1
|
Cui Y, Zhao S, Zhang C, Su W, Chen X, Wang Y, Yang B, Wu K, Chen ZJ, Zhang H, Zhao H. Infertile females with biallelic mutations in APC/C genes are characterized by oocyte or early embryo defects. J Assist Reprod Genet 2025:10.1007/s10815-025-03465-x. [PMID: 40238067 DOI: 10.1007/s10815-025-03465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE The objective of this study was to elucidate the role of anaphase promoting complex/cyclosome (APC/C)-related genes in cases of female infertility characterized by disturbances in oocyte maturation, failure of fertilization, and cessation of early embryonic growth among three distinct Chinese familial lineages. METHODS We conducted whole-exome sequencing of patients with female infertility from 639 unrelated Chinese families and three probands with APC/C gene mutations were screened. Structure modeling and in vitro experiments were performed to analyze the effects of CDC23 and APC13 variants. RESULTS We identified six rare missense variants in APC/C genes, including two compound heterozygous missense variants of CDC23 (c.A1277G, c.A833G, c.C182T and c.C301T) from case 1 and case 2 and one compound heterozygous variant of APC13 (c.C6A and c.116_126del) from case 3. These APC/C gene mutations all showed a recessive inheritance pattern. These mutations are conserved across different species. Mutation Taster, SIFT and PPH2 forecast that these variants are inclined towards exerting a deleterious effect. Structural analysis indicated that these mutations may result in changes in the chemical bonds between themselves and other APC/C subunits. In vitro experimental data suggested that mutations associated with CDC23 result in dysregulated protein expression, whereas missense mutation in APC13 is implicated in aberrant cellular localization patterns. CONCLUSION Our findings expand the genetic spectrum of APC/C genes, especially CDC23 and APC13 in female infertility, indicating that the significance of APC/C genes in female sterility should be emphasized in the future. And it provides a new diagnostic and therapeutic target for genetic counseling.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- Shandong Health Commission Key Laboratory of Major Gynaecological Disease Control, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Yang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Bohan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Chen Z, Jiang L, Su M, Zeng Q, Luo P, Chu L. NLRP7 maintains the genomic stability during early human embryogenesis via mediating alternative splicing. Commun Biol 2025; 8:125. [PMID: 39865169 PMCID: PMC11770114 DOI: 10.1038/s42003-025-07571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis. Mechanistically, NLRP7 can interact with factors related to alternative splicing and DNA damage response, including DDX39B, PRPF8, THRAP3 and PARP1. Moreover, NLRP7 dysfunction leads to abnormal alternative splicing of genes involved in homologous recombination in human embryonic stem cells, Such as Brca1 and Rad51. These results indicate that NLRP7-mediated Alternative splicing is potentially required for the maintenance of genome integrity during early human embryogenesis. Together, this study uncovers that NLRP7 plays an essential role in the maintenance of genetic stability during early human embryonic development by regulating alternative splicing of homologous recombination-related genes.
Collapse
Affiliation(s)
- Zhongliang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University, Guiyang, China
| | - Liangxia Jiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Min Su
- Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University, Guiyang, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Hassan S, Ashraf N, Hanif K, Khan NU. Subcortical Maternal Complex in Female Infertility: A Transition from Animal Models to Human Studies. Mol Biol Rep 2025; 52:108. [PMID: 39775990 DOI: 10.1007/s11033-025-10220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation. SCMC proteins are associated with crucial pathways during embryogenesis, causing changes that are necessary for the transition of an oocyte to an embryo. These vital processes include the formation of cytoplasmic spindles and lattices, accurate positioning of meiotic spindles, regulatory roles in various gene translations, organelle redistribution, and zygotic genome reprogramming. While these genes are well studied in animal models, often mice, translation to clinical studies is comparatively less. The present study elucidates the transition in genetic studies from animal to human models of SCMC proteins. The present literature review shows that the expression of various SCMC proteins impairs embryo development at different stages. The clinical translation of SCMC occurs via various pathways. Therefore, females experiencing multiple unsuccessful pregnancies after natural or assisted conception techniques are candidates for underlying SCMC mutations. Although the phenotype of affected individuals has been identified, the molecular mechanisms that lead to impaired pathways still require investigation. Therefore, the present study paves the way for future research leading to the early diagnosis of lethal variants and possible subsequent management.
Collapse
Affiliation(s)
- Sibte Hassan
- Reproductive Medicine Physician SEHA Corniche Hospital, Abu Dhabi, UAE.
| | - Nomia Ashraf
- Department of obstetrics and gynaecology, Fatima Jinnah Medical University Lahore, Lahore, Pakistan
| | - Khola Hanif
- Genova Invitro Fertilization Clinic Lahore, Lahore, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| |
Collapse
|
4
|
Anvar Z, Jafarpour F, Jahromi BN, Riccio A, Nasr‐Esfahani MH, Cubellis MV. A Maternal Loss-of-Function Variant in KHDC3L Gene Causes a Range of Adverse Pregnancy Outcomes: A Case Report. Mol Genet Genomic Med 2025; 13:e70051. [PMID: 39763182 PMCID: PMC11705469 DOI: 10.1002/mgg3.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The KHDC3L gene encodes a component of the subcortical maternal complex (SCMC). Biallelic mutations in this gene cause 5%-10% of biparental hydatidiform moles (BiHM), and a few maternal deletions in KHDC3L have been identified in women with recurrent pregnancy loss (RPL). METHOD In this study, we had a patient with a history of 10 pregnancy or neonatal losses, including spontaneous abortions, neonatal deaths, and molar pregnancy. Whole-exome sequencing (WES) was performed for genetic diagnostic testing. RESULTS We found a homozygous deleterious variant in the start codon of KHDC3L (c. 1A>G, p.M1V), which probably results in non-translation or the production of a truncated protein. CONCLUSION This is the first report of a maternal loss-of-function variant in KHDC3L gene in a patient experiencing various types of pregnancy loss. This case report broadens the understanding of KHDC3L's pathogenic variants and phenotypic spectrum, consistent with its crucial role during human pre- and post-implantation development.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and GynecologyBaylor College of MedicineHoustonTexasUSA
- Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research CenterRoyan Institute for Biotechnology, ACECRIsfahanIran
| | - Bahia Namavar Jahromi
- Infertility Research CentreShiraz University of Medical SciencesShirazIran
- Department of Obstetrics and Gynecology, School of Medical ScienceShiraz University of Medical ScienceShirazIran
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)Università Degli Studi Della Campania “Luigi Vanvitelli”CasertaItaly
- Institute of Genetics and Biophysics (IGB), “Adriano Buzzati‐Traverso”Consiglio Nazionale Delle Ricerche (CNR)NaplesItaly
| | - Mohammad Hossein Nasr‐Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research CenterRoyan Institute for Biotechnology, ACECRIsfahanIran
| | | |
Collapse
|
5
|
Chai M, Wen X, Yang D, Zhang Q, Yang N, Cao Y, Zhang Z, Li L, Chen B. A novel homozygous mutation in the NLRP2 gene causes early embryonic arrest. J Assist Reprod Genet 2024; 41:3347-3355. [PMID: 39585517 PMCID: PMC11707221 DOI: 10.1007/s10815-024-03279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/24/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE Successful reproduction in humans requires maturation and fertilization of gametes as well as early embryonic development. Any deviation from these processes leads to infertility. Early embryonic arrest (EEA) is common in female infertility and is primarily attributed to genetic factors. Mutations in the NLRP2 gene have been identified as the causative factors for EEA. In the present study, a novel mutation identified in NLRP2 underscored the novel homozygous variant and phenotypes that might contribute to its inclusion in the genetic counseling of infertile patients. METHODS We recruited a proband from a consanguineous family with a diagnosis of EEA. Peripheral blood samples were collected from the proband and family members for whole-exome sequencing to identify the genes and inheritance patterns associated with infertility; the results were substantiated by Sanger sequencing. All genetic variants and protein structures were analyzed based on computational predictions. Wild-type and mutant plasmids were constructed and transfected into HeLa cells. Subsequent in vitro analyses elucidated the functional impact of the variant. RESULTS A novel homozygous mutation in NLRP2 was identified in the proband. The patient harbored a frameshift deletion mutation (c.195delC: p.Tyr66Thrfs*32) in the pyrin structural domain. This genetic alteration resulted in the down-regulation of NLRP2 mRNA expression, truncation of the protein structure, and altered protein localization in cells. CONCLUSIONS The current findings broaden the spectra of NLRP2 variants, especially concerning EEA. Also, potential diagnostic markers for patients experiencing recurrent IVF/ICSI failure were identified, and a solid foundation was laid for genetic counseling for female infertility.
