1
|
Berçot MR, Queiroz PRM, Grynberg P, Togawa R, Martins ÉS, Rocha GT, Monnerat RG. Distribution and Genetic Diversity of Genes from Brazilian Bacillus thuringiensis Strains Toxic to Agricultural Insect Pests Revealed by Real-Time PCR. MICROBIAL ECOLOGY 2023; 86:2515-2526. [PMID: 37392204 DOI: 10.1007/s00248-023-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.
Collapse
Affiliation(s)
- Marcelo Rodrigues Berçot
- Entompathogenic Bacteria Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | | | - Priscila Grynberg
- Bioinformatics Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | - Roberto Togawa
- Bioinformatics Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | - Érica Soares Martins
- Distrito Federal State Department of Education (SEEDF), SBN Quadra 02 Bloco C, Edifício Phenícia, CEP: 70040-020, Brazil
| | - Gabriela Teodoro Rocha
- Entompathogenic Bacteria Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | - Rose Gomes Monnerat
- Entompathogenic Bacteria Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| |
Collapse
|
2
|
Bel Y, Andrés-Antón M, Escriche B. Abundance, distribution, and expression of nematicidal crystal protein genes in Bacillus thuringiensis strains from diverse habitats. Int Microbiol 2022; 26:295-308. [PMID: 36484913 PMCID: PMC10148773 DOI: 10.1007/s10123-022-00307-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Abstract Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.
Collapse
Affiliation(s)
- Yolanda Bel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Miguel Andrés-Antón
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Baltasar Escriche
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Park MG, Choi JY, Kim JH, Park DH, Wang M, Kim HJ, Kim SH, Lee HY, Je YH. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. PEST MANAGEMENT SCIENCE 2022; 78:2976-2984. [PMID: 35419912 DOI: 10.1002/ps.6922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) has been widely used as a biological control agent for lepidopteran pests. However, resistance to Bt is a major concern associated with Spodoptera spp. (Noctuidae) and Plutella xylostella (Plutellidae). For efficient control of Noctuidae and Plutellidae, novel Bt strains which have high toxicity and a broad host range are needed. RESULTS To develop novel Bt strains as used for bio-insecticides, the Bt IMBL-B9 with high toxicity against Spodoptera exigua, Spodoptera frugiperda and P. xylostella was isolated and characterized. The Bt kurstaki IMBL-B9 strain produced bipyramidal and cuboidal crystals consisting of cry toxins with molecular weights of 130 and 65 kDa, respectively. This strain harbors eight crystal protein genes in total, including cry1Ea and one vegetative insecticidal protein gene. The median lethal concentration (LC50 ) values of IMBL-B9 against S. exigua and S. frugiperda were 21.8- and 19.3-fold lower than those of the Bt kusrstaki strain, and 5.6- and 4.9-fold lower than those of Bt aizawai strain, respectively. To evaluate the insecticidal activity of Cry proteins from IMBL-B9, cry gene-sourced recombinant Bt strains were constructed. These strains have insecticidal activity and synergic action against lepidopteran pests. CONCLUSION In this study, a novel Bt kurstaki IMBL-B9 strain was isolated and this could be useful for the development of new bio-insecticide or cry gene-based recombinant products as an alternative solution against lepidopterans, including Noctuidae and Plutellidae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Gu Park
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ji Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Hee Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ho Yeon Lee
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Yeon Ho Je
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hubelova D, Ulmann V, Mikuska P, Licbinsky R, Alexa L, Modra H, Gersl M, Babak V, Weston RT, Pavlik I. Nontuberculous Mycobacteria Prevalence in Aerosol and Spiders' Webs in Karst Caves: Low Risk for Speleotherapy. Microorganisms 2021; 9:microorganisms9122573. [PMID: 34946174 PMCID: PMC8705795 DOI: 10.3390/microorganisms9122573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 152 aerosol and spider web samples were collected: 96 spider’s webs in karst areas in 4 European countries (Czech Republic, France, Italy, and Slovakia), specifically from the surface environment (n = 44), photic zones of caves (n = 26), and inside (aphotic zones) of caves (n = 26), 56 Particulate Matter (PM) samples from the Sloupsko-Sosuvsky Cave System (speleotherapy facility; n = 21) and from aerosol collected from the nearby city of Brno (n = 35) in the Czech Republic. Nontuberculous mycobacteria (NTM) were isolated from 13 (13.5%) spider’s webs: 5 isolates of saprophytic NTM (Mycobacterium gordonae, M. kumamotonense, M. terrae, and M. terrae complex) and 6 isolates of potentially pathogenic NTM (M. avium ssp. hominissuis, M. fortuitum, M. intracellulare, M. peregrinum and M. triplex). NTM were not isolated from PM collected from cave with the speleotherapy facility although mycobacterial DNA was detected in 8 (14.3%) samples. Temperature (8.2 °C, range 8.0–8.4 °C) and relative humidity (94.7%, range 93.6–96.6%) of air in this cave were relatively constant. The average PM2.5 and PM10 mass concentration was 5.49 µg m−3 and 11.1 µg m−3. Analysed anions (i.e., F−, Cl−, NO2−, SO42−, PO43− and NO3−) originating largely from the burning of wood and coal for residential heating in nearby villages in the surrounding area. The air in the caves with speleotherapy facilities should be monitored with respect to NTM, PM and anions to ensure a safe environment.
