1
|
das Neves Vasconcellos Brandão IY, de Souza Silva PHB, Castori TV, de Souza YT, de Souza RG, Batista AF, Petroni SLG, Nazareth Zanutto TC, de Campos CBL, Maass D. Rhodococcus erythropolis ATCC 4277 behavior against different metals and its potential use in waste biomining. Bioprocess Biosyst Eng 2024; 47:1533-1545. [PMID: 38888622 DOI: 10.1007/s00449-024-03048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min-1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min-1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.
Collapse
Affiliation(s)
| | | | - Tayna Vale Castori
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Yasmim Tavares de Souza
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Ricardo Gabbay de Souza
- Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Aline Fontana Batista
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), São José dos Campos, SP, 12228-904, Brazil
| | - Sergio Luis Graciano Petroni
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), São José dos Campos, SP, 12228-904, Brazil
| | - Talita Corrêa Nazareth Zanutto
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Claudia Barbosa Ladeira de Campos
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Danielle Maass
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil.
| |
Collapse
|
2
|
de Souza Lopes L, da Silva JS, da luz JMR, de Cássia Soares da Silva M, Lima HS, Rocha GC, Mantovani HC, Kasuya MCM. Intestinal microbial diversity of swines fed with different sources of lithium. 3 Biotech 2024; 14:102. [PMID: 38464613 PMCID: PMC10917731 DOI: 10.1007/s13205-024-03938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
A drug that is widely used in the treatment of psychiatric disorder is lithium (Li) salts. The people who make therapeutic use of this drug develop a series of side effects. Through metataxonomic data, this study assessed the impacts of lithium, as Li carbonate or Li-enriched mushrooms, on the microbial composition of the ileum, colon, and feces of piglets. Employing Bray-Curtis metric, no differences were observed among the treatments evaluated. Nevertheless, the alpha diversity indices showed differences in the Simpson, Shannon, and Chao-1 indices in the colon and Chao-1 in the feces in the diets with Li compared with the diets without Li. The taxa with the highest relative abundance varied among the ileum, colon, and feces, with a predominance of the phyla Firmicutes, Bacteroidota, and Proteobacteria in diets with Li. Many groups of microorganisms that are important for the health of the host (e.g., Lactobacillus, Ruminococcaceae, Enterorhabdus, Muribaculaceae, and Coprococcus) had their relative abundance increased in animals that received diets with the recommended dose of lithium. Furthermore, there was an increase in the abundance of Prevotellaceae and Bacteroidales (in the diet with Li-enriched mushroom) and Clostridia, Ruminococcus, Burkholderia, and Bacteroidales (diets with Li carbonate) at the recommended dosages. This is the first study to show the effects of Li carbonate and Li-enriched mushrooms on the intestinal microbiota of piglets. Thus, the effects of lithium on the body may be related to its ability to change the composition of the intestinal microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03938-3.
Collapse
Affiliation(s)
- Leandro de Souza Lopes
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Juliana Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - José Maria Rodrigues da luz
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Helena Santiago Lima
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais 36570-900 Brazil
| | - Hilário Cuquetto Mantovani
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Maria Catarina Megumi Kasuya
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| |
Collapse
|
3
|
Ivshina IB, Kuyukina MS, Krivoruchko AV, Tyumina EA. Responses to Ecopollutants and Pathogenization Risks of Saprotrophic Rhodococcus Species. Pathogens 2021; 10:974. [PMID: 34451438 PMCID: PMC8398200 DOI: 10.3390/pathogens10080974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Under conditions of increasing environmental pollution, true saprophytes are capable of changing their survival strategies and demonstrating certain pathogenicity factors. Actinobacteria of the genus Rhodococcus, typical soil and aquatic biotope inhabitants, are characterized by high ecological plasticity and a wide range of oxidized organic substrates, including hydrocarbons and their derivatives. Their cell adaptations, such as the ability of adhering and colonizing surfaces, a complex life cycle, formation of resting cells and capsule-like structures, diauxotrophy, and a rigid cell wall, developed against the negative effects of anthropogenic pollutants are discussed and the risks of possible pathogenization of free-living saprotrophic Rhodococcus species are proposed. Due to universal adaptation features, Rhodococcus species are among the candidates, if further anthropogenic pressure increases, to move into the group of potentially pathogenic organisms with "unprofessional" parasitism, and to join an expanding list of infectious agents as facultative or occasional parasites.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Maria S. Kuyukina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Anastasiia V. Krivoruchko
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Elena A. Tyumina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
4
|
The Survival of Haloferax mediterranei under Stressful Conditions. Microorganisms 2021; 9:microorganisms9020336. [PMID: 33567751 PMCID: PMC7915512 DOI: 10.3390/microorganisms9020336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.