Collapse
Affiliation(s)
- Menghan Chai
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Xingxing Wen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Qiannan Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Ni Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
- Department of Biomedical Engineering, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, 100006, China.
| | - Beili Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
6
|
Williams JPC, Mouilleron S, Trapero RH, Bertran MT, Marsh JA, Walport LJ. Structural insight into the function of human peptidyl arginine deiminase 6. Comput Struct Biotechnol J 2024; 23:3258-3269. [PMID: 39286527 PMCID: PMC11402830 DOI: 10.1016/j.csbj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2-4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants.
Collapse
Affiliation(s)
- Jack P C Williams
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rolando Hernandez Trapero
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise J Walport
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
7
|
Slim R. Genetics and Genomics of Gestational Trophoblastic Disease. Hematol Oncol Clin North Am 2024; 38:1219-1232. [PMID: 39322462 DOI: 10.1016/j.hoc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This article focuses on hydatidiform mole (HM), which is the most common form of gestational trophoblastic disease and the most studied at the genomic and genetic levels. We summarize current laboratory methods to diagnose HM, discuss their limitations and advantages, and share the lessons we have learned. We also provide an overview of the history of recurrent HM, their known genetic etiologies, and the mechanisms of their formation.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, 1001 Decarie Boulevard, EM0.3210, Montreal, Quebec H4A3J1, Canada.
| |
Collapse
|
8
|
Zhou J, Mao R, Gao L, Wang M, Long R, Wang X, Li Z, Jin L, Zhu L. Novel variants in PADI6 genes cause female infertility due to early embryo arrest. J Assist Reprod Genet 2024; 41:3327-3336. [PMID: 39644447 PMCID: PMC11707103 DOI: 10.1007/s10815-024-03332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE Early embryo arrest is characterized by premature termination of development in preimplantation embryos. Human subcortical maternal complex (SCMC) is a protein complex that is specifically expressed in mammalian oocytes and early embryos and is essential for embryonic cell division. Peptidyl arginine deiminase 6 (PADI6) is proven to be a member of SCMC. Variants in the PADI6 gene have been shown to induce early embryo arrest. In this study, we performed genetic analysis in patients with female infertility due to early embryo arrest to identify the disease-causing gene variants. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the variants in the patients and their families. Western blotting and immunofluorescence staining were used to check the effects of the variants on expression and function of PADI6. RESULTS We identified a novel homozygous variant (c.358A > C [p.Thr120Pro]) and novel compound-heterozygous variants (c.2044C > T [p.Arg682Trp] and c.707dupT [p.Leu237Alafs*24]) in PADI6 in two infertile individuals with early embryo arrest. We found that these variants resulted in a decrease in the expression level of PADI6, which may lead to abnormal protein function. Immunofluorescence staining also suggested that these variants affected the expression of PADI6. CONCLUSION Our study expands the spectrum of genetic defects in female early embryo arrest and further supports the causality between PADI6 variants and female infertility.
Collapse
Affiliation(s)
- Juepu Zhou
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Ruolin Mao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Limin Gao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Xiangfei Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
9
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
10
|
Pan Z, Wang W, Wu L, Yao Z, Wang W, Chen Y, Gu H, Dong J, Mu J, Zhang Z, Fu J, Li Q, Wang L, Sun X, Kuang Y, Sang Q, Chen B. Bi-allelic missense variants in MEI4 cause preimplantation embryonic arrest and female infertility. Hum Genet 2024; 143:1049-1060. [PMID: 38252283 DOI: 10.1007/s00439-023-02633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Preimplantation embryonic arrest is an important pathogenesis of female infertility, but little is known about the genetic factors behind this phenotype. MEI4 is an essential protein for DNA double-strand break formation during meiosis, and Mei4 knock-out female mice are viable but sterile, indicating that MEI4 plays a crucial role in reproduction. To date, MEI4 has not been found to be associated with any human reproductive diseases. Here, we identified six compound heterozygous and homozygous MEI4 variants-namely, c.293C > T, p.(Ser98Leu), c.401C > G, p.(Pro134Arg), c.391C > G, p.(Pro131Ala), c.914A > T, p.(Tyr305Phe), c.908C > G, p.(Ala303Gly), and c.899A > T, p.(Gln300Leu)-in four independent families that were responsible for female infertility mainly characterized by preimplantation embryonic arrest. In vitro, we found that these variants reduced the interaction between MEI4 and DNA. In vivo, we generated a knock-in mouse model and demonstrated that female mice were infertile and were characterized by developmental defects during oogenesis. Our findings reveal the important roles of MEI4 in human reproduction and provide a new diagnostic marker for genetic counseling of clinical infertility patients.
Collapse
Affiliation(s)
- Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhongyuan Yao
- The Reproductive Medical Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yao Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China.
| |
Collapse
|
11
|
Rui X, Zhang X, Jia X, Han J, Wang C, Cao Q, Zhong O, Ding J, Zhao C, Zhang J, Ling X, Li H, Ma X, Meng Q, Huo R. Variants in NLRP2 and ZFP36L2, non-core components of the human subcortical maternal complex, cause female infertility with embryonic development arrest. Mol Hum Reprod 2024; 30:gaae031. [PMID: 39178021 DOI: 10.1093/molehr/gaae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited. In this study, we discovered two novel variants [p.(Ala131Val) and p.(Met326Val)] of NLRP2 in patients with primary infertility displaying embryonic development arrest from large families. In vitro studies using 293T cells and mouse oocytes, respectively, showed that these variants significantly decreased protein expression and caused the phenotype of embryonic development arrest. Additionally, we combined the 'DevOmics' database with the whole exome sequence data of our cohort and screened out a new candidate non-core SCMC gene ZFP36L2. Its variants [p.(Ala241Pro) and p.(Pro291dup)] were found to be responsible for embryonic development arrest. Co-immunoprecipitation experiments in 293T cells, used to demonstrate the interaction between proteins, verified that ZFP36L2 is one of the human SCMC components, and microinjection of ZFP36L2 complementary RNA variants into mouse oocytes affected embryonic development. Furthermore, the ZFP36L2 variants were associated with disrupted stability of its target mRNAs, which resulted in aberrant H3K4me3 and H3K9me3 levels. These disruptions decreased oocyte quality and further developmental potential. Overall, this is the first report of ZFP36L2 as a non-core component of the human SCMC and we found four novel pathogenic variants in the NLRP2 and ZFP36L2 genes in 4 of 161 patients that caused human embryonic development arrest. These findings contribute to the genetic diagnosis of female infertility and provide new insights into the physiological function of SCMC in female reproduction.
Collapse
Affiliation(s)
- Ximan Rui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xinru Jia
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Han
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Congjing Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Ou Zhong
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingxia Meng
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou, China
| |
Collapse
|
12
|
Li X, Zou Y, Geng B, Liu P, Cao L, Zhang Z, Hu S, Wang C, Zhao Y, Wu Q, Tan J. Transcriptome analysis reveals that defects in cell cycle regulation contribute to preimplantation embryo arrest. Genomics 2024; 116:110946. [PMID: 39326642 DOI: 10.1016/j.ygeno.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Patients with preimplantation embryo arrest (PREMBA) often experience assisted reproductive failure primarily due to the lack of transferable embryos, and the molecular mechanisms underlying PREMBA remain unclear. In our study, the embryos from five women with recurrent preimplantation embryo arrest and three women with tubal factor infertility were used for single-embryo transcriptome sequencing. Meanwhile, the transcriptomes of normal human preimplantation embryos obtained from GSE36552 were utilized to perform a comparative analysis with the transcriptomes of PREMBA embryos. Our results showed dysregulation of the cell cycle phase transition might be a potential pathogenic factor contributing to PREMBA. Through integrated analysis of the differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), we identified a number of hub genes using the protein-protein interaction network. The top 5 hub genes were as follows: CCNB2, BUB1B, CDC25A, CCNB3, and PLK3. The expression of hub genes was validated in PREMBA embryos and donated embryos using RT-qPCR. The knockdown of Ccnb2 in mouse zygotes led to an increase in embryo fragmentation, a rise in apoptosis, and a reduction in blastocyst formation. Furthermore, silencing the expression of CDC25A in HEK293T cells resulted in a decrease in cell proliferation and an increase in apoptosis, providing further support for our findings. Our findings could predict the development outcomes of preimplantation embryos and be used as potential therapeutic targets to prevent recurrent failures of IVF/ICSI attempts.
