1
|
Liu Y, Deng X, Chen C, Fu B, Wang M, Li J, Xu L, Wang B. Atractylenolide I Attenuates Glucocorticoid-Induced Osteoporosis via Inhibiting NF-κB Signaling Pathway. Calcif Tissue Int 2025; 116:51. [PMID: 40074976 DOI: 10.1007/s00223-025-01358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Long-term treatment with glucocorticoids significantly impacts bone health, with glucocorticoid-induced osteoporosis (GIOP) being the most prevalent consequence. Previous studies have established that Atractylenolide I (Atr I) possesses anti-inflammatory, antioxidant and anti-tumor properties, however, its specific effects on osteoclastogenesis and GIOP are still unclear. In this study, our in vitro results revealed that Atr I inhibited RANKL-stimulated osteoclast differentiation in a dose-dependent manner, disrupted the structure of the F-actin belt in mature osteoclasts, blocked RANKL-induced ROS production, and suppressed the expression of osteoclast-associated genes. Mechanistically, the findings indicated that Atr I inhibited the RANKL-induced activation of the NF-κB signaling pathway. In vivo, the micro-CT, bone histomorphometric analysis and histological data demonstrated that Dex administration led to significant bone loss, accompanied by a considerable increase in the number of osteoclasts on the bone surface. Conversely, treatment with Atr I effectively prevented these Dex-induced alterations. Taken together, this study suggests that Atr I may hold potential as a therapeutic agent for the treatment of GIOP.
Collapse
Affiliation(s)
- Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Deng
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Binlan Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Li
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liangliang Xu
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Bin Wang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Luo D, Gao X, Zhu X, Wu J, Yang Q, Xu Y, Huang Y, He X, Li Y, Gao P. Identification of steroid-induced osteonecrosis of the femoral head biomarkers based on immunization and animal experiments. BMC Musculoskelet Disord 2024; 25:596. [PMID: 39069636 DOI: 10.1186/s12891-024-07707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of femoral head (SONFH) is a severe health risk, and this study aims to identify immune-related biomarkers and pathways associated with the disease through bioinformatics analysis and animal experiments. METHOD Using SONFH-related datasets obtained from the GEO database, we performed differential expression analysis and weighted gene co-expression network analysis (WGCNA) to extract SONFH-related genes. A protein-protein interaction (PPI) network was then constructed, and core sub-network genes were identified. Immune cell infiltration and clustering analysis of SONFH samples were performed to assess differences in immune cell populations. WGCNA analysis was used to identify module genes associated with immune cells, and hub genes were identified using machine learning. Internal and external validation along with animal experiments were conducted to confirm the differential expression of hub genes and infiltration of immune cells in SONFH. RESULTS Differential expression analysis revealed 502 DEGs. WGCNA analysis identified a blue module closely related to SONFH, containing 1928 module genes. Intersection analysis between DEGs and blue module genes resulted in 453 intersecting genes. The PPI network and MCODE module identified 15 key targets enriched in various signaling pathways. Analysis of immune cell infiltration showed statistically significant differences in CD8 + t cells, monocytes, macrophages M2 and neutrophils between SONFH and control samples. Unsupervised clustering classified SONFH samples into two clusters (C1 and C2), which also exhibited significant differences in immune cell infiltration. The hub genes (ICAM1, NR3C1, and IKBKB) were further identified using WGCNA and machine learning analysis. Based on these hub genes, a clinical prediction model was constructed and validated internally and externally. Animal experiments confirmed the upregulation of hub genes in SONFH, with an associated increase in immune cell infiltration. CONCLUSION This study identified ICAM1, NR3C1, and IKBKB as potential immune-related biomarkers involved in immune cell infiltration of CD8 + t cells, monocytes, macrophages M2, neutrophils and other immune cells in the pathogenesis of SONFH. These biomarkers act through modulation of the chemokine signaling pathway, Toll-like receptor signaling pathway, and other pathways. These findings provide valuable insights into the disease mechanism of SONFH and may aid in future drug development efforts.
Collapse
Affiliation(s)
- Dongqiang Luo
- Nanfang College Guangzhou, Guangzhou, 510970, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaolu Gao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianqiong Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiayu Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qingyi Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Xu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxuan Huang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaolin He
- Clifford Hospital, Guangzhou, 511496, China
| | - Yan Li
- Clifford Hospital, Guangzhou, 511496, China
| | - Pengfei Gao
- Nanfang College Guangzhou, Guangzhou, 510970, China.
| |
Collapse
|
3
|
Li W, Xie S, Zhong S, Lan L. The synergistic effect of diabetes mellitus and osteoporosis on the all-cause mortality: a cohort study of an American population. Front Endocrinol (Lausanne) 2024; 14:1308574. [PMID: 38327903 PMCID: PMC10849060 DOI: 10.3389/fendo.2023.1308574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Background The increasing incidence of diabetes mellitus (DM) and osteoporosis have different effects on prognosis. The two often co-occur, so we aimed to investigate whether DM and osteoporosis have an effect on all-cause death and whether DM and osteoporosis have a synergistic effect. Methods This study analyzed 18,658 subjects from five cycles of the National Health and Nutrition Examination Survey (NHANES). The primary endpoint was all-cause death. The subjects were divided into four groups based on the presence or absence of DM and osteoporosis. Survival curves and Cox regression analysis based on NHANES recommended weights were used to assess the risk of all-cause death between the diseased and non-diseased groups and to calculate additive interactions to assess whether there was a synergistic effect between diabetes and osteoporosis. Results The group with DM and osteoporosis had the lowest survival rate. After full adjustment for confounders, patients with DM alone had a 30% higher risk of all-cause death compared with those without DM and osteoporosis (HR: 1.30, 95%CI: 1.09-1.55). Patients with osteoporosis alone had a 67% higher risk of all-cause death (HR: 1.67, 95%CI:1.16-2.43) and patients with combined DM and osteoporosis had a 127% higher risk of all-cause death (HR:2.27, 95%CI: 1.57-3.27). There was an additive interaction between DM and osteoporosis [RERI (95%CI): 1.03(0.55-1.50)] and excess mortality risk of 38% [AP (95% CI) 0.38(0.30-0.46)]. Conclusions There might be a synergistic effect of DM and osteoporosis on all-cause mortality, and patients with both conditions have a higher risk of death.
Collapse
Affiliation(s)
- Weihua Li
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Siyu Xie
- Department of Anesthesiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shengdong Zhong
- Department of Plastic Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liting Lan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
del Pozo V, Bobolea I, Rial MJ, Espigol-Frigolé G, Solans Laqué R, Hernández-Rivas JM, Mora E, Crespo-Lessmann A, Izquierdo Alonso JL, Domínguez Sosa MS, Maza-Solano J, Atienza-Mateo B, Bañas-Conejero D, Moure AL, Rúa-Figueroa Í. Expert consensus on the use of systemic glucocorticoids for managing eosinophil-related diseases. Front Immunol 2024; 14:1310211. [PMID: 38250075 PMCID: PMC10796442 DOI: 10.3389/fimmu.2023.1310211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Eosinophil-related diseases represent a group of pathologic conditions with highly heterogeneous clinical presentation and symptoms ranging from mild to critical. Both systemic and localized forms of disease are typically treated with glucocorticoids. The approval of novel biologic therapies targeting the interleukin-5 pathway can help reduce the use of systemic glucocorticoids (SGC) in eosinophilic diseases and reduce the risk of SGC-related adverse effects (AEs). In this article, a panel of experts from different medical specialties reviewed current evidence on the use of SGC in two systemic eosinophilic diseases: Eosinophilic Granulomatosis with PolyAngiitis (EGPA) and HyperEosinophilic Syndrome (HES); and in two single-organ (respiratory) eosinophilic diseases: Chronic RhinoSinusitis with Nasal Polyps (CRSwNP) and Severe Asthma with Eosinophil Phenotype (SA-EP), and contrasted it with their experience in clinical practice. Using nominal group technique, they reached consensus on key aspects related to the dose and tapering of SGC as well as on the initiation of biologics as SGC-sparing agents. Early treatment with biologics could help prevent AEs associated with medium and long-term use of SGC.
Collapse
Affiliation(s)
- Victoria del Pozo
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Irina Bobolea
- Allergy Department, Severe Asthma Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Manuel J. Rial
- Allergy Department, Severe Asthma Unit, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), A Coruña, Spain
| | - Georgina Espigol-Frigolé
- Department of Autoimmune Diseases, Hospital Clinic Clínic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Solans Laqué
- Autoimmune Systemic Diseases Unit, Internal Medicine Department, Vall d’Hebron Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Jesús María Hernández-Rivas
- Department of Medicine, University of Salamanca & Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Elvira Mora
- Hematology Department, La Fe University and Polytechnic Hospital, La Fe Research Institute, Valencia, Spain
| | - Astrid Crespo-Lessmann
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Luis Izquierdo Alonso
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Pulmonology Service, Guadalajara University Hospital, Guadalajara, Spain
| | - María Sandra Domínguez Sosa
- Rhinology Unit, Department of Otolaryngology, Head and Neck Surgery, University Hospital of Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Juan Maza-Solano
- Rhinology Unit, Department of Otolaryngology, Head and Neck Surgery, Virgen Macarena University Hospital, Sevilla, Spain
| | - Belén Atienza-Mateo
- Division of Rheumatology, University Hospital of Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Immunopathology group, Santander, Spain
| | | | | | - Íñigo Rúa-Figueroa
- Rheumatology Department, University Hospital of Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Sauhta R, Makkar D, Siwach PS. The Sequential Therapy in Osteoporosis. Indian J Orthop 2023; 57:150-162. [PMID: 38107815 PMCID: PMC10721775 DOI: 10.1007/s43465-023-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Background Osteoporosis management often involves a sequential treatment approach to optimize patient outcomes and minimize fracture risks. This strategy is tailored to individual patient characteristics, treatment responses, and fracture risk profiles. Methods A thorough literature review was systematically executed using prominent databases, including PubMed and EMBASE. The primary aim was to identify original articles and clinical trials evaluating the effectiveness of sequential therapy with anti-osteoporosis drugs, focusing on the period from 1995 to 2023. The analysis encompassed an in-depth examination of osteoporosis drugs, delineating their mechanisms of action, side effects, and current trends as elucidated in the literature. Results and Discussion Our study yielded noteworthy insights into the optimal sequencing of pharmacologic agents for the long-term treatment of patients necessitating multiple drugs. Notably, the achievement of optimal improvements in bone mass is observed when commencing treatment with an anabolic medication, followed by the subsequent utilization of an antiresorptive drug. This stands in contrast to initiating therapy with a bisphosphonate, which may potentially diminish outcomes in the post-anabolic intervention period. Furthermore, it has been discerned that caution should be exercised against transitioning from denosumab to PTH homologs due to the adverse effects of heightened bone turnover and sustained weakening of bone structure. Despite the absence of fracture data substantiating the implementation of integrated anabolic/antiresorptive pharmacotherapy, the incorporation of denosumab and teriparatide presents a potential avenue worthy of consideration for individuals at a heightened vulnerability to fragility fractures. Conclusions A judiciously implemented sequential treatment strategy in osteoporosis offers a flexible and tailored approach to address diverse clinical scenarios, optimizing fracture prevention and patient outcomes.
