1
|
Faggi M, Paparella C, Perfumo P, Teijeiro JM. Effect of zinc on sperm recovered by swim-up. J Assist Reprod Genet 2025; 42:335-342. [PMID: 39601989 PMCID: PMC11806184 DOI: 10.1007/s10815-024-03328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE Zinc is known to influence chromatin stability, motility and protection against oxidative stress. While swim-up remains the preferred method for selecting sperm in Assisted Reproductive Technologies (ART), concerns arise regarding sperm DNA fragmentation associated with this procedure. Given zinc's significant role in protecting sperm DNA integrity and motility, we aimed to investigate the impact of zinc supplementation during the swim-up process on sperm quality. METHODS Semen samples from 203 normozoospermic men were used. Samples were divided into fractions and swim-up procedure was applied using human tubal fluid (mHTF) supplemented with three different concentrations of zinc or medium without supplementation as control. DNA fragmentation, chromatin maturity, reactive oxygen species (ROS) levels, motility and protein phosphorylation levels analyses were addressed to each fraction. RESULTS The sperm DNA fragmentation was reduced in sperm recovered by swim-up in media with all concentrations of zinc assayed with respect to the control (p < 0.0001). Aniline blue staining showed better chromatin maturity in sperm recovered with 2.5- and 3.5-mM zinc (p = 0.045; p = 0.021). Kinematic parameters such as curvilinear velocity and beat-cross frequency showed improvement with 2.5 mM zinc (p = 0.0080 and p = 0.0400), whereas straightness, linearity, and hypermotility showed improvement with 5 mM zinc (p = 0.0075, p = 0.0069, and p = 0.0244). Protein phosphorylation patterns showed changes associated with treatment with zinc, and only 5 mM zinc treatment showed a decrease in ROS levels. CONCLUSION The addition of zinc to mHTF provided optimal physiological conditions for sperm recovered through swim-up. This supplementation should be considered for selecting sperm for use in ART.
Collapse
Affiliation(s)
- Melina Faggi
- Laboratorio de Medicina Reproductiva. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Cecilia Paparella
- Laboratorio de Medicina Reproductiva. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- Unidad de Reproducción Humana Médicamente Asistida, Hospital del Centenario, Rosario, Santa Fe, Argentina
| | - Patricia Perfumo
- Laboratorio de Medicina Reproductiva. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- Unidad de Reproducción Humana Médicamente Asistida, Hospital del Centenario, Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.
| |
Collapse
|
2
|
Sahu C, Jena G. Combination treatment of zinc and selenium intervention ameliorated BPA-exposed germ cell damage in SD rats: elucidation of molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6685-6704. [PMID: 38498059 DOI: 10.1007/s00210-024-03044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Bisphenol A (BPA) is a commonly used environmental toxicant, is easily exposed to the human body and causes testicular damage, sperm abnormalities, DNA damage and apoptosis, and interferes in the process spermatogenesis and steroidal hormone production along with obstruction in testes and epididymis development. Zinc (Zn), a potent regulator of antioxidant balance, is responsible for cellular homeostasis, enzymes and proteins activities during spermatogenesis for cell defence mechanisms in the testes. Selenium (Se) is required for spermatogenesis, antioxidant action and in the activities of different selenoproteins. Both Zn and Se are essential simultaneously for the proper regulation of spermatogenesis and sperm maturation as well as protection against chemical and disease-associated germ cell toxicity. Thus, the study aimed to understand the importance and beneficial effect of Zn and Se co-treatment against BPA-exposed testicular damage in rats. BPA 100 and 200 mg/kg/day was exposed through an oral gavage. Zn (3 mg/kg/day) i.p. and Se (0.5 mg/kg/day) i.p. were injected for 8 weeks. The testicular toxicity was evaluated by measuring body and organs weight, biochemical investigations, sperm parameters, testicular and epididymal histopathology, quantification DNA damage by halo assay, DNA breaks (TUNEL assay), immunohistochemistry and western blot. Results revealed that Zn and Se co-treatment ameliorated BPA-associated male gonadal toxicity in rat as revealed by decreased SGPT, SGOT and BUN levels in serum, reduced testes and epididymis tissue injury, DNA breaks, apoptosis, expressions of 8-OHdG, γ-H2AX and NFκB with an increased serum testosterone and catalase levels. These findings suggest that Zn and Se co-treatment could be a beneficial and protective option against BPA-exposed testicular and epididymal toxicity.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