Collapse
Affiliation(s)
- Xin Li
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Yang Zou
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Baobao Geng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, SuZhou, Jiangsu Province, China
| | - Peipei Liu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Liyun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Zhiqin Zhang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Shaofeng Hu
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Changhua Wang
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Yan Zhao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China.
| | - Qiongfang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China.
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China.
| |
Collapse
|
13
|
Li R, Mei M, Zhou L, Zhao H, Yang M, Li Y, Chen X, Wang W, Yuan P. Biallelic Recessive Mutations in TLE6 and NLRP5 Cause Female Infertility Characterized by Human Early Embryonic Arrest. Hum Mutat 2024; 2024:9278518. [PMID: 40225929 PMCID: PMC11919057 DOI: 10.1155/2024/9278518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 04/15/2025]
Abstract
Preimplantation embryonic developmental arrest (EDA) is a common cause of unexplained female infertility. Genetic factors are believed to be one of the primary causes contributing to EDA. In this study, we identify four novel compound heterozygous mutations in TLE6 and NLRP5, in two infertile female patients experiencing recurrent EDA, using whole-exome sequencing. Functional analysis revealed that the two splicing mutations in TLE6 (c.541+2dupT) and NLRP5 (c.2957+4A>G) resulted in aberrant RNA splicing, leading to abnormal truncations of the corresponding proteins. In vitro experiments further validated that a missense mutation in NLRP5 led to increased mRNA and protein expression levels compared to wild type, when transfected into HEK293T cells. Immunofluorescence analysis confirmed the decay of the expression of TLE6 protein. Additionally, RNA sequencing results revealed significantly higher expression levels of some maternal genes in mutated embryos with TLE6 mutations, possibly suggesting the disrupted clearance of maternal mRNA and the failure of embryo genome activation. These results highlight the role of biallelic recessive effects associated with TLE6 and NLRP5 variants in embryonic development, thereby widening the scope of the genetic landscape.
Collapse
Affiliation(s)
- Ruiqi Li
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
- IVF CenterDepartment of Obstetrics and GynecologyThe First People's Hospital of Kashgar, Kashgar, China
- IVF CenterReproductive and Genetic Hospital of Kapok, Hainan 571400, China
| | - Mei Mei
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Ling Zhou
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Haijing Zhao
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Min Yang
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen University, Guangzhou, China
| | - Yingshi Li
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xiaoli Chen
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Wenjun Wang
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Ping Yuan
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
14
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Williams JPC, Walport LJ. PADI6: What we know about the elusive fifth member of the peptidyl arginine deiminase family. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220242. [PMID: 37778376 PMCID: PMC10542454 DOI: 10.1098/rstb.2022.0242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/05/2023] [Indexed: 10/03/2023] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6) is a maternal factor that is vital for early embryonic development. Deletion and mutations of its encoding gene in female mice or women lead to early embryonic developmental arrest, female infertility, maternal imprinting defects and hyperproliferation of the trophoblast. PADI6 is the fifth and least well-characterized member of the peptidyl arginine deiminases (PADIs), which catalyse the post-translational conversion of arginine to citrulline. It is less conserved than the other PADIs, and currently has no reported catalytic activity. While there are many suggested functions of PADI6 in the early mouse embryo, including in embryonic genome activation, cytoplasmic lattice formation, maternal mRNA and ribosome regulation, and organelle distribution, the molecular mechanisms of its function remain unknown. In this review, we discuss what is known about the function of PADI6 and highlight key outstanding questions that must be answered if we are to understand the crucial role it plays in early embryo development and female fertility. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
| | - Louise J. Walport
- Imperial College of Science Technology and Medicine, London, W12 0BZ, UK
| |
Collapse
|
16
|
Torre D, Francoeur NJ, Kalma Y, Gross Carmel I, Melo BS, Deikus G, Allette K, Flohr R, Fridrikh M, Vlachos K, Madrid K, Shah H, Wang YC, Sridhar SH, Smith ML, Eliyahu E, Azem F, Amir H, Mayshar Y, Marazzi I, Guccione E, Schadt E, Ben-Yosef D, Sebra R. Isoform-resolved transcriptome of the human preimplantation embryo. Nat Commun 2023; 14:6902. [PMID: 37903791 PMCID: PMC10616205 DOI: 10.1038/s41467-023-42558-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.
Collapse
Affiliation(s)
- Denis Torre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Yael Kalma
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Ilana Gross Carmel
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Betsaida S Melo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ron Flohr
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Maya Fridrikh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Foad Azem
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Hadar Amir
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ivan Marazzi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT); Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalit Ben-Yosef
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel.
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel.
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Cao G, Zhu X, Lin Y, Fang J, Shen X, Wang S, Kong N. A novel homozygous variant in PADI6 is associate with human cleavage-stage embryonic arrest. Front Genet 2023; 14:1243230. [PMID: 37712067 PMCID: PMC10497744 DOI: 10.3389/fgene.2023.1243230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Repeated absence of useable embryos is a difficult problem for infertility patients. Among them, embryonic developmental arrest is more common, but the genetic cause is not known. The embryos of a patient who came to our hospital three times could not develop beyond the four-cell stage. In addition to recording the developmental details of the embryos by daily photo-taking, the PADI6 R132C homozygous variants was further confirmed by whole-exome sequencing. Subsequently, PADI6 R132C was analyzed by bioinformatics methods for conservativeness across species. In addition, the possible impact of the pathogenic mutation on the structure of the protein PADI6 were also assessed. Generally, we identified a homozygous variants [NM_207421.4, c.394C>T(p.R132C] in the middle protein-arginine deiminase domain in PADI6 gene. The homozygous variant is highly conserved across species. Homozygous variant in PADI6 R132C could cause a human cleavage-stage embryonic arrest in female patients. These findings provide further evidence for the important roles of the homozygous PADI6R132C variant in embryonic development. Our findings contribute to a deeper understanding of the molecular genetic basis of female infertility.
Collapse
Affiliation(s)
- Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuling Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
19
|
Sahin GN, Yildirim RM, Seli E. Embryonic arrest: causes and implications. Curr Opin Obstet Gynecol 2023; 35:184-192. [PMID: 37039141 DOI: 10.1097/gco.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE OF REVIEW Embryonic arrest is a key determinant of the number of euploid blastocysts obtained after IVF. Here, we review factors that are implicated in the developmental arrest of preimplantation embryos and their relevance for assisted reproduction outcomes. RECENT FINDINGS Among the treatment options available to infertile women, IVF is the one associated with most favorable outcomes. The cumulative pregnancy rates in women undergoing IVF are determined by aneuploidy rate (age), ovarian response to stimulation (ovarian reserve), and the rate of embryo developmental arrest. Mutations in maternal effect genes, especially those encoding for subcortical maternal complex, have been implicated in human embryo developmental arrest. In addition, perturbation of biological processes, such as mitochondrial unfolded protein response and long noncoding RNA regulatory pathways, may play a role. However, how each of these factors contributes to embryos' arrest in different cohorts and age groups has not been determined. SUMMARY Arrest of human embryos during preimplantation development is a common occurrence and is partly responsible for the limited number of euploid blastocysts obtained in assisted reproduction cycles. Although genetic and metabolic causes have been implicated, the mechanisms responsible for human embryo developmental arrest remain poorly characterized.