Collapse
Affiliation(s)
- Ravi Sauhta
- Department Orthopedics and Joint
Replacement, Artemis Hospitals, Gurgaon, India
| | | | | |
Collapse
|
6
|
Li S, Zeng Q, Zhu L, Liu W, Li Y, Li J, Li X, Zhao M, Qu J. Intraoperative slow-release dexamethasone intravitreal implant (Ozurdex) in epiretinal membrane peeling surgery: a prospective randomized controlled trial. Front Pharmacol 2023; 14:1219861. [PMID: 37727387 PMCID: PMC10505737 DOI: 10.3389/fphar.2023.1219861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose: This study aimed to determine the efficacy of the dexamethasone (DEX) intravitreal implant for the regression of macular edema and the improvement of best-corrected visual acuity (BCVA) after the removal of idiopathic epiretinal membrane (ERM). Methods: This prospective randomized controlled trial recruited 81 patients with idiopathic ERM. These patients all underwent 25-gauge pars plana vitrectomy combined with ERM and internal limiting membrane peeling surgery. Among them, 41 eyes in the DEX group received additional DEX implants and 40 in the non-DEX group did not. Outcomes including central retinal thickness (CRT), BCVA, and intraocular pressure were measured 1 and 3 months after surgery. Results: The DEX group had thinner CRTs compared to the non-DEX group at 1 month postoperatively (p <0.05), but did not differ significantly at the 1-week and 3-month follow-up visits (p = 0.109 and p = 0.417, respectively). There were no statistical differences with respect to BCVA (p = 0.499, 0.309, 0.246, and 0.517, respectively) and intraocular pressure (p = 0.556, 0.639, 0.741, and 0.517, respectively) between the two groups at each point of follow-up visits. Conclusion: DEX accelerated the reduction of CRT at 1 month after surgery. However, no evidence of further anatomical (CRT) or functional (BCVA) benefits using DEX was observed at 3 months. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT05416827.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinfeng Qu
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Rossi F, Tortora C, Paoletta M, Marrapodi MM, Argenziano M, Di Paola A, Pota E, Di Pinto D, Di Martino M, Iolascon G. Osteoporosis in Childhood Cancer Survivors: Physiopathology, Prevention, Therapy and Future Perspectives. Cancers (Basel) 2022; 14:4349. [PMID: 36139510 PMCID: PMC9496695 DOI: 10.3390/cancers14184349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The improvement of chemotherapy, radiotherapy, and surgical interventions, together with hematopoietic stem cell transplantation, increased childhood cancer survival rate in the last decades, reaching 80% in Europe. Nevertheless, anti-cancer treatments are mainly responsible for the onset of long-term side effects in childhood cancer survivors (CCS), including alterations of the endocrine system function and activity. In particular, the most frequent dysfunction in CCS is a metabolic bone disorder characterized by low bone mineral density (BMD) with increased skeletal fragility. BMD loss is also a consequence of a sedentary lifestyle, malnutrition, and cancer itself could affect BMD, thus inducing osteopenia and osteoporosis. In this paper, we provide an overview of possible causes of bone impairment in CCS in order to propose management strategies for early identification and treatment of skeletal fragility in this population.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
8
|
Xu Y, Chen S, Huang L, Han W, Shao Y, Chen M, Zhang Y, He R, Xie B. Epimedin C Alleviates Glucocorticoid-Induced Suppression of Osteogenic Differentiation by Modulating PI3K/AKT/RUNX2 Signaling Pathway. Front Pharmacol 2022; 13:894832. [PMID: 35860032 PMCID: PMC9291512 DOI: 10.3389/fphar.2022.894832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Secondary osteoporosis is triggered mostly by glucocorticoid (GC) therapy. Dexamethasone (DEX) was reported to inhibit osteogenic differentiation in zebrafish larvae and MC3T3-E1 cells in prior research. In this research, we primarily examined the protective impacts of epimedin C on the osteogenic inhibition impact of MC3T3-E1 cells and zebrafish larvae mediated by DEX. The findings illustrated no apparent toxicity for MC3T3-E1 cells after administering epimedin C at increasing dosages from 1 to 60 μM and no remarkable proliferation in MC3T3-E1 cells treated using DEX. In MC3T3-E1 cells that had been treated using DEX, we discovered that epimedin C enhanced alkaline phosphatase activities and mineralization. Epimedin C could substantially enhance the protein expression of osterix (OSX), Runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL) in MC3T3-E1 cells subjected to DEX treatment. Additionally, epimedin C stimulated PI3K and AKT signaling pathways in MC3T3-E1 cells that had been treated using DEX. Furthermore, in a zebrafish larvae model, epimedin C was shown to enhance bone mineralization in DEX-mediated bone impairment. We also found that epimedin C enhanced ALPL activity and mineralization in MC3T3-E1 cells treated using DEX, which may be reversed by PI3K inhibitor (LY294002). LY294002 can also reverse the protective impact of epimedin C on DEX-mediated bone impairment in zebrafish larval. These findings suggested that epimedin C alleviated the suppressive impact of DEX on the osteogenesis of zebrafish larval and MC3T3-E1 cells via triggering the PI3K and AKT signaling pathways. Epimedin C has significant potential in the development of innovative drugs for the treatment of glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yingying Shao
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People’s Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Ruirong He
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| |
Collapse
|
9
|
Xiao J, Li W, Li G, Tan J, Dong N. STK11 overexpression prevents glucocorticoid-induced osteoporosis via activating the AMPK/SIRT1/PGC1α axis. Hum Cell 2022; 35:1045-1059. [PMID: 35543972 DOI: 10.1007/s13577-022-00704-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Osteoporosis (OP) is a frequent orthopedic disease characterized by pain, fractures and deformities. Glucocorticoids are the most common cause of secondary osteoporosis. Here, we aim to explore the function and mechanism of STK11 in glucocorticoid (GC)-induced OP. Human mesenchymal stromal cells (hMSCs) were differentiated under osteogenic or adipogenic culture medium. An in-vitro OP model was induced by dexamethasone (DEX). The viability, differentiation, apoptosis, and ROS level were evaluated for investigating the functions of SKT11 on hMSCs. The SIRT1 inhibitor EX-527, PGC1α inhibitor SR-18292, and AMPK activator metformin were administered into hMSCs for confirming the mechanism of SKT11. Our results showed that STK11 was down-regulated in OP tissues, as well as DEX-treated hMSCs. Overexpressing STK11 attenuated DEX-mediated inhibition of osteogenic differentiation and heightened the activation of the AMPK/SIRT1/PGC1α pathway, whereas STK11 knockdown exerted opposite effects. Inhibiting SIRT1 or PGC1α repressed the promotive effect of STK11 on osteogenic differentiation of hMSCs, while activation of AMPK abated the inhibitory effect of STK11 knockdown on osteogenic differentiation of hMSCs. In conclusion, this study revealed that overexpressing STK11 dampened GC-induced OP by activating the AMPK/SIRT1/PGC1α axis.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Wenjin Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Guojuan Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Jiankai Tan
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Na Dong
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Peng Y, Zhao W, Hu Y, Guo XE, Wang J, Hao K, He Z, Toro C, Bauman WA, Qin W. Administration of High-Dose Methylprednisolone Worsens Bone Loss after Acute Spinal Cord Injury in Rats. Neurotrauma Rep 2022; 2:592-602. [PMID: 35018361 PMCID: PMC8742306 DOI: 10.1089/neur.2021.0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The administration of high-dose methylprednisolone (MP) for 24–48 h after traumatic spinal cord injury (SCI) has been shown to improve functional recovery. The known adverse effects of MP on skeletal muscle and the immune system, though, have raised clinically relevant safety concerns. However, the effect of MP administration on SCI-induced bone loss has not been evaluated to date. This study examined the adverse effects of high-dose MP administration on skeletal bone after acute SCI in rodents. Male rats underwent spinal cord transection at T3–T4, which was followed by an intravenous injection of MP and subsequent infusion of MP for 24 h. At 2 days, animals were euthanized and hindlimb bone samples were collected. MP significantly reduced bone mineral density (−6.7%) and induced deterioration of bone microstructure (trabecular bone volume/tissue volume, −18.4%; trabecular number, −19.4%) in the distal femur of SCI rats. MP significantly increased expression in the hindlimb bones of osteoclastic genes receptor activator of nuclear factor-κB ligand (RANKL; +402%), triiodothyronine receptor auxiliary protein (+32%), calcitonin receptor (+41%), and reduced osteoprotegerin/RANKL ratio (−72%) compared to those of SCI-vehicle animals. Collectively, 1 day of high-dose MP at a dose comparable to the dosing regimen prescribed to patients who qualify to receive this treatment approach with acute SCI increased loss of bone mass and integrity below the level of lesion than that of animals that had SCI alone, and was associated with further elevation in the expression of genes involved in pathways associated with osteoclastic bone resorption than that observed in SCI animals.