3
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
4
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Zinc and selenium attenuate quaternary heavy metal mixture-induced testicular damage via amplification of the antioxidant system, reduction in metal accumulation, inflammatory and apoptotic biomarkers. Toxicol Res 2023; 39:497-515. [PMID: 37398573 PMCID: PMC10313602 DOI: 10.1007/s43188-023-00187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Heavy metals (HMs) such as cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) are highly toxic elements. They are often found together in nature as a heavy metal mixture (HMM) and are known to contribute to subfertility/infertility as environmental pollutants. This study aims to evaluate the potential benefits of treating HMM-induced testicular pathophysiology with zinc (Zn) and/or selenium (Se). Six-week-old male Sprague Dawley rats were grouped into 5 (n = 7). The control group received deionized water, while the other groups were treated with PbCl2 (20 mg kg-1), CdCl2 (1.61 mg kg-1), HgCl2 (0.40 mg kg-1), and Na2AsO3 (10 mg kg-1) in deionized water for 60 days. Additionally, groups III to V received Zn, Se, and Zn/Se, respectively, for 60 days. The study evaluated testis weight, metal accumulation, sperm analysis, FSH, LH, testosterone, prolactin, oxidative stress, antioxidants, pro-inflammatory and apoptotic markers, and presented structural changes in the testis as micrographs. HMM caused a significant increase in testis weight, metal accumulation, prolactin, oxidative stress, and pro-inflammatory and apoptotic markers, while significantly decreasing semen analysis, FSH, LH, and testosterone. Histology showed decreased spermatogenesis and spermiogenesis, as evidenced by the structure of the germ cells and spermatids. However, Zn, Se, or both ameliorated and reversed some of the observed damages. This study provides further evidence for the mitigative potential of Zn, Se, or both in reversing the damage inflicted by HMM in the testis, and as a countermeasure towards improving HM-induced decrease in public health fecundity. Graphical abstract
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Science and Technology, Nsukka, Enugu State Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
| | - Kenneth O. Okolo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Science and Technology, Nsukka, Enugu State Nigeria
| | - Chinna N. Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
- Provictoire Research Institute, Port Harcourt, Rivers State Nigeria
| |
Collapse
|
5
|
Qamar AY, Naveed MI, Raza S, Fang X, Roy PK, Bang S, Tanga BM, Saadeldin IM, Lee S, Cho J. Role of antioxidants in fertility preservation of sperm - A narrative review. Anim Biosci 2023; 36:385-403. [PMID: 36397685 PMCID: PMC9996255 DOI: 10.5713/ab.22.0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Male fertility is affected by multiple endogenous stressors, including reactive oxygen species (ROS), which greatly deteriorate the fertility. However, physiological levels of ROS are required by sperm for the proper accomplishment of different cellular functions including proliferation, maturation, capacitation, acrosomal reaction, and fertilization. Excessive ROS production creates an imbalance between ROS production and neutralization resulting in oxidative stress (OS). OS causes male infertility by impairing sperm functions including reduced motility, deoxyribonucleic acid damage, morphological defects, and enhanced apoptosis. Several in-vivo and in-vitro studies have reported improvement in quality-related parameters of sperm following the use of different natural and synthetic antioxidants. In this review, we focus on the causes of OS, ROS production sources, mechanisms responsible for sperm damage, and the role of antioxidants in preserving sperm fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ilyas Naveed
- College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sanan Raza
- College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Pantu Kumar Roy