Collapse
Affiliation(s)
- Gizem N Sahin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Raziye M Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- IVIRMA New Jersey, Basking Ridge, New Jersey, USA
| |
Collapse
|
20
|
Zhang J, Li S, Huang F, Xu R, Wang D, Song T, Liang B, Liu D, Chen J, Shi X, Huang HL. A novel compound heterozygous mutation in TUBB8 causing early embryonic developmental arrest. J Assist Reprod Genet 2023; 40:753-763. [PMID: 36735156 PMCID: PMC10224908 DOI: 10.1007/s10815-023-02734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Mutations in the β-tubulin isotype, TUBB8, can cause female infertility. Although several mutations of TUBB8 have been reported, the full spectrum for guiding genetics counseling still needs to be further explored. Here, we sought to identify novel variants in TUBB8 and their phenotypic effects on microtubule network structure in vitro. METHODS Whole-exome sequence analysis was performed in two families with infertility to detect pathogenic variants, with validation by Sanger sequencing. All gene variants and protein structures were predicted in silico. Cells were transfected with wild-type and mutants, and immunofluorescence analysis was performed to visualize microtubule network changes. RESULTS We detected a novel compound heterozygous mutation, c.915_916delCC (p.Arg306Serfs*21) and c.82C > T (p.His28Tyr), and a benign heterozygous variant c.1286C > T (p.Thr429Met) in TUBB8 in the two families. Female patients with p.Arg306Serfs*21 and p.His28Tyr were infertile with early embryonic developmental arrest. The female patient with p.Thr429Met gave birth to a healthy baby in the second in vitro fertilization frozen embryo transfer cycle. The p.Arg306Serfs*21 mutation was predicted to cause large structural alteration in the TUBB8 protein and was confirmed to produce a truncated and trace protein by western blot analysis. Immunofluorescence analysis of transfected HeLa cells showed that p.Arg306Serfs*21 significantly disrupted microtubule structure. CONCLUSIONS Our findings expand the known mutational spectrum of TUBB8 associated with early embryonic developmental arrest and female infertility.
Collapse
Affiliation(s)
- Jing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Suping Li
- Reproductive Medicine Center, Chenzhou No. 1 People's Hospital, Chenzhou, 412000, Hunan, China
| | - Fei Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ru Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Dao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Tian Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Boluo Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Dan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiaobo Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hua-Lin Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat Struct Mol Biol 2023; 30:200-215. [PMID: 36646905 PMCID: PMC9935398 DOI: 10.1038/s41594-022-00908-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Poly(A)-tail-mediated post-transcriptional regulation of maternal mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is known about poly(A) tail dynamics during the human OET. Here, we show that poly(A) tail length and internal non-A residues are highly dynamic during the human OET, using poly(A)-inclusive RNA isoform sequencing (PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: after deadenylation or partial degradation into 3'-UTRs, they are re-polyadenylated to produce polyadenylated degradation intermediates, coinciding with massive incorporation of non-A residues, particularly internal long consecutive U residues, into the newly synthesized poly(A) tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U residues, BTG4-mediated deadenylation produces substrates for maternal mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal G residues. The maternal mRNA remodeling is further confirmed using PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the first cleavage of human embryos. Together, these findings broaden our understanding of the post-transcriptional regulation of maternal mRNAs during the human OET.
Collapse
|
22
|
Wang W, Miyamoto Y, Chen B, Shi J, Diao F, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao X, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang Z, Wu T, Zhao L, Wang W, Zhou Z, Dong J, Li Q, Jin L, He L, Sun X, Lin G, Kuang Y, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J Clin Invest 2023; 133:159951. [PMID: 36647821 PMCID: PMC9843055 DOI: 10.1172/jci159951] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 01/18/2023] Open
Abstract
Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene-based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2-/- female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2-/- mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2-/- mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.
Collapse
Affiliation(s)
- Wenjing Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Jiangsu, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qun Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lan Yu
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Li
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Fu
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xia Xue
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Jian Mu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Zhang T, Liu P, Yao G, Zhang X, Cao C. A complex heterozygous mutation in PADI6 causes early embryo arrest: A case report. Front Genet 2023; 13:1104085. [PMID: 36704355 PMCID: PMC9871383 DOI: 10.3389/fgene.2022.1104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Background: The PADI6 gene is a component of the subcortical maternal effect complex (SCMC). Mutations in the PADI6 gene, which was the first gene discovered to impact the activation process of the human embryonic genome, have been shown to induce early embryo arrest. Case: A 29-year-old lady with primary infertility underwent in vitro fertilization embryo transfer (IVF-ET) for tubal reasons, who had normal hormone levels and ovarian reserve. A Progestin-Primed Ovarian Stimulation (PPOS) protocol of Ovarian stimulation with IVF was performed. The total of Gonadotropin (Gn) stimulation with u-FSH was 2100 IU, which lasted for 10 days. When three follicles measuring less than 18 mm in diameter were seen, r-hCG 250 ug and triptorelin acetate 0.2 mg were injected to trigger oocyte maturation. Nineteen oocytes (including thirteen MII oocytes) were picked up 37 h after the trigger, and seven of these were normal fertilized. Unfortunately, these many embryos were stopped at the 1- or 2-cell stage, hence this infertile patient's IVF treatment won't result in an embryo transfer. Using whole-exome sequencing, a complex heterozygous mutation in PADI6 was discovered: c. 1247T>C [p.Ile416Thr] in exon 12 of PADI6, and c. 2009_2010del [p.Glu670GlyfsTer48] in exon 17 of PADI6. Conclusion: We found a complex heterozygous mutation in the PADI6 gene (c. 1247T>C; c. 2009_2010del) that caused embryos were arrested at the 1- or 2- cell stage. The discovery in this patient adds to the evidence showing the PADI6 gene mutation causes early embryo arrest in humans.
Collapse
|
24
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
25
|
Tong X, Jin J, Hu Z, Zhang Y, Fan HY, Zhang YL, Zhang S. Mutations in OOEP and NLRP5 identified in infertile patients with early embryonic arrest. Hum Mutat 2022; 43:1909-1920. [PMID: 35946397 PMCID: PMC10087254 DOI: 10.1002/humu.24448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
The subcortical maternal complex (SCMC), composed of several maternal-effect genes, is vital for the development of oocytes and early embryos. Variants of SCMC-encoding genes (NLRP2, NLRP5, TLE6, PADI6, and KHDC3L, but not OOEP and ZBED3) are associated with human oocyte maturation dysfunction, fertilization failure, and early embryonic arrest. In this study, we enrolled 118 Chinese patients who experienced recurrent preimplantation embryonic arrest during assisted reproductive technology treatments and performed whole-exome sequencing. We discovered compound heterozygous missense variants (c.110G>C and c.109C>G) in the OOEP gene in one patient who experienced recurrent preimplantation embryonic arrest. Arrested embryos from this affected patient were analyzed by single-cell RNA sequencing, which showed a downregulated transcriptome. In addition, six novel NLRP5 variants (c.971T>A, c.3341T>C, c.1575_1576delAG, c.1830_1831delGT, c.1202C>T, and c.2378T>G) were identified in four patients with arrested and severely fragmented embryos. These suspicious mutations were examined by in vitro studies in HEK293T cells. Western blot analysis and immunofluorescence experiments showed that OOEP and partial NLRP5 mutations caused decreased protein levels. Our findings first demonstrated that biallelic variants in OOEP gene could also cause human early embryonic arrest, similar to other SCMC components. We expanded the genetic mutation spectrum of SCMC genes related to early embryogenesis in humans, especially early embryonic arrest.
Collapse
Affiliation(s)
- Xiaomei Tong
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Zhanhong Hu
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yingyi Zhang
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Heng-Yu Fan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.,Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
26
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Akbari M, Mohebi M, Berjis K, Ghahremani A, Modarressi MH, Ghafouri-Fard S. A novel variant in TLE6 is associated with embryonic developmental arrest (EDA) in familial female infertility. Sci Rep 2022; 12:17664. [PMID: 36271123 PMCID: PMC9587212 DOI: 10.1038/s41598-022-22687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
This study aims to identify genetic causes of familial female infertility characterized by embryonic developmental arrest (EDA) and repeated implantation failure (RIF) with oocyte donation IVF cycle. We used Whole-exome sequencing and Sanger validation to find causative genes in an Iranian consanguineous family that had 3 infertile daughters, 4 fertile daughters, and 2 fertile sons. All patients in this consanguineous family exhibited typical manifestations of unexplained RIF and EDA. Genetic analysis identified a homozygous missense variant (c.G1054C:p.G352R) in exon 13 of the TLE6 gene that cosegregated with the EDA phenotype in an autosomal recessive pattern. Other members of the family, the gene carriers, remain clinically asymptomatic and fertile. Our findings identify a novel nonsynonymous variant, c.G1054C:p.G352R, in the TLE6 gene within a consanguineous Iranian family with autosomal-recessive female infertility and broaden the genetic spectrum of TLE6-associated EDA.