Collapse
Affiliation(s)
- Yuanzhen Peng
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Wei Zhao
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhiming He
- College of Dentistry, New York University, New York, New York, USA
| | - Carlos Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- *Address correspondence to: Weiping Qin, MD, PhD, James J. Peters Veteran Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| |
Collapse
|
11
|
Borges JH, de Oliveira DM, de Lemos-Marini SHV, Geloneze B, Guerra-Júnior G, Gonçalves EM. Normal bone health in young adults with 21-hydroxylase enzyme deficiency undergoing glucocorticoid replacement therapy. Osteoporos Int 2022; 33:283-291. [PMID: 34406442 DOI: 10.1007/s00198-021-06097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED It is of great importance to investigate any potential detrimental effect on bone health in young adults with 21-hydroxylase enzyme deficiency undergoing glucocorticoid replacement therapy. This study demonstrated normal bone health in well-controlled patients. Additionally, glucocorticoid dose may play an important role in the mineral density of femoral neck region. PURPOSE To compare regional bone mineral densities (BMDs) and bone statuses of young adults with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase enzyme (21OHase) deficiency with a control group. The duration and dose of glucocorticoid therapy and relative skeletal muscle index (an indicator of sarcopenia) were also analyzed as parameters to predict bone health. METHODS This case-control study included 23 patients (7 male and 16 female) and 20 controls (8 male and 12 female) matched by age range (18 to 31 years). Dual energy X-ray absorptiometry and phalangeal quantitative ultrasound (QUS) were used to estimate BMD and bone status, respectively. RESULTS No difference was observed between patients and controls (of both sexes) in absolute values of BMD and Z-scores for the total body, lumbar spine, and femoral neck; or the bone status (estimated by phalangeal QUS). Multiple linear regression analysis demonstrated that relative skeletal muscle index independently correlated with BMD of the entire body (β: 0.67, P = 0.007), the lumbar spine (β: 0.73, P = 0.005), and the femoral neck (β: 0.67, P = 0.007). However, the dose of glucocorticoids (β: - 0.38, P = 0.028) independently correlated with BMD in the femoral neck region alone. CONCLUSION No signs of change in bone health were observed in patients with CAH when compared to the reference group. Additionally, a marker of sarcopenia was demonstrated to have a role in mineral density mechanisms in all analyzed bone sites. Only the femoral neck BMD seemed to be significantly dependent on glucocorticoid dose.
Collapse
Affiliation(s)
- Juliano Henrique Borges
- Laboratory of Growth and Development (LabCreD), Center for Investigation in Pediatrics (CIPED), School of Medical Sciences (FCM), State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo Street, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-887, Brazil.
| | | | - Sofia Helena Valente de Lemos-Marini
- Laboratory of Growth and Development (LabCreD), Center for Investigation in Pediatrics (CIPED), School of Medical Sciences (FCM), State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo Street, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-887, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes (LIMED), FCM, UNICAMP, Campinas, SP, Brazil
| | - Gil Guerra-Júnior
- Laboratory of Growth and Development (LabCreD), Center for Investigation in Pediatrics (CIPED), School of Medical Sciences (FCM), State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo Street, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-887, Brazil
| | - Ezequiel Moreira Gonçalves
- Laboratory of Growth and Development (LabCreD), Center for Investigation in Pediatrics (CIPED), School of Medical Sciences (FCM), State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo Street, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-887, Brazil
| |
Collapse
|
12
|
Antihistamines Potentiate Dexamethasone Anti-Inflammatory Effects. Impact on Glucocorticoid Receptor-Mediated Expression of Inflammation-Related Genes. Cells 2021; 10:cells10113026. [PMID: 34831249 PMCID: PMC8617649 DOI: 10.3390/cells10113026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs' anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.
Collapse
|
13
|
Krez A, Liu Y, Kanbour S, Clare S, Waldman S, Stein EM. The skeletal consequences of epidural steroid injections: a literature review. Osteoporos Int 2021; 32:2155-2162. [PMID: 34089066 DOI: 10.1007/s00198-021-05986-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
UNLABELLED This literature review summarized studies that evaluated the effects of epidural steroid injections (ESIs) on skeletal health. While evidence is limited, studies suggest that ESIs may cause bone loss. Better understanding of these skeletal consequences will help foster strategies to prevent bone loss in the growing population of patients receiving ESIs. PURPOSE Approximately nine million epidural steroid injections (ESIs) are administered annually in the United States to treat radicular back pain. ESIs often provide pain relief and functional improvement. While the overall incidence of adverse events resulting from ESIs is low, their effects on the skeleton are poorly understood. This is an important consideration given the profound skeletal impact of other forms of glucocorticoids. METHODS Ovid MEDLINE and PubMed search results since 2010, including older, frequently referenced publications were reviewed. RESULTS Systemic absorption of glucocorticoids occurs after ESI, which can cause hyperglycemia and endogenous cortisol suppression. The majority of studies investigating the skeletal effects of ESIs are retrospective. Several have found a relationship between low areal bone mineral density (BMD) by dual-energy x-ray absorptiometry and ESI exposure, but this finding is not uniform. Recently a dose-response relationship between ESI exposure and low spine volumetric BMD by computed tomography has been reported. Few studies have investigated the relationship between ESI exposure and fracture risk. Results of these studies are conflicting, and most have not been adequately powered to detect fracture outcomes. CONCLUSIONS While evidence is limited, studies suggest that ESIs may cause bone loss, particularly those investigating volumetric BMD. Larger doses appear to confer greater risk. Further prospective studies are needed to investigate the relationship between ESI and fracture risk. Better understanding of the skeletal consequences of ESIs will help foster strategies to prevent bone loss in the growing population of patients receiving this treatment.
Collapse
Affiliation(s)
- A Krez
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Y Liu
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - S Kanbour
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - S Clare
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - S Waldman
- Department of Anesthesiology, Critical Care, & Pain Management, Hospital for Special Surgery, New York, NY, USA
| | - E M Stein
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
14
|
Hadji P, Schweikert B, Kloppmann E, Gille P, Joeres L, Toth E, Möckel L, Glüer CC. Osteoporotic fractures and subsequent fractures: imminent fracture risk from an analysis of German real-world claims data. Arch Gynecol Obstet 2021; 304:703-712. [PMID: 34247254 PMCID: PMC8325652 DOI: 10.1007/s00404-021-06123-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
Purpose In osteoporosis, prior fracture is a strong predictor of subsequent fracture. This study aimed to assess the imminent risk of subsequent fracture following an initial fracture in osteoporosis patients in Germany, and to identify clinical and demographic characteristics that are independently associated with subsequent fracture risk. Methods In this retrospective, observational cohort study using German real-world claims data, male and female patients aged ≥ 50 years with osteoporosis who experienced an initial (“index”) hip/femur, vertebral, forearm/wrist/hand or shoulder/upper arm fracture between 2010 and 2014 were included. The incidence and timing of subsequent fractures during a 1-year follow-up period were analyzed. Independent risk factors for subsequent fracture were identified by multivariate regression analysis. Results A total of 18,354 patients (mean age: 77 years; standard deviation: 9.8) were included. Of these, 2918 (15.9%) suffered a subsequent fracture during the 1-year follow-up period. The incidence of subsequent fracture was higher following an index vertebral fracture (18.0%) than after an index forearm/wrist/hand fracture (14.1%) or index hip/femur fracture (12.1%). Subsequent 1-year fracture incidence was generally higher in older patients. Index fracture type, age, epilepsy/use of antiepileptics, and heart failure were all independently associated with subsequent fracture risk. Conclusion Osteoporosis patients in Germany are at imminent risk of subsequent fracture during the first year following an initial fracture. They should be targeted for immediate post-fracture treatment to reduce the risk of further fractures, especially in the presence of specific risk factors such as old age or index vertebral fracture. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-021-06123-6.
Collapse
Affiliation(s)
- Peyman Hadji
- Frankfurt Center of Bone Health, Philipps-University of Marburg, Frankfurt, Germany
| | | | | | | | | | | | - Luis Möckel
- UCB Pharma, Monheim, Germany
- HSD Hochschule Döpfer GmbH, University of Applied Sciences, Cologne, Germany
| | - Claus-C Glüer
- Biomedical Imaging Section, Department of Radiology and Neuroradiology, Universitätskrankenhaus Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
- Department of Radiology and Neuroradiology, Molecular Imaging North Competence Center, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
15
|
An L, Shi L, Ye Y, Wu D, Ren G, Han X, Xu G, Yuan G, Du P. Protective effect of Sika Deer bone polypeptide extract on dexamethasone-induced osteoporosis in rats. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Zhang Y, Chen Y, Sun H, Zhang W, Zhang L, Li H, Huang X, Yang J, Ye Z. SENP3-Mediated PPARγ2 DeSUMOylation in BM-MSCs Potentiates Glucocorticoid-Induced Osteoporosis by Promoting Adipogenesis and Weakening Osteogenesis. Front Cell Dev Biol 2021; 9:693079. [PMID: 34249943 PMCID: PMC8266396 DOI: 10.3389/fcell.2021.693079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common secondary osteoporosis and reduced bone formation was the main pathological change in GIOP. Our previous studies have shown that there was an imbalance between adipogenic and osteogenic differentiation in GIOP BM-MSCs and peroxisome proliferator-activated receptor γ2 (PPARγ2) played a vital role in this disorders. Here, we reported that there was an increase in ROS level and SENP3 expression in Dex-induced osteoporotic BM-MSCs, and enhanced adipogenesis and weakened osteogenesis in osteoporotic BM-MSCs might be caused by upregulated SENP3. Then we found that SENP3 de-SUMOylated PPARγ2 on K107 site to potentiate adipogenesis and weaken osteogenesis. These results may provide new strategy and target in the clinical diagnosis and treatment of GIOP.