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Daejeon Wildlife Rescue Center, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Zhu X, Yu C, Wu W, Shi L, Jiang C, Wang L, Ding Z, Liu Y. Zinc transporter ZIP12 maintains zinc homeostasis and protects spermatogonia from oxidative stress during spermatogenesis. Reprod Biol Endocrinol 2022; 20:17. [PMID: 35065654 PMCID: PMC8783530 DOI: 10.1186/s12958-022-00893-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Overwhelming evidences suggest oxidative stress is a major cause of sperm dysfunction and male infertility. Zinc is an important non-enzymatic antioxidant with a wide range of biological functions and plays a significant role in preserving male fertility. Notably, zinc trafficking through the cellular and intracellular membrane is mediated by specific families of zinc transporters, i.e., SLC39s/ZIPs and SLC30s/ZnTs. However, their expression and function were rarely evaluated in the male germ cells. The aim of this study is to determine and characterize the crucial zinc transporter responsible for the maintenance of spermatogenesis. METHODS The expression patterns of all 14 ZIP members were characterized in the mouse testis. qRT-PCR, immunoblot and immunohistochemistry analyses evaluated the ZIP12 gene and protein expression levels. The role of ZIP12 expression was evaluated in suppressing the sperm quality induced by exposure to an oxidative stress in a spermatogonia C18-4 cell line. Zip12 RNAi transfection was performed to determine if its downregulation altered cell viability and apoptosis in this cell line. An obese mouse model fed a high-fat-diet was employed to determine if there is a correlation between changes in the ZIP12 expression level and sperm quality. RESULTS The ZIP12 mRNA and protein expression levels were higher than those of other ZIP family members in both the mouse testis and other tissues. Importantly, the ZIP12 expression levels were very significantly higher in both mice and human spermatogonia and spermatozoa. Moreover, the testicular ZIP12 expression levels significantly decreased in obese mice, which was associated with reduced sperm zinc content, excessive sperm ROS generation, poor sperm quality and male subfertility. Similarly, exposure to an oxidative stress induced significant declines in the ZIP12 expression level in C18-4 cells. Knockdown of ZIP12 expression mediated by transfection of a ZIP12 siRNA reduced both the zinc content and viability whereas apoptotic activity increased in the C18-4 cell line. CONCLUSIONS The testicular zinc transporter ZIP12 expression levels especially in spermatogonia and spermatozoa are higher than in other tissues. ZIP12 may play a key role in maintaining intracellular zinc content at levels that reduce the inhibitory effects of rises in oxidative stress on spermatogonia and spermatozoa viability during spermatogenesis which help counteract declines in male fertility.
Collapse
Affiliation(s)
- Xinye Zhu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengxuan Yu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wangshu Wu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Shi
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenyi Jiang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Chen Q, Tang S, Li Y, Cong Z, Lu D, Yang Q, Zhang X, Wu S. Multifunctional Metal-Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58382-58392. [PMID: 34860489 DOI: 10.1021/acsami.1c18597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilizing spermatozoa as the engine unit of robotic systems at a microscale has brought revolutionized inspirations and strategies to the biomedical community. However, the motility of sperms is impaired by the surrounding threats. For example, the antisperm antibody (AsA) can specifically bind with surface antigens on the sperm membrane and adversely affect their propulsion, hindering the operation of sperm-based microrobots in practical environments. In the present work, we report a biohybrid sperm microrobot by encapsulating sperm cells within metal-organic frameworks (MOFs) and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) (ZIFSpermbot), capable of active drug delivery and cytoprotection from the biological threats of AsA. ZIF-8 NPs can be facilely coated on the sperm membrane through complexation with tannic acid. Such cell surface engineering has a negligible impact on sperm motility under optimized conditions. The selective permeability of the resulting porous ZIF-8 wrappings protects ZIFSpermbots from the specific binding of AsA, enabling the preservation of intrinsic propulsion of the sperm engine. Besides, ZIF-8 wrappings sustainably release zinc ions and attenuate the oxidative damage generated in sperm cells, allowing the maintenance of sperm movement. Combining the effective protection of sperm propulsion with the drug-loading capacity of ZIF-8 NPs provides new applicability to ZIFSpermbots in risky surroundings with AsA, exhibiting rapid migration in a microfluidic device for active drug delivery with enhanced therapeutic efficacy due to their retained effective propulsion. Imparting bioengine-based microrobots with multifunctional wrappings holds great promise for designing adaptive cell robots that endure harsh environments toward locally extended and diverse operations, facilitating their use in practical and clinical applications.