Collapse
Affiliation(s)
- Mojdeh Akbari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayon Berjis
- Department of Reproductive Biology, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Amin Ghahremani
- Pars Human Gene Company, Tehran, Iran
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Yang J, Yan L, Li R, Liu P, Qiao J, Liu Y, Zhi X. Genetic screening of Chinese patients with hydatidiform mole by whole-exome sequencing and comprehensive analysis. J Assist Reprod Genet 2022; 39:2403-2411. [PMID: 36001209 PMCID: PMC9596675 DOI: 10.1007/s10815-022-02592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE We aim to explore if there are any other candidate genetic variants in patients with a history of at least one hydatidiform mole (HM) besides the well-known variants in NLRP7 and KHDC3L. METHODS The diagnosis of HM type was based on histopathology, and available HM tissues were collected for short tandem repeat (STR) genotyping to verify the diagnosis. DNA extracted from blood samples or decidual tissues of the 78 patients was subjected to whole-exome sequencing (WES). RESULTS We identified five novel variants in NLRP7, two novel variants in KHDC3L, and a chromosome abnormality covering the KHDC3L locus among patients with HM. We found that patients with HM who carried heterozygous variants in KHDC3L had a chance of normal pregnancy. We also detected four novel genetic variants in candidate genes that may be associated with HM. CONCLUSION Our study enriched the spectrum of variants in NLRP7 and KHDC3L in Chinese HM patients and provided a new outlook on the effects of heterozygous variants in KHDC3L. The novel candidate genetic variants associated with HMs reported in this study will also contribute to further research on HMs.
Collapse
Affiliation(s)
- Jingyi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
- Department of Pathology, Peking University Third Hospital, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
29
|
Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays 2022; 44:e2200007. [PMID: 35900055 DOI: 10.1002/bies.202200007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.
Collapse
Affiliation(s)
- Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Wang X, Zhu H, He Y, Zeng J, Zhao J, Xia Q, Wu L, Yao Z, Li Y. A novel homozygous mutation in the PADI6 gene causes early embryo arrest. Reprod Health 2022; 19:190. [PMID: 36088419 PMCID: PMC9463787 DOI: 10.1186/s12978-022-01495-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Background It has been proved that mutations in the PADI6 gene can cause early embryo arrest. This study describes a newly discovered mutation in PADI6 that expands the genetic spectrum of early embryo arrest. Methods Peripheral blood of a patient diagnosed with early embryo arrest was collected for whole-exome sequencing. Sanger sequencing was performed to confirm this mutation. The effects of the variant were investigated in human embryonic kidney 293T (HEK293T) cells using western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence. Results A novel homozygous mutation in PADI6 was identified in the proband. The patient carried a frameshift insertion mutation c.558dupA (p.Thr187Asnfs*48), which was located in the protein arginine deiminase middle domain. The variant destroyed PADI6 protein expression and reduced PADI6 mRNA expression in HEK293T cells. Conclusions The newly identified mutation in PADI6 accounts for early embryo arrest. It expands the spectrum of genetic causes and phenotypes of infertility in humans. These findings also provide an additional possible diagnostic marker for patients with recurrent in vitro fertilization/intracytoplasmic sperm injection failure. Supplementary Information The online version contains supplementary material available at 10.1186/s12978-022-01495-7. Some infertile patients experience multiple in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure owing to recurrent early embryo arrest. However, the underlying mechanisms remain largely unknown. Due to the development of whole-exome sequencing, early embryo arrest has been confirmed as a type of Mendelian disease. This study aimed to identify the genetic cause of early embryo arrest in patients and to expand the genetic spectrum. Furthermore, it can help doctors offer better suggestions to such patients and prevent patients from suffering from multiple IVF/ICSI failures.
Collapse
|
31
|
Maternal genetic factors in the development of congenital heart defects. Curr Opin Genet Dev 2022; 76:101961. [PMID: 35882070 DOI: 10.1016/j.gde.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Congenital heart defects (CHDs) are among the most common, serious birth defects. However, the cause of CHDs is unknown for approximately half of affected individuals and there are few prevention strategies. Although not extensively investigated, maternal genes may contribute to CHD etiology by modifying the effects of maternal exposures (e.g. medications, nutrients), contributing to maternal phenotypes that are associated with an increased risk of CHDs in offspring (e.g. diabetes), or acting as maternal effect genes. Since maternal genes could serve as a target for the primary prevention of CHDs, efforts to further define the contribution of the maternal genome to CHD etiology are warranted.
Collapse
|
32
|
Pignata L, Cecere F, Verma A, Hay Mele B, Monticelli M, Acurzio B, Giaccari C, Sparago A, Hernandez Mora JR, Monteagudo-Sánchez A, Esteller M, Pereda A, Tenorio-Castano J, Palumbo O, Carella M, Prontera P, Piscopo C, Accadia M, Lapunzina P, Cubellis MV, de Nanclares GP, Monk D, Riccio A, Cerrato F. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith-Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting disturbances. Clin Epigenetics 2022; 14:71. [PMID: 35643636 PMCID: PMC9148495 DOI: 10.1186/s13148-022-01292-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Ankit Verma
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Bruno Hay Mele
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Maria Monticelli
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Carlo Giaccari
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jose Ramon Hernandez Mora
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukeamia Research Institute, Can Ruti, Cami de les Escoles, Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, Perugia, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, "Antonio Cardarelli" Hospital, 80131, Naples, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", 73039, Tricase, Lecce, Italy
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | | | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - David Monk
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TG, UK
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy.