Collapse
Affiliation(s)
- Yongxing Zhang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Chen
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangxiang Sun
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Wenkan Zhang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Zhang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hengyuan Li
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Xin Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoming Ye
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
He HP, Gu S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021; 143:155488. [PMID: 33814272 DOI: 10.1016/j.cyto.2021.155488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The inhibition of glucocorticoid (GC) on osteoblastic differentiation of bone marrow stromal stem cells (BMSC) is an important pathway for GC to reduce bone formation. Recent studies implicated an important role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in GC-mediated cell proliferation and differentiation. Thus, our purpose is to investigate the role of PPAR-γ in regulating rat BMSC (rBMSC) osteoblastic differentiation. METHODS The rBMSC treated with dexamethasone (Dex) was used to construct an in vitro cell model of GC-induced osteoporosis. The expressions of PPAR-γ, RUNX2, ALP, OPN and SFRP5 in cells were detected by RT-qPCR and western blot assays. Osteogenic differentiation of rBMSC was measured by Alizarin Red S (ARS) staining analysis. Lentivirus-delivered shRNA was used to knock down PPAR-γ or SFRP5, and lentivirus-delivered constructs were used to overexpress SFRP5 in rBMSC to verify the effect of PPAR-γ or SFRP5 on cell osteogenic differentiation. RESULTS Dex significantly reduced rBMSC osteoblastic differentiation. The expression of PPAR-γ was enhanced in Dex treated rBMSC. PPAR-γ down-regulation improved Dex inhibition of rBMSC osteogenic differentiation. Moreover, PPAR-γ knockdown promoted protein levels of RUNX2, ALP, OPN and Dex-decreased rBMSC osteogenic differentiation. The expression of SFRP5 was reduced while Wnt and β-catenin were increased in PPAR-γ knockdown and Dex treated rBMSC. Moreover, the up-regulation of SFRP5 reversed the osteogenic differentiation of rBMSC induced by PPAR-γ knockdown. CONCLUSION These data indicated that in GC-induced osteoporosis, PPAR-γ/SFRP5 affects osteogenic differentiation by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hai-Peng He
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China
| | - Shan Gu
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China.
| |
Collapse
|
18
|
Rakusa M, Poglajen G, Vrtovec B, Goricar K, Janez A, Jensterle M. Factors associated with degraded trabecular bone score in heart transplant recipients. Clin Transplant 2021; 35:e14274. [PMID: 33675551 DOI: 10.1111/ctr.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Trabecular bone score (TBS) is a textural index that provides indirect evaluation of trabecular microarchitecture. It improves fracture risk assessment in several high-risk populations. We aimed to evaluate the role of TBS assessment in heart transplant recipients (HTR). In a cross-sectional study with 87 HTR (69 males and 18 females), we assessed TBS and evaluated potential associations between TBS and factors related to increased fracture risk. We also evaluated the correlations between the presence of vertebral fractures (VF) and degraded TBS. We confirmed degraded TBS in the majority of HTR. 27.6% of HTR had partially degraded, 27.6% had degraded TBS. HTR with degraded TBS were older, had higher body mass index, lower bone mineral density (BMD), and T-score. As opposed to stable BMD over different time points, TBS significantly differed among different post-transplant time periods. TBS did not correlate with current methylprednisolone or past zoledronic acid treatment, presence of hypogonadism or diabetes. TBS did not have additional value over BMD in predicting the presence of VF. Most fractures occurred in patients with osteopenia and in patients with partly degraded TBS. Studies with longitudinal designs and larger sample sizes are warranted to further assess the potential role of TBS in HRT.
Collapse
Affiliation(s)
- Matej Rakusa
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Poglajen
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Advanced Heart Failure and Transplantation Programme, Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Bojan Vrtovec
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Advanced Heart Failure and Transplantation Programme, Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Goricar
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Managing Osteoporosis and Joint Damage in Patients with Rheumatoid Arthritis: An Overview. J Clin Med 2021; 10:jcm10061241. [PMID: 33802804 PMCID: PMC8002542 DOI: 10.3390/jcm10061241] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
In rheumatoid arthritis, a representative systemic autoimmune disease, immune abnormality and accompanying persistent synovitis cause bone and cartilage destruction and systemic osteoporosis. Biologics targeting tumor necrosis factor, which plays a central role in the inflammatory process, and Janus kinase inhibitors have been introduced in the treatment of rheumatoid arthritis, making clinical remission a realistic treatment goal. These drugs can prevent structural damage to bone and cartilage. In addition, osteoporosis, caused by factors such as menopause, aging, immobility, and glucocorticoid use, can be treated with bisphosphonates and the anti-receptor activator of the nuclear factor-κB ligand antibody. An imbalance in the immune system in rheumatoid arthritis induces an imbalance in bone metabolism. However, osteoporosis and bone and cartilage destruction occur through totally different mechanisms. Understanding the mechanisms underlying osteoporosis and joint destruction in rheumatoid arthritis leads to improved care and the development of new treatments.
Collapse
|
20
|
Skrzypczak D, Ratajczak AE, Szymczak-Tomczak A, Dobrowolska A, Eder P, Krela-Kaźmierczak I. A Vicious Cycle of Osteosarcopeniain Inflammatory Bowel Diseases-Aetiology, Clinical Implications and Therapeutic Perspectives. Nutrients 2021; 13:nu13020293. [PMID: 33498571 PMCID: PMC7909530 DOI: 10.3390/nu13020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a disorder characterized by a loss of muscle mass which leads to the reduction of muscle strength and a decrease in the quality and quantity of muscle. It was previously thought that sarcopenia was specific to ageing. However, sarcopenia may affect patients suffering from chronic diseases throughout their entire lives. A decreased mass of muscle and bone is common among patients with inflammatory bowel disease (IBD). Since sarcopenia and osteoporosis are closely linked, they should be diagnosed as mutual consequences of IBD. Additionally, multidirectional treatment of sarcopenia and osteoporosis including nutrition, physical activity, and pharmacotherapy should include both disorders, referred to as osteosarcopenia.
Collapse
|
21
|
Abstract
Glucocorticoids are widely prescribed to treat various allergic and autoimmune diseases; however, long-term use results in glucocorticoid-induced osteoporosis, characterized by consistent changes in bone remodeling with decreased bone formation as well as increased bone resorption. Not only bone mass but also bone quality decrease, resulting in an increased incidence of fractures. The primary role of autophagy is to clear up damaged cellular components such as long-lived proteins and organelles, thus participating in the conservation of different cells. Apoptosis is the physiological death of cells, and plays a crucial role in the stability of the environment inside a tissue. Available basic and clinical studies indicate that autophagy and apoptosis induced by glucocorticoids can regulate bone metabolism through complex mechanisms. In this review, we summarize the relationship between apoptosis, autophagy and bone metabolism related to glucocorticoids, providing a theoretical basis for therapeutic targets to rescue bone mass and bone quality in glucocorticoid-induced osteoporosis.
Collapse
|
22
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
23
|
Abstract
OBJECTIVES The aim of the study was to examine the frequency of rickets and bone fractures and to assess areal bone mineral density (aBMD) in childhood among patients with biliary atresia (BA). METHODS We gathered data on all patients diagnosed with BA in Finland that survived to ≥1 year of age between 1 January 2000 to 30 June 2018. Data on gestational age, birth weight, postsurgical medications, and history of rickets and bone fractures were collected retrospectively. Serum levels of 25-hydroxyvitamin D [25(OH)D] postportoenterostomy (PE) were collected. Plain radiographs and dual energy X-ray absorptiometry (DXA) measurements of study subjects were reviewed. RESULTS Out of 49 patients, 7 (14%) were diagnosed with rickets during infancy. Clearance of jaundice [odds ratio 0.055, 95% confidence interval [CI] 0.00266-0.393; P < 0.01] was a protective factor against rickets. Sufficient 25(OH)D levels were reached 3 months post-PE. Eleven (22%) patients suffered at least one bone fracture (range 1-9) during childhood and adolescence. In DXA measurements, median lumbar spine aBMD anthropometrically adjusted z-scores were as follows: in native liver survivors 0.8 (interquartile range [IQR] -1.9 to 1.4) at 5 and -0.3 (IQR -1.3 to 0.8) at 10 years and for liver transplanted patients 0.4 (IQR -0.2 to 1.1) at 5 and 0.6 (IQR -0.1 to 1.3) at 10 years. CONCLUSIONS BA patients have an increased risk for rickets and bone fractures compared with the normal population. Most BA patients have aBMD within normal range between 5 and 10 years of age irrespective of liver transplantation status.
Collapse
|
24
|
Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in Bone Metabolism and Osteoporosis. Front Genet 2020; 11:584118. [PMID: 33281877 PMCID: PMC7691603 DOI: 10.3389/fgene.2020.584118] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a mechanosensitive organ that provides strength and support. Many bone cells, various pathways, and signaling molecules coordinate bone metabolism and also determine the course of bone diseases, such as osteoporosis, osteonecrosis, osteopenia, etc. Osteoporosis is caused by increased bone resorption and reduced bone formation due to the changes in the level of different proteins and RNAs in osteoclast or/and osteoblasts. The available therapeutic interventions can significantly reduce bone resorption or enhance bone formation, but their prolonged use has deleterious side effects. Therefore, the use of non-coding RNAs as therapeutics has emerged as an interesting field of research. Despite advancements in the molecular field, not much is known about the role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in bone homeostasis and osteoporosis. Therefore, in this article, we summarize the role of lncRNAs and circRNAs in different bone cells and osteoporosis so that it might help in the development of osteoporotic therapeutics.