Collapse
Affiliation(s)
- Qiwei Chen
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Songsong Tang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Yangyang Li
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Zhaoqing Cong
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Dongdong Lu
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Qingxin Yang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song Wu
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, P. R. China
| |
Collapse
|
8
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
9
|
Galarza EM, Lizarraga RM, Anchordoquy JP, Farnetano NA, Furnus CC, Fazzio LE, Anchordoquy JM. Zinc supplementation within the reference ranges for zinc status in cattle improves sperm quality without modifying in vitro fertilization performance. Anim Reprod Sci 2020; 221:106595. [PMID: 32931987 DOI: 10.1016/j.anireprosci.2020.106595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) has important functions in mammalian reproductive processes. In cattle, Zn status can be classified as deficient, marginal, and adequate, depending on the plasma Zn concentration. In addition, Zn deficiency can lead to reproductive failure. The aim of this study was to investigate the effect of maternal Zn status at the beginning of a fixed-time artificial insemination (FTAI) treatment regimen on pregnancy rate in cattle, and evaluate the effect of supplementing in vitro fertilization (IVF) medium with Zn concentrations within the reference range for Zn status on sperm quality and IVF performance. Pregnancy rates of animals with marginal and adequate Zn status did not differ, and there were no Zn-deficient animals detected. Supplementation of 0.8 μg/mL Zn to IVF medium enhanced progressive motility, sperm viability, functional sperm membrane integrity (HOST), acrosomal integrity and sperm-zona binding, without modifying pronuclear formation, or development of embryos to the cleavage or blastocyst stage after IVF. In conclusion, the present results indicate pregnancy rates are not associated with maternal Zn status at the beginning of the FTAI treatment regimen if Zn status is marginal or adequate. Furthermore, supplementation of IVF medium with Zn at concentrations which is considered adequate for Zn status in cattle led to improved sperm quality, without having effects on embryo development in cattle.
Collapse
Affiliation(s)
- E M Galarza
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - R M Lizarraga
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - J P Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina.
| | - N A Farnetano
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - C C Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - L E Fazzio
- Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900, La Plata, Argentina
| | - J M Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
10
|
Sahu C, Dwivedi DK, Jena GB. Zinc and selenium combination treatment protected diabetes-induced testicular and epididymal damage in rat. Hum Exp Toxicol 2020; 39:1235-1256. [PMID: 32233808 DOI: 10.1177/0960327120914963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Diabetes increases the possibility of germ cell damage, hypogonadism, and male infertility. Diabetic condition negatively impacts zinc (Zn) and selenium (Se) levels in the body. Zn and Se are among the most important trace elements involved in the regulation of redox reaction, antioxidants enzymes activities, and DNA expression in a germ cell. The present study aimed to elucidate the combined effects of Zn and Se treatment on diabetes-induced germ cell damage in male Sprague Dawley rats. Type 1 diabetes was induced by the single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) were administered daily for 8 consecutive weeks. All the animals were provided with normal feed and water throughout the study. The effects on germ cell damage were evaluated by body weight, feed-water intake, organ weight, sperm count, motility, sperm head morphology, biochemical analysis, histology, immunohistochemistry, halo assay, germ cell comet assay, testes terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling (TUNEL) assay, sperm TUNEL assay, serum protein pattern analysis, and subcellular analysis using transmission electron microscopy. Further, the expressions of nuclear erythroid-derived related factor 2, catalase, glutathione peroxidase 4, and glutathione peroxidase 5 were carried out to ascertain the mechanism of protection. The present results demonstrated that 8 weeks combined treatment of Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) reduced diabetes-induced germ cell damage. This study further highlighted that Zn and Se combination treatment might be a better strategy for the germ cell protection in diabetes and deserve further investigation.