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
33
|
Capalbo A, Buonaiuto S, Figliuzzi M, Damaggio G, Girardi L, Caroselli S, Poli M, Patassini C, Cetinkaya M, Yuksel B, Azad A, Grøndahl M, Hoffmann E, Simón C, Colonna V, Kahraman S. A standardized approach for case selection and genomic data analysis of maternal exomes for the diagnosis of oocyte maturation and early embryonic developmental arrest in IVF. Reprod Biomed Online 2022; 45:508-518. [DOI: 10.1016/j.rbmo.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
|
34
|
Xu Y, Wang R, Pang Z, Wei Z, Sun L, Li S, Wang G, Liu Y, Zhou Y, Ye H, Jin L, Xue S. Novel Homozygous PADI6 Variants in Infertile Females with Early Embryonic Arrest. Front Cell Dev Biol 2022; 10:819667. [PMID: 35433708 PMCID: PMC9010549 DOI: 10.3389/fcell.2022.819667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Early embryonic arrest denotes premature termination of development in preimplantation embryos, which is one of the major phenotypes of recurrent assisted reproduction failure. Padi6 is proven to be a member of the subcortical maternal complex (SCMC) in mice, which is essential in oocyte maturation and embryogenesis. We and other groups previously found that biallelic mutations in PADI6 caused female infertility manifesting as early embryonic arrest. In this study, we identified two novel homozygous variants (p.Cys163Arg, and p. Trp475*) of PADI6 in two infertile patients from a cohort of 75 females with the phenotype of early embryonic arrest. An in vitro expression study indicated severe decrease of PADI6, which might destruct the stability of SCMC. Our study expands the mutational spectrum of PADI6 and further supports the causality between PADI6 mutations and female infertility.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yao Xu, ; Liping Jin, ; Songguo Xue,
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Pang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lihua Sun
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sa Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Liu
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiwen Zhou
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongjuan Ye
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yao Xu, ; Liping Jin, ; Songguo Xue,
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yao Xu, ; Liping Jin, ; Songguo Xue,
| |
Collapse
|
35
|
Hatırnaz Ş, Hatırnaz ES, Ellibeş Kaya A, Hatırnaz K, Soyer Çalışkan C, Sezer Ö, Dokuzeylül Güngor N, Demirel C, Baltacı V, Tan S, Dahan M. Oocyte maturation abnormalities - A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Turk J Obstet Gynecol 2022; 19:60-80. [PMID: 35343221 PMCID: PMC8966321 DOI: 10.4274/tjod.galenos.2022.76329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A small proportion of infertile women experience repeated oocyte maturation abnormalities (OMAS). OMAS include degenerated and dysmorphic oocytes, empty follicle syndrome, oocyte maturation arrest (OMA), resistant ovary syndrome and maturation defects due to primary ovarian insufficiency. Genetic factors play an important role in OMAS but still need specifications. This review documents the spectrum of OMAS and to evaluate the multiple subtypes classified as OMAS. In this review, readers will be able to understand the oocyte maturation mechanism, gene expression and their regulation that lead to different subtypes of OMAs, and it will discuss the animal and human studies related to OMAS and lastly the treatment options for OMAs. Literature searches using PubMed, MEDLINE, Embase, National Institute for Health and Care Excellence were performed to identify articles written in English focusing on Oocyte Maturation Abnormalities by looking for the following relevant keywords. A search was made with the specified keywords and included books and documents, clinical trials, animal studies, human studies, meta-analysis, randomized controlled trials, reviews, systematic reviews and options written in english. The search detected 3,953 sources published from 1961 to 2021. After title and abstract screening for study type, duplicates and relevancy, 2,914 studies were excluded. The remaining 1,039 records were assessed for eligibility by full-text reading and 886 records were then excluded. Two hundred and twenty seven full-text articles and 0 book chapters from the database were selected for inclusion. Overall, 227 articles, one unpublished and one abstract paper were included in this final review. In this review study, OMAS were classified and extensively evaluatedand possible treatment options under the light of current information, present literature and ongoing studies. Either genetic studies or in vitro maturation studies that will be handled in the future will lead more informations to be reached and may make it possible to obtain pregnancies.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Ebru Saynur Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Aşkı Ellibeş Kaya
- Private Office, Clinic of Obstetrics and Gynecology Specialist, Samsun, Turkey
| | - Kaan Hatırnaz
- Ondokuz Mayıs University Faculty of Medicine, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Canan Soyer Çalışkan
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Özlem Sezer
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Genetics, Samsun, Turkey
| | | | - Cem Demirel
- Memorial Ataşehir Hospital, In Vitro Fertilization Unit, İstanbul, Turkey
| | | | - Seang Tan
- James Edmund Dodds Chair in ObGyn, Department of ObGyn, McGill University, OriginElle Fertility Clinic and Women, QC, Canada
| | - Michael Dahan
- McGill Reproductive Centre, Department of ObGyn, McGill University Montreal, Quebec, Canada
| |
Collapse
|
36
|
Fatemi N, Varkiani M, Ramazanali F, Almadani N, Totonchi M. A familial case of recurrent hydatidiform mole with p.Asp108Ilefs∗30 causing mutation in KHDC3L: A genetic and clinical report. Taiwan J Obstet Gynecol 2022; 61:395-398. [DOI: 10.1016/j.tjog.2022.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/18/2022] Open
|
37
|
Musfee FI, Oluwafemi OO, Agopian A, Hakonarson H, Goldmuntz E, Mitchell LE. Maternal Effect Genes as Risk Factors for Congenital Heart Defects. HGG ADVANCES 2022; 3:100098. [PMID: 35345810 PMCID: PMC8957044 DOI: 10.1016/j.xhgg.2022.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) in the oocyte that control embryonic development prior to activation of the embryonic genome. Over 80 mammalian MEGs have been identified, including several that have been associated with phenotypes in humans. Maternal variation in MEGs is associated with a range of adverse outcomes, which, in humans, include hydatidiform moles, zygotic cleavage failure, and offspring with multi-locus imprinting disorders. In addition, data from both animal models and humans suggest that the MEGs may be associated with structural birth defects such as congenital heart defects (CHDs). To further investigate the association between MEGs and CHDs, we conducted gene-level and gene-set analyses of known mammalian MEGs (n = 82) and two common groups of CHDs: conotruncal heart defects and left ventricular outflow tract defects. We identified 14 candidate CHD-related MEGs. These 14 MEGs include three (CDC20, KHDC3L, and TRIP13) of the 11 known human MEGs, as well as one (DNMT3A) of the eight MEGs that have been associated with structural birth defects in animal models. Our analyses add to the growing evidence that MEGs are associated with structural birth defects, in particular CHDs. Given the large proportion of individuals with structural birth defects for whom etiology of their condition is unknown, further investigations of MEGs as potential risk factors for structural birth defects are strongly warranted.
Collapse
|
38
|
Picchetta L, Caroselli S, Figliuzzi M, Cogo F, Zambon P, Costa M, Pergher I, Patassini C, Cortellessa F, Zuccarello D, Poli M, Capalbo A. Molecular tools for the genomic assessment of oocyte’s reproductive competence. J Assist Reprod Genet 2022; 39:847-860. [PMID: 35124783 PMCID: PMC9050973 DOI: 10.1007/s10815-022-02411-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The most important factor associated with oocytes' developmental competence has been widely identified as the presence of chromosomal abnormalities. However, growing application of genome-wide sequencing (GS) in population diagnostics has enabled the identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting IVF outcomes and reproductive fitness. Indeed, GS analysis in families with history of isolated infertility has recently led to the discovery of new genes and variants involved in specific human infertility endophenotypes that impact the availability and the functionality of female gametes by altering unique mechanisms necessary for oocyte maturation and early embryo development. Ongoing advancements in analytical and bioinformatic pipelines for the study of the genetic determinants of oocyte competence may provide the biological evidence required not only for improving the diagnosis of isolated female infertility but also for the development of novel preventive and therapeutic approaches for reproductive failure. Here, we provide an updated discussion and review of the progresses made in preconception genomic medicine in the identification of genetic factors associated with oocyte availability, function, and competence.
Collapse
|
39
|
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) that are present in the oocyte and required for early embryonic development. Hence, while these genes and gene products are of maternal origin, their phenotypic consequences result from effects on the embryo. The first mammalian MEGs were identified in the mouse in 2000 and were associated with early embryonic loss in the offspring of homozygous null females. In humans, the first MEG was identified in 2006, in women who had experienced a range of adverse reproductive outcomes, including hydatidiform moles, spontaneous abortions, and stillbirths. Over 80 mammalian MEGs have subsequently been identified, including several that have been associated with phenotypes in humans. In general, pathogenic variants in MEGs or the absence of MEG products are associated with a spectrum of adverse outcomes, which in humans range from zygotic cleavage failure to offspring with multi-locus imprinting disorders. Although less established, there is also evidence that MEGs are associated with structural birth defects (e.g., craniofacial malformations, congenital heart defects). This review provides an updated summary of mammalian MEGs reported in the literature through early 2021, as well as an overview of the evidence for a link between MEGs and structural birth defects.
Collapse
|
40
|
Novel biallelic mutations in PADI6 in patients with early embryonic arrest. J Hum Genet 2022; 67:285-293. [PMID: 34987164 DOI: 10.1038/s10038-021-00998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 01/08/2023]
Abstract
Peptidyl arginine deiminase, type VI (PADI6) is a member of the subcortical maternal complex (SCMC), which plays vital roles in mammalian embryogenesis. Most mutations in SCMC members have been reported to cause human embryonic arrest, and a total of 15 mutations in PADI6 have been shown to be responsible for early embryonic arrest according to previous studies. However, the genetic factors behind this phenotype remain to be understood in further detail. Here, we identified 13 novel mutations and 4 previously reported mutations of PADI6 in 14 patients who were diagnosed with abnormal embryonic development caused by early arrest, embryonic fragmentation, and recurrent implantation failure. Most of the mutations were predicted by in silico analysis to be deleterious or damaging to the function of PADI6. In addition, the total and East Asian population frequencies of the mutations were low or absent in the gnomAD database. Our study expands the mutational spectrum in PADI6 and will provide precise targets for genetic counseling in the future.