Collapse
Affiliation(s)
- Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
25
|
Wu J, Zeng Z, Li Y, Qin H, Zuo C, Zhou C, Xu D. Cycloastragenol protects against glucocorticoid-induced osteogenic differentiation inhibition by activating telomerase. Phytother Res 2020; 35:2034-2044. [PMID: 33165990 DOI: 10.1002/ptr.6946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) that is mainly featured as low bone density and increased risk of fracture is prone to occur with the administration of excessive glucocorticoids. Cycloastragenol (CAG) has been verified to be a small molecule that activates telomerase. Studied showed that up-regulated telomerase was associated with promoting osteogeneic differentiation, so we explored whether CAG could promote osteogenic differentiation to protect against GIOP and telomerase would be the target that CAG exerted its function. Our results demonstrated that CAG prominently increased the ALP activity, mineralization, mRNA of runt-related transcription factor 2, osteocalcin, osteopontin, collagen type I in both MC3T3-E1 cells and dexamethasone (DEX)-treated MC3T3-E1 cells. CAG up-regulated telomerase reverse transcriptase and the protective effect of CAG was blocked by telomerase inhibitor TMPyP4. Moreover, CAG improved bone mineralization in DEX-induced bone damage in a zebrafish larvea model. Therefore, the study showed that CAG could alleviate the osteogenic differentiation inhibition induced by DEX in vitro and in vivo, and CAG might be considered as a candidate drug for the treatment of GIOP.
Collapse
Affiliation(s)
- Jiahuan Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yuyun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huiyi Qin
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Changqing Zuo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
26
|
Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int J Mol Sci 2020; 21:ijms21207623. [PMID: 33076329 PMCID: PMC7589419 DOI: 10.3390/ijms21207623] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is the most common chronic metabolic bone disease. It has been estimated that more than 10 million people in the United States and 200 million men and women worldwide have osteoporosis. Given that the aging population is rapidly increasing in many countries, osteoporosis could become a global challenge with an impact on the quality of life of the affected individuals. Osteoporosis can be defined as a condition characterized by low bone density and increased risk of fractures due to the deterioration of the bone architecture. Thus, the major goal of treatment is to reduce the risk for fractures. There are several treatment options, mostly medications that can control disease progression in risk groups, such as postmenopausal women and elderly men. Recent studies on the basic molecular mechanisms and clinical implications of osteoporosis have identified novel therapeutic targets. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for osteoporosis management in the future. Here, we review the etiology of osteoporosis and the molecular mechanism of bone remodeling, present current pharmacological options, and discuss emerging therapies targeting novel mechanisms, investigational treatments, and new promising therapeutic approaches.
Collapse
|
27
|
Okano I, Salzmann SN, Jones C, Reisener MJ, Ortiz Miller C, Shirahata T, Shue J, Carrino JA, Sama AA, Cammisa FP, Girardi FP, Hughes AP. The effect of obesity, diabetes, and epidural steroid injection on regional volumetric bone mineral density measured by quantitative computed tomography in the lumbosacral spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 30:13-21. [PMID: 33040205 DOI: 10.1007/s00586-020-06610-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/25/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE High body mass index (BMI) is positively correlated with bone mineral density (BMD) in healthy adults; however, the effect of BMI on regional segmental BMDs in the axial skeleton is unclear. In addition, obese patients often have glucose intolerance and patients with lumbar spine pathology commonly have a history of epidural steroid injections (ESIs). The purpose of this study is to evaluate the effect of these patient factors on regional differences in BMD measured by quantitative computed tomography (QCT) in a lumbar fusion patient cohort. METHODS The data were obtained from a database comprised of clinical and preoperative CT data from 296 patients who underwent primary posterior lumbar spinal fusion from 2014 to 2017. QCT-vBMDs of L1 to L5, S1 body, and sacral alae were measured. Multivariate linear regression analyses were performed with setting vBMDs as the response variables. As explanatory variables, age, sex, race, current smoking, categorized BMI, diabetes, and ESI were chosen a priori. RESULTS A total of 260 patients were included in the final analysis. Multivariate analyses demonstrated that obese and morbidly obese patients had significantly higher vBMD in the sacral alae (SA). Diabetes showed independent positive associations with vBMDs in L1, L2, and the SA. Additionally, patients with an ESI history demonstrated significantly lower vBMD in the SA. CONCLUSIONS Our results demonstrate that obesity, diabetes, and epidural steroids affected vBMD differently by lumbosacral spine region. The vBMD of the SA appeared to be more sensitive to various patient factors than other lumbar regions.
Collapse
Affiliation(s)
- Ichiro Okano
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Stephan N Salzmann
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Conor Jones
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | | | - Courtney Ortiz Miller
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Toshiyuki Shirahata
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Jennifer Shue
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Andrew A Sama
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Frank P Cammisa
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Federico P Girardi
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Alexander P Hughes
- Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
28
|
Sandru F, Carsote M, Dumitrascu MC, Albu SE, Valea A. Glucocorticoids and Trabecular Bone Score. J Med Life 2020; 13:449-453. [PMID: 33456590 PMCID: PMC7803323 DOI: 10.25122/jml-2019-0131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/11/2020] [Indexed: 12/17/2022] Open
Abstract
TBS (Trabecular Bone Score) is the latest tool for clinicians to evaluate bone micro-architecture based on a pixel greyscale, which is provided by lumbar dual-energy X-ray absorptiometry (DXA). Its use enhances fracture prediction in addition to DXA-BMD (Bone Mineral Density). This is independent of fracture risk assessment (FRAX) and DXA results. We present a narrative review regarding the connection between TBS and Glucocorticoids (GC), either as a drug used for different conditions or as a tumor-produced endogenous excess. TBS is a better discriminator for GC-induced vertebral fractures compared to DXA-BMD. This aspect is similarly available for patients with osteoporosis diagnosed by DXA. TBS is inversely correlated with the cumulative dose of GC (systemic or inhaled), with disease duration, and positively correlated with respiratory function in patients with asthma. Low TBS values are found in females with a T-score at the hip within the osteoporosis range, with diabetes mellitus, or who use GC. Lumbar TBS is a screening tool in menopausal women with type 2 diabetes mellitus. TBS is an independent parameter that provides information regarding skeleton deterioration in diabetic patients receiving GC therapy in a manner complementary to DXA-BMD. TBS might become an essential step regarding the adrenalectomy decision in patients with adrenal incidentaloma in whom autonomous cortisol secretion might damage bone micro-architecture. TBS currently represents a standard tool of fracture risk evaluation in patients receiving GC therapy or with endogenous Cushing's syndrome, a tool easy to be applied by different practitioners since GCs are largely used.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Carsote
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Endocrinology, C.I.Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Gynecology, Emergency University Hospital, Bucharest, Romania
| | - Simona Elena Albu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Gynecology, Emergency University Hospital, Bucharest, Romania
| | - Ana Valea
- Department of Endocrinology, Clinical County Hospital, Cluj-Napoca, Romania
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
29
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
30
|
Naraki K, Rezaee R, Mashayekhi-Sardoo H, Hayes AW, Karimi G. Mangiferin offers protection against deleterious effects of pharmaceuticals, heavy metals, and environmental chemicals. Phytother Res 2020; 35:810-822. [PMID: 32961631 DOI: 10.1002/ptr.6864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Mangiferin (MGF) is a polyphenolic C-glucosyl-xanthone extracted from the mango tree (Mangifera indica). MGF has shown diverse effects such as antioxidant, antiapoptotic, radical scavenging, and chelating properties. MGF also has been shown to modulate inflammatory pathways. In this review, we examined and evaluated the literature dealing with the protective effects of MGF against various chemical toxicities. Our literature review indicated that the MGF-induced protective effects against the toxic effects of pharmaceuticals, heavy metals and environmental chemicals were mainly mediated via suppression of lipid peroxidation, oxidative stress (along with enhancement of the antioxidant enzyme), inflammatory factors (TNF-α, IL-6, IL-10, and IL-12), and activation of PI3K/Akt and the MAPK survival signaling pathway.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibeh Mashayekhi-Sardoo
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Liu X, Fan J, Hu J, Li F, Yi R, Tan F, Zhao X. Lactobacillus Fermentum ZS40 prevents secondary osteoporosis in Wistar Rat. Food Sci Nutr 2020; 8:5182-5191. [PMID: 32994978 PMCID: PMC7500759 DOI: 10.1002/fsn3.1824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
Using retinoic acid to inducer, we successfully established a rat model of secondary osteoporosis and verified the preventive effect of Lactobacillus fermentum ZS40 (ZS40) on secondary osteoporosis. Serum biochemical indicators showed that ZS40 can effectively slow down bone resorption caused by retinoic acid, increase blood content of calcium, phosphorus, bone alkaline phosphatase, bone gla protein, and insulin-like growth factor 1, and decrease blood content of tartrate-resistant acid phosphatase (TRAP) 5b. qRT-PCR results showed that ZS40 could upregulate mRNA expressions of β-catenin, Wnt10b, Lrp5, Lrp6, Runx2, ALP, RANKL, and OPG, and downregulate mRNA expression of DKK1, RANK, TRACP, and CTSK in the rats' spinal cord. Results following TRAP staining showed that ZS40 could slow down retinoic acid-induced formation of osteoclasts. Micro-CT results showed that ZS40 could reduce Tb.Sp, increase BV/TV, Tb.N, Tb.Th, and ultimately increase bone mineral density of rats in vivo. These findings indicate that ZS40 might have a potential role in preventing retinoic acid-induced secondary osteoporosis in vivo.