Collapse
Affiliation(s)
- Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Tr. Generala Piky 7, 613 00 Brno, Czech Republic; (D.H.); (H.M.)
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00 Ostrava, Czech Republic;
| | - Pavel Mikuska
- Institute of Analytical Chemistry of the CAS, Veveri 97, 602 00 Brno, Czech Republic; (P.M.); (L.A.)
| | - Roman Licbinsky
- Transport Research Centre, Lisenska 33a, 636 00 Brno, Czech Republic;
| | - Lukas Alexa
- Institute of Analytical Chemistry of the CAS, Veveri 97, 602 00 Brno, Czech Republic; (P.M.); (L.A.)
| | - Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Tr. Generala Piky 7, 613 00 Brno, Czech Republic; (D.H.); (H.M.)
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic;
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic;
| | - Ross Tim Weston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia;
| | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Tr. Generala Piky 7, 613 00 Brno, Czech Republic; (D.H.); (H.M.)
- Correspondence: ; Tel.: +420-773-491-836
| |
Collapse
|
5
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Boonmee K, Thammasittirong SNR, Thammasittirong A. Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3 Biotech 2019; 9:117. [PMID: 30854277 DOI: 10.1007/s13205-019-1646-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
A total of 511 local isolates of Bacillus thuringiensis from different geographical regions of Thailand were analyzed for the presence of the cry1A, cry1B, cry2A, cry9, and vip3A genes encoding for lepidopteran-specific toxins. PCR results revealed that 94.32% (482/511) of B. thuringiensis isolates harbored at least one of the detected genes, of which the cry1A, cry1B, cry2A, cry9, and vip3A genes were detected at frequencies of 90.61%, 89.63%, 76.32%, 40.70%, and 48.18%, respectively. Nineteen gene-combination profiles were discovered among 482 B. thuringiensis isolates, of which the most frequently detected profile contained the cry1A, cry1B, cry2A, and vip3A genes. Sixty-one isolates (12.66%), which harbored all of the detected insecticidal toxin genes, were further detected for the exochitinase (chi36) gene and chitinase activity. The results revealed that all 61 isolates contained the chi36 gene and exhibited chitinase activity. Insect bioassays showed that five isolates were highly toxic (more than 80% mortality) against second instar larvae of Spodoptera litura, of which the highest insect mortality (93%) was obtained from the B. thuringiensis isolates 225-15 and 417-1. Scanning electron microscopy revealed that the crystal morphologies of the five effective isolates were bipyramidal and cuboidal shapes. SDS-PAGE analysis of the spore-crystal mixture showed major bands of approximately 65 and 130 kDa. These five effective strains are alternative candidates for use as a microbial insecticide for the control of the S. litura pest.
Collapse
Affiliation(s)
- Kesorn Boonmee
- 1Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140 Thailand
| | - Sutticha Na-Ranong Thammasittirong
- 1Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140 Thailand
- 2Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140 Thailand
| | - Anon Thammasittirong
- 1Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140 Thailand
- 2Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140 Thailand
| |
Collapse
|