1
|
Keshtmand Z, Eftekhari S, Khodadadi B, Farzollahi B, Khosravimelal S, Shandiz SA, Tavakkoli Yaraki M. Engineering of gelatin scaffold by extracellular matrix of Sertoli cells for embryonic stem cell proliferation. Toxicol In Vitro 2024; 100:105900. [PMID: 39029600 DOI: 10.1016/j.tiv.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Mimicking the microenvironment of seminiferous tubules plays an indispensable role in directing differentiation of stem cells toward germ cells in vitro. In this work, we fabricated electrospun gelatin (EG) mats (i.e., with diameter <500 nm) conditioned with Sertoli cells' extracellular matrix (ECM) to simulate both 3D structures and composition of normal testis tissue. Sertoli cells were isolated from mice testis and represented through immunocytochemistry (ICC) staining for expression of vimentin, a specific marker of Sertoli cells. The morphological characteristics of ECM-coated scaffold were investigated under scanning electron microscope (SEM). The efficient elimination of cells was confirmed by MTT assay. Furthermore, the cyto/biocompatibility of ECM-conditioned EG scaffold was determined for Sertoli cells and embryonic stem cells (ESCs), alone and as in co-culture. According to the results, the designed scaffold provided a mat for cell proliferation with negligible toxicity (almost 100% cell viability). SEM micrographs displayed cells with elongated shape and complete stretching morphology when compared with those cultured on scaffold without ECM. Moreover, an enhanced differentiation of ESCs toward sperm-generating cells was obtained through co-culturing of Sertoli cells and ESCs, where cell viability was found almost 100%. Our findings introduce the ECM-conditioned EG scaffold as a potentially influential engineered substrate for in vitro guidance of stem cells differentiation by mimicking the native microenvironment.
Collapse
Affiliation(s)
- Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Bahare Farzollahi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
2
|
Ma F, Huang X, Wang Y. Fabrication of a Triple-Layer Bionic Vascular Scaffold via Hybrid Electrospinning. J Funct Biomater 2024; 15:140. [PMID: 38921514 PMCID: PMC11204414 DOI: 10.3390/jfb15060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Tissue engineering aims to develop bionic scaffolds as alternatives to autologous vascular grafts due to their limited availability. This study introduces a novel wet-electrospinning fabrication technique to create small-diameter, uniformly aligned tubular scaffolds. By combining this innovative method with conventional electrospinning, a bionic tri-layer scaffold that mimics the zonal structure of vascular tissues is produced. The inner and outer layers consist of PCL/Gelatin and PCL/PLGA fibers, respectively, while the middle layer is crafted using PCL through Wet Vertical Magnetic Rod Electrospinning (WVMRE). The scaffold's morphology is analyzed using Scanning Electron Microscopy (SEM) to confirm its bionic structure. The mechanical properties, degradation profile, wettability, and biocompatibility of the scaffold are also characterized. To enhance hemocompatibility, the scaffold is crosslinked with heparin. The results demonstrate sufficient mechanical properties, good wettability of the inner layer, proper degradability of the inner and middle layers, and overall good biocompatibility. In conclusion, this study successfully develops a small-diameter tri-layer tubular scaffold that meets the required specifications.
Collapse
Affiliation(s)
- Feier Ma
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
| | - Xiaojing Huang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Xu Q, Li C, Meng X, Duo X, Feng Y. Polyethylenimine-modified graphene quantum dots promote endothelial cell proliferation. Regen Biomater 2024; 11:rbae013. [PMID: 38525325 PMCID: PMC10960926 DOI: 10.1093/rb/rbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases. The aim of this study was to evaluate the effect of polyethylenimine (PEI)-modified graphene quantum dots (GQDs) gene vectors on endothelial cell proliferation. The GQDs-cationic polymer gene vectors were synthesized by amidation reaction, and used to deliver pZNF580 gene to Human umbilical vein endothelial cells (HUVECs) for promoting their proliferation. The chemical modification of GQDs can adjust gene vectors' surface properties and charge distribution, thereby enhancing their interaction with gene molecules, which could effectively compress the pZNF580 gene. The CCK-8 assay showed that the cell viability was higher than 80% at higher vector concentration (40 μg/mL), demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles (NPs) having low cytotoxicity. The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay, in which the cell viability of the A-GQDs/pZNF580 (94.38 ± 6.39%), C-GQDs-PEI- polylactic acid-co-polyacetic acid (PLGA)/pZNF580 (98.65 ± 6.60%) and N-GQDs-PEI-PLGA/pZNF580 (90.08 ± 1.60%) groups was significantly higher than that of the Lipofectamine 2000/pZNF580 (71.98 ± 3.53%) positive treatment group. The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs. In addition, the gene NPs better promote endothelial cell migration and proliferation. The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groups were higher than those of Lipofectamine 2000/pDNA treatment group. Modified GQDs possess the potential to serve as efficient gene carriers. They tightly bind gene molecules through charge and other non-covalent interactions, significantly improving the efficiency of gene delivery and ensuring the smooth release of genes within the cell. This innovative strategy provides a powerful means to promote endothelial cell proliferation.