Collapse
Affiliation(s)
- Xinhong Liu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Jian‐Bo Fan
- Department of OrthopedicsChengdu Qingbaijiang District Traditional Chinese Medicine HospitalChengduChina
| | - Jing Hu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Li
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuela CityPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
32
|
Abstract
Purpose of Review An unprecedented outbreak of the novel coronavirus in China (COVID-19) occurred in December 2019, and then engulfed the entire world, presenting a significant and urgent threat to global health. Many research institutes have been involved in the development of drugs and vaccines against COVID-19. Recent Findings At present, the strategy of new use of old drugs is mainly used to screen candidate drugs against the novel coronavirus (later termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) and inhibit excessive immune response. Related research has made great progress. Summary In this review, we summarize the drugs used for COVID-19 treatment in China based on the emerging basic and clinical data. It is hoped that this review will be useful to provide guidance for the prevention, treatment, and control of COVID-19.
Collapse
Affiliation(s)
- Linzi Fan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040 Heilongjiang China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| |
Collapse
|
33
|
Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Nutrients in the Prevention of Osteoporosis in Patients with Inflammatory Bowel Diseases. Nutrients 2020; 12:E1702. [PMID: 32517239 PMCID: PMC7352179 DOI: 10.3390/nu12061702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
The chronic character of inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, results in various complications. One of them is osteoporosis, manifested by low bone mineral density, which leads to an increased risk of fractures. The aetiology of low bone mineral density is multifactorial and includes both diet and nutritional status. Calcium and vitamin D are the most often discussed nutrients with regard to bone mineral density. Moreover, vitamins A, K, C, B12; folic acid; calcium; phosphorus; magnesium; sodium; zinc; copper; and selenium are also involved in the formation of bone mass. Patients suffering from inflammatory bowel diseases frequently consume inadequate amounts of the aforementioned minerals and vitamins or their absorption is disturbed, resulting innutritional deficiency and an increased risk of osteoporosis. Thus, nutritional guidelines for inflammatory bowel disease patients should comprise information concerning the prevention of osteoporosis.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.M.R.); (A.Z.); (A.D.)
| | | | | | | | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.M.R.); (A.Z.); (A.D.)
| |
Collapse
|
34
|
Prada D, López G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA. Molecular and cellular mechanisms linking air pollution and bone damage. ENVIRONMENTAL RESEARCH 2020; 185:109465. [PMID: 32305664 PMCID: PMC7430176 DOI: 10.1016/j.envres.2020.109465] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 05/04/2023]
Abstract
Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1β, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico; Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Gerard López
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Helena Solleiro-Villavicencio
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Claudia Garcia-Cuellar
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA.
| |
Collapse
|
35
|
Ying X, Jin X, Wang P, He Y, Zhang H, Ren X, Chai S, Fu W, Zhao P, Chen C, Ma G, Liu H. Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis. Front Cell Dev Biol 2020; 8:252. [PMID: 32373610 PMCID: PMC7176994 DOI: 10.3389/fcell.2020.00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is the most common bone metabolic disease, characterized by bone mass loss and bone microstructure changes due to unbalanced bone conversion, which increases bone fragility and fracture risk. Glucocorticoids are clinically used to treat a variety of diseases, including inflammation, cancer and autoimmune diseases. However, excess glucocorticoids can cause osteoporosis. Herein we performed an integrated analysis of two glucocorticoid-related microarray datasets. The WGCNA analysis identified 3 and 4 glucocorticoid-related gene modules, respectively. Differential expression analysis revealed 1047 and 844 differentially expressed genes in the two datasets. After integrating differentially expressed glucocorticoid-related genes, we found that most of the robust differentially expressed genes were up-regulated. Through protein-protein interaction analysis, we obtained 158 glucocorticoid-related candidate genes. Enrichment analysis showed that these genes are significantly enriched in the osteoporosis related pathways. Our results provided new insights into glucocorticoid-induced osteoporosis and potential candidate markers of osteoporosis.
Collapse
Affiliation(s)
- Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiyun Jin
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Haomiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenqi Fu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Pengcheng Zhao
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Chen Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
England BR, Hershberger D. Management issues in rheumatoid arthritis-associated interstitial lung disease. Curr Opin Rheumatol 2020; 32:255-263. [PMID: 32141954 PMCID: PMC7331796 DOI: 10.1097/bor.0000000000000703] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Summarize recent evidence on the identification and management of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). RECENT FINDINGS Clinical and subclinical interstitial lung disease (ILD) are frequent extra-articular manifestations of rheumatoid arthritis (RA). Better means of identifying and treating RA-ILD are needed to improve the prognosis, with a median survival of only 3-7 years after diagnosis. Several serum biomarkers are currently being evaluated for their ability to detect RA-ILD. Thorough evaluation and multidisciplinary discussion remains the gold standard for establishing the diagnosis of RA-ILD. Management is challenging with most RA disease-modifying antirheumatic drugs (DMARDs) linked to pneumonitis. Methotrexate is typically avoided in clinically significant ILD, although alternative therapies including leflunomide and biologic DMARDs also carry risks in RA-ILD. Antifibrotics appear to slow the progression of ILD, and a large phase II trial exclusively in RA-ILD is underway. In addition, smoking cessation, pulmonary rehabilitation, oxygen therapy, managing comorbidities, and lung transplantation evaluation are vital to improving patient outcomes in RA-ILD. SUMMARY With little high-quality evidence to guide the management of RA-ILD, multidisciplinary teams with expertise in RA-ILD are highly valuable for diagnosing and treating RA-ILD. Clinical and translational research in RA-ILD is needed to fill the many evidence gaps.
Collapse
Affiliation(s)
- Bryant R. England
- Division of Rheumatology & Immunology; Department of Internal Medicine; University of Nebraska Medical Center (UNMC) & VA Nebraska-Western Iowa Health Care System
| | - Daniel Hershberger
- Division of Pulmonary, Critical Care, Sleep, & Allergy; Department of Internal Medicine; UNMC
| |
Collapse
|
37
|
Rakusa M, Vrtovec B, Poglajen G, Janez A, Jensterle M. Endocrine disorders after heart transplantation: national cohort study. BMC Endocr Disord 2020; 20:54. [PMID: 32312324 PMCID: PMC7171847 DOI: 10.1186/s12902-020-0533-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Endocrine disorders in patients after heart transplantation (HT) remain understudied. We aimed to assess endocrine profiles and management of HT recipients in the early post- transplant period. METHODS We conducted a retrospective cohort study on 123 consecutive HT recipients in the Advanced Heart Failure and Transplantation Programme between 2009 and 2018. All recipients had per-protocol endocrine follow-up within the first postoperative year. The median time to first post-transplant endocrine follow-up was 3 months (IQR 2-4). We assessed the incidence of vitamin D deficiency, bone mineral density, history of low energy fractures, hypogonadism in male recipients, posttransplant diabetes mellitus, and thyroid and parathyroid function. RESULTS We enrolled 22 women and 101 men of median age 57 years (IQR 50-63). Post-transplant diabetes mellitus developed in 14 patients (11.4%). 18 of 25 patients (14.6%) with preexisting type 2 diabetes mellitus required intensification of antidiabetic therapy. 38 male patients (40.4%) had hypogonadism. 5 patients (4.6%) were hypothyroid and 10 (9.3%) latent hyperthyroid. Secondary hyperparathyroidism was present in 19 (17.3%), 25-hydroxyvitamin D deficiency in 64 (54.7%) of patients. Osteoporosis was present in 26 (21.1%), osteopenia in 59 (48.0%) patients. 47 vertebral fractures, 3 hip and 1 humerus fractures occurred in 21 patients. Most of the patients had coincidence of two or three disorders, while less than 5% did not have any endocrine irregularities. All patients received calcium and vitamin D supplements. Forty-six patients (37.4%) were treated with zoledronic acid, 12 (9.8%) with oral bisphosphonates. Two patients were treated with teriparatide. CONCLUSIONS The prevalence of multiple endocrine disorders early after heart transplantation is high. Assessment and management of increased fracture risk and all other potentially affected endocrine axes should be considered as a standard of care in this early period.
Collapse
Affiliation(s)
- Matej Rakusa
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Vrtovec
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Advanced Heart Failure and Transplantation Programme, Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gregor Poglajen
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Advanced Heart Failure and Transplantation Programme, Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
38
|
Liu L, Zheng J, Yang Y, Ni L, Chen H, Yu D. Hesperetin alleviated glucocorticoid-induced inhibition of osteogenic differentiation of BMSCs through regulating the ERK signaling pathway. Med Mol Morphol 2020; 54:1-7. [PMID: 32253606 DOI: 10.1007/s00795-020-00251-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study is to investigate the protective role of hesperetin for the glucocorticoid-induced osteoporosis (GIOP) and related mechanisms. In this study, we investigated the protective effects of hesperetin on dexamethasone (DEX)-induced osteogenic inhibition in bone marrow mesenchymal stem cells (BMSCs). The mineralization, real-time quantitative polymerase chain reaction assays (RT-qPCR), immunofluorescence and western blot were used to assess the protective effects of hesperetin in DEX-treated BMSCs during osteogenic differentiation. Our results showed that hesperetin promoted alkaline phosphatase (ALP) activity and the mineralization in DEX-treated BMSCs during osteogenic differentiation. The expression of osteogenic mRNA and proteins further confirmed the protective effect of hesperetin in DEX-treated BMSCs. Furthermore, hesperetin activated ERK signal pathway in DEX-treated BMSCs. ERK inhibitor U0126 could abolish the protective effect of hesperein in DEX-treated BMSCs. In conclusion, our study demonstrated that hesperetin alleviated glucocorticoid-induced inhibition of osteogenic differentiation through ERK signal pathway in BMSCs. It may be a potential therapeutic agent for protecting against glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Ling Liu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, Zhejiang, People's Republic of China.,Department of Nephrology (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Jie Zheng
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, Zhejiang, People's Republic of China.,Department of Nephrology (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - YaZhen Yang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, Zhejiang, People's Republic of China.,Department of Nephrology (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Lingjuan Ni
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, Zhejiang, People's Republic of China.,Department of Nephrology (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Hongyu Chen
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, Zhejiang, People's Republic of China. .,Department of Nephrology (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China.