Collapse
Affiliation(s)
- C Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - D K Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| |
Collapse
|
11
|
Zhandi M, Talebnia-Chalanbar A, Towhidi A, Sharafi M, Yousefi AR, Hussaini SMH. The effect of zinc oxide on rooster semen cryopreservation. Br Poult Sci 2019; 61:188-194. [PMID: 31663380 DOI: 10.1080/00071668.2019.1686125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. Deleterious effects from the freeze-thawing process on post-thawed sperm quality attributes are main limiting factors in cryopreservation. The current study was conducted to determine the effect of semen extender containing zinc oxide (ZnO) on post-thaw rooster sperm quality indices.2. Semen samples from six, 60-week-old broiler breeder roosters were collected weekly during five successive weeks. The samples were mixed and divided into three equal parts and diluted with semen extender containing different levels of ZnO; 0 (ZnO-0), 1 (ZnO-1) or 2 (ZnO-2) µg/ml. After thawing, motility and velocity parameters, plasma membrane functionality, apoptotic like changes, mitochondrial membrane potential (MMP), and DNA fragmentation index (DFI) were evaluated.3. Results showed that the addition of ZnO in the extender quadratically affected (P < 0.01) total motility (TM), progressive motility (PM), and average path velocity (VAP) with the highest values were noted in the ZnO-1 group. Levels of ZnO quadratically affected percentages of live (P < 0.01), apoptotic (P < 0.03) and dead (P < 0.10) spermatozoa, where the highest percentage of live, and the lowest percentage of apoptotic or dead spermatozoa was for the ZnO-1 group. Although adding ZnO quadratically affected plasma membrane functionality and MMP (P < 0.01), it did not affect (P > 0.05) DFI.4. In conclusion, there were some beneficial effects of ZnO supplementation in semen extender on post-thawed rooster sperm quality which may result in a better freezability.
Collapse
Affiliation(s)
- M Zhandi
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - A Talebnia-Chalanbar
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - A Towhidi
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - M Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - A R Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S M H Hussaini
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
12
|
Mohammadi P, Hassani-Bafrani H, Tavalaee M, Dattilo M, Nasr-Esfahani MH. One-carbon cycle support rescues sperm damage in experimentally induced varicocoele in rats. BJU Int 2018; 122:480-489. [DOI: 10.1111/bju.14385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Parisa Mohammadi
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology; Academic Center for Education; Culture and Research (ACECR); Isfahan Iran
- Anatomical Sciences Research Center; Kashan University of Medical Sciences; Kashan Iran
| | - Hassan Hassani-Bafrani
- Anatomical Sciences Research Center; Kashan University of Medical Sciences; Kashan Iran
- Gametogenesis Research Center; Kashan University of Medical Sciences; Kashan Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology; Academic Center for Education; Culture and Research (ACECR); Isfahan Iran
| | | | - Mohammad H. Nasr-Esfahani
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology; Academic Center for Education; Culture and Research (ACECR); Isfahan Iran
- Isfahan Fertility and Infertility Center; Isfahan Iran
| |
Collapse
|
13
|
Antioxidants modulation of sperm genome and epigenome damage: Fact or fad? Converging evidence from animal and human studies. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2018. [DOI: 10.1016/j.mefs.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. ZYGOTE 2017; 25:103-110. [PMID: 28185602 DOI: 10.1017/s0967199417000028] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lead poisoning is a stealthy threat to human physiological systems as chronic exposure can remain asymptomatic for long periods of time before symptoms manifest. We presently review the biophysical mechanisms of lead poisoning that contribute to male infertility. Environmental and occupational exposure of lead may adversely affect the hypothalamic-pituitary-testicular axis, impairing the induction of spermatogenesis. Dysfunction at the reproductive axis, namely testosterone suppression, is most susceptible and irreversible during pubertal development. Lead poisoning also appears to directly impair the process of spermatogenesis itself as well as sperm function. Spermatogenesis issues may manifest as low sperm count and stem from reproductive axis dysfunction or testicular degeneration. Generation of excessive reactive oxygen species due to lead-associated oxidative stress can potentially affect sperm viability, motility, DNA fragmentation, membrane lipid peroxidation, capacitation, hyperactivation, acrosome reaction, and chemotaxis for sperm-oocyte fusion, all of which can contribute to deter fertilization. Reproductive toxicity has been tested through cross-sectional analysis studies in humans as well as in vivo and in vitro studies in animals.
Collapse
|
15
|
Ajina T, Sallem A, Haouas Z, Mehdi M. Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men. Andrologia 2016; 49. [PMID: 27686342 DOI: 10.1111/and.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to assess the total antioxidant capacity (TAC) and malondialdehyde (MDA) level in infertile men with asthenozoospermia and asthenoteratozoospermia compared to fertile donors, and to examine the effect of zinc on sperm lipid peroxidation and antioxidant status in infertile and fertile men. Semen samples provided by infertile men (n = 38) and fertile donors (controls; n = 12) were exposed to 6 mmol/L of zinc for 2 hr at 37°C. After semen analysis, lipid peroxidation was detected by MDA assay and seminal TAC was assessed by colorimetric method using TAS (total antioxidant status) Kit. TAC was significantly lower in infertile group compared to controls (p = .037). However, lipid peroxidation did not alter in infertile patients compared to controls (p > .05). After in vitro incubation of samples with zinc, a significant increase in TAC level was found only in infertile men (p < .001). Meanwhile, zinc had no effect on sperm lipid peroxidation in both fertile and infertile men (p > .05). Our data indicate that antioxidant treatment based on zinc in vitro supplementation may be helpful to enhance the rate of seminal antioxidant status in infertile men; however, it does not prevent sperm lipid peroxidation.