Collapse
Affiliation(s)
- Qirong Xu
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xinghong Duo
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
5
|
Zheng Z, Dai X, Li X, Du C. Functionalization of PCL-based nanofibers loaded with hirudin as blood contact materials. BIOMATERIALS ADVANCES 2023; 149:213416. [PMID: 37058780 DOI: 10.1016/j.bioadv.2023.213416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Blood-contacting materials with good mechanical property, excellent anticoagulant function and promoting effect on endothelialization are in great demand for clinical application such as vascular grafts in treating cardiovascular diseases. In this study, electrospinning nanofiber scaffolds of polycaprolactone (PCL) were functionalized by oxidative self-polymerization of dopamine (PDA) on the surface followed by the modification of anticoagulant recombinant hirudin (rH) molecules. The morphology, structure, mechanical property, degradation behavior, cellular compatibility and blood compatibility of the multifunctional PCL/PDA/rH nanofiber scaffolds were evaluated. The diameter of the nanofibers was between 270-1030 nm. The ultimate tensile strength of the scaffolds was around 4 MPa and the elastic modulus increased with the amount of rH. The degradation tests in vitro indicated that the nanofiber scaffolds began to crack on the 7th day, but still maintained the nanoscale architecture within a month. The cumulative release of rH from the nanofiber scaffold was up to 95.9 % at 30th day. The functionalized scaffolds promoted the adhesion and proliferation of endothelial cells, while resisting platelet adhesion and enhancing anticoagulation effects. The hemolysis ratios of all scaffolds were <2 %. The nanofiber scaffolds are promising candidates for vascular tissue engineering.
Collapse
|
6
|
Xiang B, Xu P, Chang Y, Zhang Y, Wu Y, Zhong W, Lei W, Zhang R. Biodegradable radiative cooling membrane based on electrospun silk fibroin fiber. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Bo Xiang
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Peng Xu
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Yongsheng Chang
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Yifan Zhang
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Yali Wu
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Wenhuan Zhong
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Wen Lei
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Rong Zhang
- College of Science Nanjing Forestry University Nanjing People's Republic of China
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences Nanjing University Nanjing People's Republic of China
| |
Collapse
|
7
|
Shabani Samghabadi M, Karkhaneh A, Katbab AA. Synthesis and characterization of biphasic layered structure composite with simultaneous electroconductive and piezoelectric behavior as a scaffold for bone tissue engineering. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mina Shabani Samghabadi
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
8
|
Gang H, Wang H, Ma S, Wang C, Bian L, Wang Z, Zhou Y, Gu S, Liu X, Xu W, Zhuang Y, Yang H. Polylactic acid/silk fibroin composite hollow fibers as excellent controlled drug release systems. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanlin Gang
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education Wuhan Textile University Wuhan China
- Institute for Frontier Materials Deakin University Geelong Victoria Australia
| | - Sitian Ma
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Chaorong Wang
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Lixing Bian
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education Wuhan Textile University Wuhan China
| | - Zonglei Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education Wuhan Textile University Wuhan China
| | - Yingshan Zhou
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Shaojin Gu
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Xin Liu
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education Wuhan Textile University Wuhan China
| | - Yan Zhuang
- College of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Hongjun Yang
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education Wuhan Textile University Wuhan China
| |
Collapse
|
9
|
Wang M, Gao B, Wang X, Li W, Feng Y. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomater Sci 2022; 10:1883-1903. [DOI: 10.1039/d2bm00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive materials have been widely studied and applied in biomedical field. Under the stimulation of enzymes, the enzyme-responsive materials (ERMs) can be triggered to change their structures, properties and functions....