Collapse
|
41
|
Yang J, Yan Z, Liu Y, Zhu X, Li R, Liu P, Yan L, Qiao J, Zhi X. Application of next-generation sequencing to preimplantation genetic testing for recurrent hydatidiform mole patients. J Assist Reprod Genet 2021; 38:2881-2891. [PMID: 34608573 DOI: 10.1007/s10815-021-02325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To study the application of next-generation sequencing on preimplantation genetic testing for recurrent hydatidiform mole patients. METHODS A total of ten recurrent hydatidiform mole patients aged 27-34 years with a history of at least twice hydatidiform moles and no normal pregnancy were collected from 2019 to 2020. The diagnosis of hydatidiform mole type was clarified using short tandem repeat genotyping on products of conception, and whole-exome sequencing was applied for all patients and their partners. Seven recurrent hydatidiform mole patients with complete hydatidiform mole/partial hydatidiform mole type among previous hydatidiform mole tissues and no Pathogenetic/Likely pathogenetic/Uncertain significance variants in NLRP7/KHDC3L/MEI1/C11orf80 underwent a procedure of preimplantation genetic testing. Next-generation sequencing for analyzing the copy number variants and the numbers of heterozygous single nucleotide polymorphism was adopted to clarify the ploidy and parental origin of the embryo chromosomes in vitro. Embryos with biparental diploidy were selected for transfer. RESULTS Seven patients have undergone the procedure of preimplantation genetic testing, and twenty-three embryos were obtained, among which 82.6% (n = 19) were identified transferrable and 17.4% (n = 4) were identified aneuploid. Two patients have delivered healthy babies and another is currently in the second trimester after transfer. CONCLUSION Analyzing the copy number variants and the numbers of heterozygous single nucleotide polymorphism on the basis of next-generation sequencing can be utilized in the procedure of preimplantation genetic testing among part of recurrent hydatidiform mole patients. The current study is effective to reduce the occurrence of hydatidiform mole with improved clinical strategy, the advanced testing technology and analysis methods, as three of seven patients have conceived or delivered successfully.
Collapse
Affiliation(s)
- Jingyi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
42
|
Cao T, Guo J, Xu Y, Lin X, Deng W, Cheng L, Zhao H, Jiang S, Gao M, Huang J, Xu Y. Two mutations in TUBB8 cause developmental arrest in human oocytes and early embryos. Reprod Biomed Online 2021; 43:891-898. [PMID: 34509376 DOI: 10.1016/j.rbmo.2021.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
RESEARCH QUESTION How can the effect of genetic mutations that may cause primary female infertility be evaluated? DESIGN Patients and their family members underwent whole-exome sequencing and Sanger sequencing to detect the infertility-causing gene and inheritance pattern. To study the function of mutant proteins in vitro, vectors containing wild-type or mutant TUBB8 cDNA were constructed for transient expression in HeLa cells, and in-vitro transcribed mRNA were used for microinjection in germinal vesicle-stage mouse oocytes. Immunofluorescence staining was used to observe the microtubule structure in HeLa cells or meiotic spindle in mouse oocytes. RESULTS A maternally inherited TUBB8 (Tubulin beta 8 class VIII) mutation (NM_177987.2: c. 959G>A: p. R320H) and a previously reported (NM_177987.2: c. 161C>T: p. A54V) recessive mutation from two infertile female patients were identified. The oocytes from the patient carrying p.A54V mutation failed fertilization, whereas oocytes with p.R320H mutation could be fertilized but showed heavy fragmentation during early development. In vitro, functional assays showed that p. A54V mutant disrupted the microtubule structure in HeLa cells (49.3% of transfected cells) and caused large polar body extrusion in mouse oocytes (27.5%), whereas the p.R320H mutant caused a higher abnormal rate (69.7%) in cultured cells and arrested mouse oocytes at meiosis I (38.7%). CONCLUSION Two TUBB8 mutations (p.A54V and p.R320H) were identified and their pathogeny was confirmed by in-vitro functional assays.
Collapse
Affiliation(s)
- Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275
| | - Jing Guo
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275
| | - Yan Xu
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275
| | - Xiufeng Lin
- Boai Hospital of Zhongshan, Zhongshan Guangdong, China
| | - Weifen Deng
- Shenzhen Entry and Exit Border Inspection Station Hospital, Shenzhen Guangdong, China
| | - Lizi Cheng
- Boai Hospital of Zhongshan, Zhongshan Guangdong, China
| | - Huan Zhao
- Shenzhen Entry and Exit Border Inspection Station Hospital, Shenzhen Guangdong, China
| | - Shan Jiang
- Boai Hospital of Zhongshan, Zhongshan Guangdong, China
| | - Min Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275.
| | - Yanwen Xu
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275.
| |
Collapse
|
43
|
Dong J, Zhang H, Mao X, Zhu J, Li D, Fu J, Hu J, Wu L, Chen B, Sun Y, Mu J, Zhang Z, Sun X, Zhao L, Wang W, Wang W, Zhou Z, Zeng Y, Du J, Li Q, He L, Jin L, Kuang Y, Wang L, Sang Q. Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure. Hum Reprod 2021; 36:2371-2381. [PMID: 34037756 DOI: 10.1093/humrep/deab118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are any novel mutations and corresponding new phenotypes, other than recurrent hydatidiform moles, seen in patients with MEI1 mutations? SUMMARY ANSWER We identified several novel mutations in MEI1 causing new phenotypes of early embryonic arrest and recurrent implantation failure. WHAT IS KNOWN ALREADY It has been reported that biallelic mutations in MEI1, encoding meiotic double-stranded break formation protein 1, cause azoospermia in men and recurrent hydatidiform moles in women. STUDY DESIGN, SIZE, DURATION We first focused on a pedigree in which two sisters were diagnosed with recurrent hydatidiform moles in December 2018. After genetic analysis, two novel mutations in MEI1 were identified. We then expanded the mutational screening to patients with the phenotype of embryonic arrest, recurrent implantation failure, and recurrent pregnancy loss, and found another three novel MEI1 mutations in seven new patients from six families recruited from December 2018 to May 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Nine primary infertility patients were recruited from the reproduction centers in local hospitals. Genomic DNA from the affected individuals, their family members, and healthy controls was extracted from peripheral blood. The MEI1 mutations were screened using whole-exome sequencing and were confirmed by the Sanger sequencing. In silico analysis of mutations was performed with Sorting Intolerant From Tolerant (SIFT) and Protein Variation Effect Analyzer (PROVEAN). The influence of the MEI1 mutations was determined by western blotting and minigene analysis in vitro. MAIN RESULTS AND THE ROLE OF CHANCE In this study, we identified five novel mutations in MEI1 in nine patients from seven independent families. Apart from recurrent hydatidiform moles, biallelic mutations in MEI1 were also associated with early embryonic arrest and recurrent implantation failure. In addition, we demonstrated that protein-truncating and missense mutations reduced the protein level of MEI1, while the splicing mutations caused abnormal alternative splicing of MEI1. LIMITATIONS, REASONS FOR CAUTION Owing to the lack of in vivo data from the oocytes of the patients, the exact molecular mechanism(s) involved in the phenotypes remains unknown and should be further investigated using knock-out or knock-in mice. WIDER IMPLICATIONS OF THE FINDINGS Our results not only reveal the important role of MEI1 in human oocyte meiosis and early embryonic development, but also extend the phenotypic and mutational spectrum of MEI1 and provide new diagnostic markers for genetic counseling of clinical patients. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, and 81971382), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Shanghai Health and Family Planning Commission Foundation (20154Y0162), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine, Ferring Pharmaceuticals and the Chinese Academy of Sciences (FIRMC200507) and the Chongqing Key Laboratory of Human Embryo Engineering (2020KFKT008). No competing interests are declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Mao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zhu
- Department of Gynecology and Obstetrics, The First Hospital of YuLin, Shaanxi, China
| | - Da Li
- Reproductive Medicine Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jijun Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Yiming Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel) 2021; 12:genes12081214. [PMID: 34440388 PMCID: PMC8394515 DOI: 10.3390/genes12081214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| |
Collapse
|
45
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
46
|