Collapse
Affiliation(s)
- T Ajina
- Histology-Embryology Laboratory, Faculty of Medicine, Monastir, Tunisia
| | - A Sallem
- Histology-Embryology Laboratory, Faculty of Medicine, Monastir, Tunisia.,Cytogenetic and Reproductive Biology Department, Fattouma Bourguiba Teaching Hospital, Monastir, Tunisia
| | - Z Haouas
- Histology-Embryology Laboratory, Faculty of Medicine, Monastir, Tunisia
| | - M Mehdi
- Histology-Embryology Laboratory, Faculty of Medicine, Monastir, Tunisia.,Cytogenetic and Reproductive Biology Department, Fattouma Bourguiba Teaching Hospital, Monastir, Tunisia
| |
Collapse
|
16
|
Haghighian HK, Haidari F, Mohammadi-Asl J, Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertil Steril 2015; 104:318-24. [PMID: 26051095 DOI: 10.1016/j.fertnstert.2015.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate effects of supplementation with alpha-lipoic acid (ALA) on the spermatogram and seminal oxidative stress biomarkers. DESIGN Randomized, triple-blind, placebo-controlled clinical trial. SETTING Infertility clinic. PATIENT(S) Infertile men. INTERVENTION(S) ALA (600 mg) or placebo for 12 weeks. MAIN OUTCOME MEASURE(S) Semen analysis, anthropometric, dietary, and physical activity assessments, total antioxidant capacity, and malondialdehyde. RESULT(S) At the end of study, the total sperm count, sperm concentration, and motility in the intervention group were significantly higher than in the control group. In the ALA group, the total sperm count, sperm concentration, and motility levels were also significantly increased at the end of study compared with baseline values. However, there were no significant differences in ejaculate volume, normal morphology percentage, and live sperm between groups. ALA supplementation also resulted in a significant improvement in seminal levels of total antioxidant capacity (TAC) and malondialdehyde compared with the placebo. CONCLUSION(S) According to the results, medical therapy of asthenoteratospermia with ALA supplement could improve quality of semen parameters. However, further investigation is suggested in this regard. CLINICAL TRIAL REGISTRATION NUMBER IRCT2013111010181N3.
Collapse
Affiliation(s)
- Hossein Khadem Haghighian
- Department of Nutrition, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Haidari
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Zelena D. The janus face of stress on reproduction: from health to disease. Int J Endocrinol 2015; 2015:458129. [PMID: 25945091 PMCID: PMC4405284 DOI: 10.1155/2015/458129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Parenthood is a fundamental feature of all known life. However, infertility has been recognized as a public health issue worldwide. But even when the offspring are conceived, in utero problems can lead to immediate (abortion), early (birth), and late (adulthood) consequences. One of the most studied factors is stress. However, stress response is, per se, of adaptive nature allowing the organism to cope with challenges. Stressors lead to deterioration if one is faced with too long lasting, too many, and seemingly unsolvable situations. In stress adaptation the hypothalamus-pituitary-adrenocortical axis and the resulting glucocorticoid elevation are one of the most important mechanisms. At cellular level stress can be defined as an unbalance between production of free radicals and antioxidant defenses. Oxidative stress is widely accepted as an important pathogenic mechanism in different diseases including infertility. On the other hand, the goal of free radical production is to protect the cells from infectious entities. This review aims to summarize the negative and positive influence of stress on reproduction as a process leading to healthy progeny. Special emphasis was given to the balance at the level of the organism and cells.
Collapse
Affiliation(s)
- Dóra Zelena
- Hungarian Academy of Sciences, Institute of Experimental Medicine, Szigony 43, Budapest 1083, Hungary
- *Dóra Zelena:
| |
Collapse
|