R, Child N, Thornley A, Kelland N, Atherton P, Peedell C, Hatton M. Cardiac stereotactic ablative radiotherapy for control of refractory ventricular tachycardia: initial UK multicentre experience. Open Heart 2021; 8:openhrt-2021-001770. [PMID: 34815300 PMCID: PMC8611439 DOI: 10.1136/openhrt-2021-001770] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Options for patients with ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or catheter ablation remain limited. Stereotactic radiotherapy has been described as a novel treatment option. Methods Seven patients with recurrent refractory VT, deemed high risk for either first time or redo invasive catheter ablation, were treated across three UK centres with non-invasive cardiac stereotactic ablative radiotherapy (SABR). Prior catheter ablation data and non-invasive mapping were combined with cross-sectional imaging to generate radiotherapy plans with aim to deliver a single 25 Gy treatment. Shared planning and treatment guidelines and prospective peer review were used. Results Acute suppression of VT was seen in all seven patients. For five patients with at least 6 months follow-up, overall reduction in VT burden was 85%. No high-grade radiotherapy treatment-related side effects were documented. Three deaths (two early, one late) occurred due to heart failure. Conclusions Cardiac SABR showed reasonable VT suppression in a high-risk population where conventional treatment had failed.
Collapse
Affiliation(s)
- Justin Lee
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matthew Bates
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Ewen Shepherd
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen Riley
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Henshaw
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Peter Metherall
- 3D Lab, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim Daniel
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Alison Blower
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - David Scoones
- Department of Pathology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Michele Wilkinson
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil Richmond
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clifford Robinson
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Phillip Cuculich
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Geoffrey Hugo
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Neil Seller
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ruth McStay
- Department of Radiology, Newcastle NHS Hospitals Foundation Trust, Newcastle Upon Tyne, UK
| | - Nicholas Child
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Andrew Thornley
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Nicholas Kelland
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Philip Atherton
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clive Peedell
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Matthew Hatton
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|