Yang P, Chen T, Wu K, Hou Z, Zou Y, Li M, Zhang X, Xu J, Zhao H. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod 2021; 36:2011-2019. [PMID: 33893736 DOI: 10.1093/humrep/deab094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION What are the genetic causes of oocyte maturation defects? SUMMARY ANSWER A homozygous splicing variant (c.788 + 3A>G) in TATA-box binding protein like 2 (TBPL2) was identified as a contributory genetic factor in oocyte maturation defects. WHAT IS KNOWN ALREADY TBPL2, a vertebrate oocyte-specific general transcription factor, is essential for oocyte development. TBPL2 variants have not been studied in human oocyte maturation defects. STUDY DESIGN, SIZE, DURATION Two infertile families characterized by oocyte maturation defects were recruited for whole-exome sequencing (WES). PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from peripheral blood for WES analysis. Sanger sequencing was performed for data validation. Pathogenicity of variants was predicted by in silico analysis. Minigene assay and single-oocyte RNA sequencing were performed to investigate the effects of the variant on mRNA integrity and oocyte transcriptome, respectively. MAIN RESULTS AND THE ROLE OF CHANCE A homozygous splicing variant (c.788 + 3A>G) in TBPL2 was identified in two unrelated families characterized by oocyte maturation defects. Haplotype analysis indicated that the disease allele of Families 1 and 2 was independent. The variant disrupted the integrity of TBPL2 mRNA. Transcriptome sequencing of affected oocytes showed that vital genes for oocyte maturation and fertilization were widely and markedly downregulated, suggesting that a mutation in the transcriptional factor, TBPL2, led to global gene alterations in oocytes. LIMITATIONS, REASONS FOR CAUTION Limitations include the lack of direct functional evidence. Owing to the scarcity of human oocyte samples, only two immature MI oocytes were obtained from the patients, and we could only investigate the effect of the mutation at the transcriptional level by high-throughput sequencing technology. No extra oocytes were obtained to assess the transcriptional activity of the mutant oocytes by immunofluorescence, or investigate the effects on the binding of TBPL2 caused by the mutation. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight a critical role of TBPL2 in female reproduction and identify a homozygous splicing mutation in TBPL2 that might be related to defects in human oocyte maturation. This information will facilitate the genetic diagnosis of infertile individuals with repeated failures of IVF, providing a basis for genetic counseling. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2018YFC1004000, 2017YFC1001504 and 2017YFC1001600), the National Natural Science Foundation of China (81871168, 31900409 and 31871509), the Foundation for Distinguished Young Scholars of Shandong Province (JQ201816), the Innovative Research Team of High-Level Local Universities in Shanghai (SSMU-ZLCX20180401) and the Fundamental Research Funds of Shandong University. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ping Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Tailai Chen
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yang Zou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Mei Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - XinZe Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Junting Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| |
Collapse
|
47
|
Arian S, Rubin J, Chakchouk I, Sharif M, Mahadevan SK, Erfani H, Shelly K, Liao L, Lorenzo I, Ramakrishnan R, Van den Veyver IB. Reproductive Outcomes from Maternal Loss of Nlrp2 Are Not Improved by IVF or Embryo Transfer Consistent with Oocyte-Specific Defect. Reprod Sci 2021; 28:1850-1865. [PMID: 33090377 PMCID: PMC8060370 DOI: 10.1007/s43032-020-00360-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization. Embryos from Nlrp2-deficient females had similar abnormal cleavage and fragmentation and arrested by blastocyst stage, irrespective of fertilization mode. This indicates that in vitro fertilization does not further perturb or improve the development of cultured embryos. We also transferred embryos from superovulated Nlrp2-deficient and wild-type females to wild-type recipients to investigate if the abnormal reproductive outcomes of Nlrp2-deficient females are primarily driven by oocyte dysfunction or if a suboptimal intra-uterine milieu is a necessary factor. Pregnancies with transferred embryos from Nlrp2-deficient females produced smaller litters, stillbirths, and offspring with birth defects and growth abnormalities. This indicates that the reproductive phenotype is oocyte-specific and is not rescued by development in a wild-type uterus. We further found abnormal DNA methylation at two maternally imprinted loci in the kidney of surviving young adult offspring, confirming persistent DNA methylation disturbances in surviving offspring. These findings have implications for fertility treatments for women with mutations in NLRP2 and other genes encoding SCMC proteins.
Collapse
Affiliation(s)
- Sara Arian
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Jessica Rubin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
- Reproductive Biology Associates, 1100 Johnson Ferry Road NE, Suite 200, Atlanta, GA, 30342, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | | | - Hadi Erfani
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Katharine Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Rajesh Ramakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
- The Carol and Odis Peavy School of Nursing, University of St. Thomas, Houston, TX, 77006, USA
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, room 1025.14, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod 2021; 27:6311673. [PMID: 34191027 DOI: 10.1093/molehr/gaab043] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | | | | | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
49
|
Zhang M, Liu C, Chen B, Lv M, Zou H, Liu Y, Gao Y, Wang T, Xing Q, Zhu Y, Wu H, Zhang Z, Zhou P, Wei Z, He X, Xu Y, Cao Y. Identification of Novel Biallelic TLE6 Variants in Female Infertility With Preimplantation Embryonic Lethality. Front Genet 2021; 12:666136. [PMID: 34178031 PMCID: PMC8226231 DOI: 10.3389/fgene.2021.666136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023] Open
Abstract
Preimplantation embryonic lethality is a rare cause of primary female infertility. It has been reported that variants in the transducin-like enhancer of split 6 (TLE6) gene can lead to preimplantation embryonic lethality. However, the incidence of TLE6 variants in patients with preimplantation embryonic lethality is not fully understood. In this study, we identified four patients carrying novel biallelic TLE6 variants in a cohort of 28 patients with preimplantation embryonic lethality by whole-exome sequencing and bioinformatics analysis, accounting for 14.29% (4/28) of the cohort. Immunofluorescence showed that the TLE6 levels in oocytes from patients were much lower than in normal control oocytes, suggesting that the variants result in the lower expression of the TLE6 protein in oocytes. In addition, a retrospective analysis showed that the four patients underwent a total of nine failures of in vitro fertilization and intracytoplasmic sperm injection attempts, and one of them became pregnant on the first attempt using donated oocytes. Our study extends the genetic spectrum of female infertility caused by variants in TLE6 and further confirms previously reported findings that TLE6 plays an essential role in early embryonic development. In such case, oocyte donation may be the preferred treatment.
Collapse
Affiliation(s)
- Manyu Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Tianjuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Qiong Xing
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yutong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
50
|
Two novel mutations in PADI6 and TLE6 genes cause female infertility due to arrest in embryonic development. J Assist Reprod Genet 2021; 38:1551-1559. [PMID: 34036456 PMCID: PMC8266952 DOI: 10.1007/s10815-021-02194-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aims to identify genetic causes of female infertility associated with recurrent failure of assisted reproductive technology (ART) characterized by embryonic developmental arrest. Methods We recruited infertile patients from two consanguineous families from the Reproductive Medicine Center of Guizhou Provincial People’s Hospital. Peripheral blood was collected for genomic DNA extraction. Two affected individuals and their family members were performed with whole-exome sequencing and Sanger validation in order to identify possible causative genes. For further analyzing the effect of splicing mutation on mRNA integrity in vivo, TLE6 cDNA from the peripheral blood lymphocyte of the affected individual was sequenced. In addition, the possible impact of the pathogenic mutation on the structure and function of the protein were also assessed. Results Two novel homozygous mutations in the peptidylarginine deiminase type VI (PADI6) and the transducin-like enhancer of split 6 (TLE6) genes were identified in the two families. One patient carried the frameshift deletion mutation c.831_832del:p.S278Pfs*59 of the PADI6 gene and the other patient carried the splicing mutation c.1245-2 A>G of the TLE6 gene. The analysis of the mRNA from the proband’s peripheral blood leukocytes confirmed aberrant splicing. Conclusions Our findings expand the mutational spectrum of PADI6 and TLE6 associated with embryonic developmental arrest and deepen our understanding of the genetic causes of infertility with recurrent ART failure.
Collapse
|