| | - Dongrong Yu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, Zhejiang, People's Republic of China. .,Department of Nephrology (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China.
| |
Collapse
|
39
|
Lai EL, Huang WN, Chen HH, Chen JP, Chen DY, Hsieh TY, Hung WT, Lai KL, Lin CT, Tang KT, Chen YM, Chen YH. Degraded microarchitecture by low trabecular bone score is associated with prevalent vertebral fractures in patients with systemic lupus erythematosus. Arch Osteoporos 2020; 15:54. [PMID: 32221755 DOI: 10.1007/s11657-020-00726-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/17/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Recently, trabecular bone score (TBS) has emerged as an important supplementary assessment tool in osteoporosis diagnosis and management. The high incidence of fragility fracture within the non-osteoporotic range of bone mineral density (BMD), among systemic lupus erythematosus (SLE) patients, highlights the crucial role of bone microarchitecture in osteoporosis. This study aimed to evaluate whether TBS identified existing vertebral fractures (VF) more accurately than BMD in SLE patients. METHODS This study enrolled 147 SLE patients from the Asia Pacific Lupus Collaboration (APLC) cohort, who had BMD and TBS assessed from January 2018 until December 2018. Twenty-eight patients sustaining VF and risk factors associated with increased fracture occurrence were evaluated. Independent risk factors and diagnostic accuracy of VF were analyzed by logistic regression and ROC curve, respectively. RESULT The prevalence of vertebral fracture among SLE patients was 19%. BMD, T-score, TBS, and TBS T-score were significantly lower in the vertebral fracture group. TBS exhibited higher positive predictive value and negative predictive value than L spine and left femur BMD for vertebral fractures. Moreover, TBS had a higher diagnostic accuracy than densitometric measurements (area under curve, 0.811 vs. 0.737 and 0.605). CONCLUSION Degraded microarchitecture by TBS was associated with prevalent vertebral fractures in SLE patients. Our result suggests that TBS can be a complementary tool for assessing vertebral fracture prevalence in this population.
Collapse
Affiliation(s)
- Ee-Ling Lai
- Rheumatology Unit, Department of Internal Medicine, Hospital Sultan Ismail, Johor Bahru, Malaysia.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
| | - Wen-Nan Huang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung, Taiwan.,Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Jun-Peng Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, Department of Medicine, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Tsu-Yi Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan.,Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ting Hung
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan.,Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
| | - Ching-Tsai Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan. .,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan. .,Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung, Taiwan. .,Translational Medicine, National Chung Hsing University, Taichung, Taiwan. .,Bioinformatics Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Yi-Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
40
|
Zhou T, Pan J, Lai B, Cen L, Jiang W, Yu C, Shen Z. Bone mineral density is negatively correlated with ulcerative colitis: a systematic review and meta-analysis. Clin Transl Med 2020; 9:18. [PMID: 32072320 PMCID: PMC7028885 DOI: 10.1186/s40169-020-00270-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Newer epidemiological studies suggest that the incidence of ulcerative colitis might be increasing rapidly. Furthermore, osteoporosis in ulcerative colitis patients has gained great attention, but the epidemiologic evidence remains controversial. Therefore, a meta-analysis was performed to explore the association between bone density and ulcerative colitis. METHODS Two investigators used PubMed, EMBASE and the Cochrane Library databases to identify all studies published before August 2019. Depending on the outcomes, investigators divided these studies into four groups (OR, SMD [BMD], SMD [z-score] and SMD [t-score]). To address the use of steroids, which is a major confounding factor in this analysis, another subgroup analysis of studies of steroid-free patients was conducted. Additionally, heterogeneity, sensitivity and stratified analyses were also performed. RESULTS A total of 13 cross-sectional studies that involved 1154 participants were included in the present meta-analysis, and three of them were included in the steroid-free subgroup analysis. The pooled OR was 6.41 (95% CI 2.59-15.87) and the pooled SMD (BMD), SMD (t-score) and SMD (z-score) were - 0.24 (95% CI - 0.44 to - 0.04), - 0.55 (95% CI - 0.72 to - 0.37), and - 0.38 (95% CI - 0.56 and - 0.19), respectively. Since steroids are a significant confounder, the pooled SMD of the steroid-free subgroup was - 0.55 (- 0.85 to - 0.25), which revealed a strong negative relationship between bone density and ulcerative colitis in steroid-free patients. Additionally, other subgroup analyses also revealed a strong relationship. CONCLUSIONS This meta-analysis provides evidence for the potential association between ulcerative colitis and decreased bone density. It is essential for clinicians to consider bone mineral density in ulcerative colitis patients regardless of steroid-therapy.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Pan
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Lai
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- People's Hospital of Jianggan District, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Pal S, Mittapelly N, Husain A, Kushwaha S, Chattopadhyay S, Kumar P, Ramakrishna E, Kumar S, Maurya R, Sanyal S, Gayen JR, Mishra PR, Chattopadhyay N. A butanolic fraction from the standardized stem extract of Cassia occidentalis L delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy. Sci Rep 2020; 10:195. [PMID: 31932603 PMCID: PMC6957531 DOI: 10.1038/s41598-019-56853-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
We recently reported that a butanol soluble fraction from the stem of Cassia occidentalis (CSE-Bu) consisting of osteogenic compounds mitigated methylprednisone (MP)-induced osteopenia in rats, albeit failed to afford complete protection thus leaving a substantial scope for further improvement. To this aim, we prepared an oral formulation that was a lipid-based self-nano emulsifying drug delivery system (CSE-BuF). The globule size of CSE-BuF was in the range of 100–180 nm of diluted emulsion and the zeta potential was −28 mV. CSE-BuF enhanced the circulating levels of five osteogenic compounds compared to CSE-Bu. CSE-BuF (50 mg/kg) promoted bone regeneration at the osteotomy site and completely prevented MP-induced loss of bone mass and strength by concomitant osteogenic and anti-resorptive mechanisms. The MP-induced downregulations of miR29a (the positive regulator of the osteoblast transcription factor, Runx2) and miR17 and miR20a (the negative regulators of the osteoclastogenic cytokine RANKL) in bone was prevented by CSE-BuF. In addition, CSE-BuF protected rats from the MP-induced sarcopenia and/or muscle atrophy by downregulating the skeletal muscle atrogenes, adverse changes in body weight and composition. CSE-BuF did not impact the anti-inflammatory effect of MP. Our preclinical study established CSE-BuF as a prophylactic agent against MP-induced osteopenia and muscle atrophy.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | | | - Athar Husain
- Division of Pharmacokinetics, CSIR-CDRI, Lucknow, 226031, India
| | | | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-CDRI, Lucknow, 226031, India.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Padam Kumar
- Division of Medicinal & Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
| | | | - Sudhir Kumar
- Division of Medicinal & Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-CDRI, Lucknow, 226031, India.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Jiaur R Gayen
- Division of Pharmacokinetics, CSIR-CDRI, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
| |
Collapse
|
42
|
Hu YX, Zheng RD, Fan YF, Sun L, Hu X, Liu C. The effects of bone metabolism in different methylprednisolone pulse treatments for Graves' ophthalmopathy. Exp Ther Med 2020; 19:333-338. [PMID: 31853308 DOI: 10.3892/etm.2019.8179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/02/2019] [Indexed: 01/15/2023] Open
Abstract
The aim of the present study was to analyze the effects of methylprednisolone pulse therapy (MPPT) courses on bone metabolism in patients with Graves' ophthalmopathy (GO). A retrospective analysis of 45 patients with moderate-to-severe active GO who received 1 or 2 courses of MPPT was performed. Of these, 16 patients underwent 2 courses of treatment. Bone metabolic markers and the density of the lumbar spine (L1-4), femoral neck and total hip were measured using a dual-energy X-ray bone density instrument, and the differences in bone metabolism prior to and after treatment were determined for each group and compared. The results indicated that serum I collagen N-terminal peptide (P1NP) and serum β-collagen crosslinked C-terminal peptide (CTX) were markedly decreased after the first pulse of treatment. In those patients who received a second course of MPPT, CTX levels were significantly decreased, but P1NP was not significantly different from the baseline value. CTX and P1NP levels remained unchanged between the first and second course of MPPT; similarly, there were no changes from baseline in 25(OH) vitamin D3 and bone mineral density after the first and second course of MPPT. However, the level of 25(OH) vitamin D3 was significantly elevated after the second course compared with the first course. In conclusion, the side effects of MPPT on bone metabolism were marginal and a second course of MPPT did not worsen bone metabolism. These MPPT regimens may therefore be considered to be a safe and effective treatment option for patients with moderate-to-severe active GO.