Collapse
|
5
|
Staphylococcus sciuri Strain LCHXa is a Free-Living Lithium-Tolerant Bacterium Isolated from Salar de Atacama, Chile. Microorganisms 2020; 8:microorganisms8050668. [PMID: 32380652 PMCID: PMC7285145 DOI: 10.3390/microorganisms8050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
In addition to the industrial and biomedical applications of lithium, information on the tolerance of microorganisms to high Li concentrations in natural biological systems is limited. Strain LCHXa is a novel free-living Gram-positive, non-motile bacterium strain isolated from water samples taken at Laguna Chaxa, a non-industrial water body with the highest soluble Li content (33 mM LiCl) within the Salar de Atacama basin in northern Chile. Enrichment was conducted in Luria-Bertani (LB) medium supplemented with 1 M LiCl. Strain LCHXa was a Novobiocin-resistant and coagulase negative Staphylococcus. Phylogenetically, strain LCHXa belongs to the species Staphylococcussciuri. Strain LCHXa grew optimally in LB medium at pH 6–8 and 37 °C, and it was able to sustain growth at molar Li concentrations at 2 M LiCl, with a decrease in the specific growth rate of 85%. Osmoregulation in strain LCHXa partially involves glycine betaine and glycerol as compatible solutes.
Collapse
|
6
|
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grágeda M, Dorador C. Insights Into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front Microbiol 2019; 10:1611. [PMID: 31354691 PMCID: PMC6637823 DOI: 10.3389/fmicb.2019.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Microbial life inhabiting hypersaline environments belong to a limited group of extremophile or extremotolerant taxa. Natural or artificial hypersaline environments are not limited to high concentrations of NaCl, and under such conditions, specific adaptation mechanisms are necessary to permit microbial survival and growth. Argentina, Bolivia, and Chile include three large salars (salt flats) which globally, represent the largest lithium reserves, and are commonly referred to as the Lithium Triangle Zone. To date, a large amount of information has been generated regarding chemical, geological, meteorological and economical perspectives of these salars. However, there is a remarkable lack of information regarding the biology of these unique environments. Here, we report the presence of two bacterial strains (isolates LIBR002 and LIBR003) from one of the most hypersaline lithium-dominated man-made environments (total salinity 556 g/L; 11.7 M LiCl) reported to date. Both isolates were classified to the Bacillus genera, but displayed differences in 16S rRNA gene and fatty acid profiles. Our results also revealed that the isolates are lithium-tolerant and that they are phylogenetically differentiated from those Bacillus associated with high NaCl concentration environments, and form a new clade from the Lithium Triangle Zone. To determine osmoadaptation strategies in these microorganisms, both isolates were characterized using morphological, metabolic and physiological attributes. We suggest that our characterization of bacterial isolates from a highly lithium-enriched environment has revealed that even at such extreme salinities with high concentrations of chaotropic solutes, scope for microbial life exists. These conditions have previously been considered to limit the development of life, and our work extends the window of life beyond high concentrations of MgCl2, as previously reported, to LiCl. Our results can be used to further the understanding of salt tolerance, most especially for LiCl-dominated brines, and likely have value as models for the understanding of putative extra-terrestrial (e.g., Martian) life.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Adrián Paredes
- Laboratorio Química Biológica, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jenifer Palma
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Severino
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Drina Vejar
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Mario Grágeda
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
7
|
Martínez FL, Orce IG, Rajal VB, Irazusta VP. Salar del Hombre Muerto, source of lithium-tolerant bacteria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:529-543. [PMID: 29995192 DOI: 10.1007/s10653-018-0148-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The Salar del Hombre Muerto is a flat salt with great microbial activity despite the existing extreme conditions like high altitude, lack of water, low level of oxygen, high radiation and high concentration of sodium and lithium chloride. Despite these unfavorable conditions, we found microbial diversity with the presence of fungi, algae, and bacteria. From aqueous solutions and soil samples, a total of 238 bacteria were isolated and 186 of them were able to grow in the presence of salt. About 30% of the strains showed the ability to grow in solid medium proximally to a LiCl solution close to saturation (636 g/L). These isolates were characterized taking into account the morphology, Gram stain, ability to form biofilms and to produce pigments, and mainly according to the tolerance against lithium chloride. Bacillus was predominant among the most tolerant 26 microorganisms found, followed by Micrococcus and Brevibacterium. Members of the genera Kocuria, Curtobacterium and Halomonas were also represented among the bacteria with tolerance to 30 and 60 g/L of LiCl in defined liquid medium. All the capacities found in these microorganisms make them extremely interesting for biotechnological applications.
Collapse
Affiliation(s)
- Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
| | - Ingrid Georgina Orce
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
- Facultad de Ingeniería, UNSa, Salta, Argentina
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina.
- Facultad de Ciencias Naturales, UNSa, Salta, Argentina.
| |
Collapse
|