Collapse
Affiliation(s)
- Yong-Xin Hu
- Laboratory of Endocrinology and Metabolism, The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210013, P.R. China.,Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Ren-Dong Zheng
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Yao-Fu Fan
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Li Sun
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xin Hu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| |
Collapse
|
43
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
44
|
Fuusager GB, Christesen HT, Milandt N, Schou AJ. Glycemic control and bone mineral density in children and adolescents with type 1 diabetes. Pediatr Diabetes 2019; 20:629-636. [PMID: 31017353 DOI: 10.1111/pedi.12861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/09/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/OBJECTIVE Fracture risk is increased in patients with type 1 diabetes. We aimed to evaluate bone mineral density (BMD) and to identify risk factors associated to lower BMD in Danish children and adolescents with type 1 diabetes. METHODS In this cross-sectional study BMD Z-score were determined by dual-energy X-ray absorptiometry (DXA) from a cohort of otherwise healthy children and adolescents with type 1 diabetes. Puberty Tanner stage, hemoglobin A1c (HbA1c), disease duration, and age at diabetes onset were investigated for associations to DXA results. RESULTS We included 85 patients, 39 girls, 46 boys, with a median (range) age of 13.2 (6-17) years; disease duration 4.2 (0.4-15.9) years; HbA1c of the last year 61.8 (41-106) mmol/mol. Our patients were taller and heavier than the background population. When adjusted for increased height SD and body mass index SD, no overall difference in BMD Z-score was found. When stratified by sex, boys had significantly increased adjusted mean BMD Z-score, 0.38 (95% confidence interval [CI]: 0.13;0.62), girls; -0.27 (95% CI: -0.53;0.00). For the whole cohort, a negative correlation between mean latest year HbA1c and BMD Z-score was found, adjusted ß -0.019 (95%CI: -0.034;-0.004, P = 0.01). Poor glycemic control (HbA1c > 58 mmol/mol [7.5%]) within the latest year was likewise negatively correlated with BMD Z-score, adjusted ß -0.35 (95%CI: -0.69;-0.014, P = 0.04). CONCLUSIONS Our study suggests that elevated blood glucose has a negative effect on the bones already before adulthood in patients with type 1 diabetes, although no signs of osteoporosis were identified by DXA.
Collapse
Affiliation(s)
- Gitte B Fuusager
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Nikolaj Milandt
- The Orthopedic Research Unit, Odense University Hospital, Odense, Denmark
| | - Anders J Schou
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| |
Collapse
|
45
|
circRNA_0006393 promotes osteogenesis in glucocorticoid‑induced osteoporosis by sponging miR‑145‑5p and upregulating FOXO1. Mol Med Rep 2019; 20:2851-2858. [PMID: 31322188 DOI: 10.3892/mmr.2019.10497] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/28/2019] [Indexed: 11/05/2022] Open
Abstract
Glucocorticoids are the most common cause of glucocorticoid‑induced osteoporosis (GIOP). Moreover, the role of circular RNAs (circRNAs) in the regulation of bone metabolism remains unclear. Therefore, in the present study, it was hypothesized that hsa_circ_0006393 may play an important role in GIOP. To investigate the role of circRNAs in GIOP, treatment with dexamethasone or transfection with a vector overexpressing hsa_circ_0006393 were performed using in vitro cell and in vivo mouse models. Reverse transcription‑quantitative PCR, fluorescence in situ hybridization and western blotting were performed to investigate the function of hsa_circ_0006393 in vitro. In addition, the effects of hsa_circ_0006393 on osteogenesis were investigated. Dual‑energy X‑ray absorptiometry analysis was performed to examine the osteogenic potential of hsa_circ_0006393 in vivo. Moreover, the mechanism underlying hsa_circ_0006393‑mediated bone metabolism regulation via the microRNA (miR)‑145‑5p/forkhead box O1 (FOXO1) pathway was investigated. The present results suggested that the expression level of hsa_circ_0006393 was decreased in patients with GIOP. Furthermore, the overexpression of hsa_circ_0006393 increased the expression level of genes associated with osteogenesis. Moreover, hsa_circ_0006393 was identified to be localized mainly in the cytoplasm and nucleus of bone marrow mesenchymal stem cells. miR‑145‑5p was found to be directly targeted by hsa_circ_0006393. Collectively, hsa_circ_0006393 increases the expression levels of osteogenic genes during bone remodeling by sponging miR‑145‑5p and upregulating FOXO1.
Collapse
|
46
|
Naranjo Hernández A, Díaz del Campo Fontecha P, Aguado Acín MP, Arboleya Rodríguez L, Casado Burgos E, Castañeda S, Fiter Aresté J, Gifre L, Gómez Vaquero C, Candelas Rodríguez G, Francisco Hernández FM, Guañabens Gay N. Recomendaciones de la Sociedad Española de Reumatología sobre osteoporosis. ACTA ACUST UNITED AC 2019; 15:188-210. [DOI: 10.1016/j.reuma.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
|
47
|
Chen Y, Huang LF, Zhu JX. Dose-related histopathology and bone remodeling characteristics of the knee articular cartilage and subchondral bone induced by glucocorticoids in rats. Exp Ther Med 2019; 17:4492-4498. [PMID: 31105787 PMCID: PMC6507510 DOI: 10.3892/etm.2019.7508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/14/2018] [Indexed: 11/23/2022] Open
Abstract
The aim of the current study was to investigate histopathological changes and bone remodeling in the knee articular cartilage and subchondral bone in rats following treatment with glucocorticoids. A total of 30 3-month-old female Sprague-Dawley rats were randomly divided into either a vehicle control group or one of three experimental groups wherein dexamethasone (Dex) was administered at a dose of 1.0, 2.5 or 5.0 mg/kg (Dex1.0, Dex2.5 and Dex5.0, respectively), for 8 weeks. Articular cartilage and the epiphyseal subchondral bone of the proximal tibias were evaluated by histopathology or for bone remodeling using histomorphometry. No histological changes were identified in the knee articular cartilage but the bone formation rate of the subchondral bone was lower in the Dex1.0 group compared with that of the control group. Compared with the control and the Dex1.0 group, the width of the articular cartilage and the subchondral plate were larger, with abnormal morphology and increased apoptosis of chondrocytes, decreased cell/matrix volume ratio in the cartilage and fewer blood vessels in the subchondral plate in the Dex2.5 and Dex5.0 groups. A higher Dex dose resulted in more severe inhibition of bone formation, a greater number of apoptotic osteocytes and constrained bone resorption. All microstructure parameters indicated no significant changes in the Dex2.5 group but exhibited deterioration in the Dex5.0 group compared with the normal and Dex1.0 group. There were no significant differences in morphological changes, or in static and dynamic bone indices between the Dex2.5 and Dex5.0 groups. In conclusion, long-term glucocorticoid use induced dose-related histopathological changes in the knee articular cartilage, along with unbalanced bone remodeling and osteopenia in the subchondral bone. The degree of damage to the articular cartilage was milder and transformed from compensation to degeneration at higher doses.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Lian-Fang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jue-Xin Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
48
|
Navarro-Triviño F, Arias-Santiago S, Gilaberte-Calzada Y. Vitamin D and the Skin: A Review for Dermatologists. ACTAS DERMO-SIFILIOGRAFICAS 2019. [DOI: 10.1016/j.adengl.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
The Endocannabinoid/Endovanilloid System in Bone: From Osteoporosis to Osteosarcoma. Int J Mol Sci 2019; 20:ijms20081919. [PMID: 31003519 PMCID: PMC6514542 DOI: 10.3390/ijms20081919] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Bone is a dynamic tissue, whose homeostasis is maintained by a fine balance between osteoclast (OC) and osteoblast (OB) activity. The endocannabinoid/endovanilloid (EC/EV) system’s receptors are the cannabinoid receptor type 1 (CB1), the cannabinoid receptor type 2 (CB2), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). Their stimulation modulates bone formation and bone resorption. Bone diseases are very common worldwide. Osteoporosis is the principal cause of bone loss and it can be caused by several factors such as postmenopausal estrogen decrease, glucocorticoid (GC) treatments, iron overload, and chemotherapies. Studies have demonstrated that CB1 and TRPV1 stimulation exerts osteoclastogenic effects, whereas CB2 stimulation has an anti-osteoclastogenic role. Moreover, the EC/EV system has been demonstrated to have a role in cancer, favoring apoptosis and inhibiting cell proliferation. In particular, in bone cancer, the modulation of the EC/EV system not only reduces cell growth and enhances apoptosis but it also reduces cell invasion and bone pain in mouse models. Therefore, EC/EV receptors may be a useful pharmacological target in the prevention and treatment of bone diseases. More studies to better investigate the biochemical mechanisms underlining the EC/EV system effects in bone are needed, but the synthesis of hybrid molecules, targeting these receptors and capable of oppositely regulating bone homeostasis, seems to be a promising and encouraging prospective in bone disease management.
Collapse
|
50
|
Chin KY, Ima-Nirwana S. The Role of Tocotrienol in Preventing Male Osteoporosis-A Review of Current Evidence. Int J Mol Sci 2019; 20:E1355. [PMID: 30889819 PMCID: PMC6471446 DOI: 10.3390/ijms20061355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Male osteoporosis is a significant but undetermined healthcare problem. Men suffer from a higher mortality rate post-fracture than women and they are marginalized in osteoporosis treatment. The current prophylactic agents for osteoporosis are limited. Functional food components such as tocotrienol may be an alternative option for osteoporosis prevention in men. This paper aims to review the current evidence regarding the skeletal effects of tocotrienol in animal models of male osteoporosis and its potential antiosteoporotic mechanism. The efficacy of tocotrienol of various sources (single isoform, palm and annatto vitamin E mixture) had been tested in animal models of bone loss induced by testosterone deficiency (orchidectomy and buserelin), metabolic syndrome, nicotine, alcoholism, and glucocorticoid. The treated animals showed improvements ranging from bone microstructural indices, histomorphometric indices, calcium content, and mechanical strength. The bone-sparing effects of tocotrienol may be exerted through its antioxidant, anti-inflammatory, and mevalonate-suppressive pathways. However, information pertaining to its mechanism of actions is superficial and warrants further studies. As a conclusion, tocotrienol could serve as a functional food component to prevent male osteoporosis, but its application requires validation from a clinical trial in men.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| |
Collapse
|