Collapse
|
10
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
11
|
Bai L, Zhao J, Wang M, Feng Y, Ding J. Matrix-Metalloproteinase-Responsive Gene Delivery Surface for Enhanced in Situ Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40121-40132. [PMID: 32805861 DOI: 10.1021/acsami.0c11971] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although blood-contacting medical devices have been widely used in the biomedical field, their low endothelialization seriously limits their treatment success. Gene transfection can enhance the proliferation and migration of endothelial cells (ECs) in culture, yet using this technology to realize surface endothelialization still faces great challenges. Herein, we developed a matrix metalloproteinase (MMP) responsive gene delivery surface for in situ smart release of genes from the biomaterial surface upon EC attachment and adhesion. The released genes induced by ECs can, in turn, effectively transfect ECs and enhance the surface endothelialization. An MMP-responsive gene delivery surface (Au-MCP@NPs) was constructed by immobilizing gene complex nanoparticles (NPs) onto a Au surface with MMP-cleavable peptide (MCP) grafted via biotin-avidin interaction. The Au-MCP@NP surface was demonstrated to responsively release NPs under the action of MMPs. More importantly, ECs were effectively transfected on this surface, leading to enhanced proliferation/migration in vitro. The in situ surface endothelialization was evaluated via implanting Au-MCP@NPs into rat aortas. The in vivo results demonstrated that this smart Au-MCP@NP surface could lead to the localized upregulation of ZNF580 protein and accelerate in situ endothelialization. This smart MMP-responsive gene delivery surface provided a promising and powerful strategy for enhanced in situ endothelialization of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lingchuang Bai
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
13
|
Wen M, Zhi D, Wang L, Cui C, Huang Z, Zhao Y, Wang K, Kong D, Yuan X. Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6863-6875. [PMID: 31958006 DOI: 10.1021/acsami.9b19452] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Globally growing problems related to cardiovascular diseases lead to a considerable need for synthetic vascular grafts. For small-caliber vascular prosthesis, it remains essential to fulfill rapid endothelialization, inhibit intimal hyperplasia, and prevent calcification for keeping patency. To modulate vascular regeneration, herein, we developed a bioactive trilayered tissue-engineered vascular graft encapsulating both microRNA-126 and microRNA-145 in the fibrous inner and middle layers, respectively. In vitro cell activities demonstrated that the trilayered electrospun membranes had significant biological advantages in enhanced growth and intracellular nitric oxide production of vascular endothelial cells, modulation of phenotypes of vascular smooth muscle cells (SMCs), and restraint of calcium deposition through fast-releasing microRNA-126 and slow-releasing microRNA-145. Histological and immunofluorescent analyses of in vivo implantation in a rat abdominal aorta interposition model suggested that the dual-microRNA-loading trilayered electrospun graft exerted a positive effect on accelerating endothelialization, improving contractile SMC regeneration, and promoting normal extracellular matrix formation. Meanwhile, the local bioactivity of microRNA-126 and microRNA-145 in the trilayered vascular graft could regulate inflammation and depress calcification possibly by facilitating transformation of macrophages into the anti-inflammatory M2 phenotype. These findings indicated that the trilayered electrospun graft by local delivery of dual microRNAs could be possibly used as a bioactive substitute for replacement of artificial small-caliber blood vessels.
Collapse
Affiliation(s)
- Meiling Wen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Lina Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Ce Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Ziqi Huang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
14
|
Bai L, Zhao J, Li Q, Guo J, Ren X, Xia S, Zhang W, Feng Y. Biofunctionalized Electrospun PCL‐PIBMD/SF Vascular Grafts with PEG and Cell‐Adhesive Peptides for Endothelialization. Macromol Biosci 2018; 19:e1800386. [DOI: 10.1002/mabi.201800386] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lingchuang Bai
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Jing Zhao
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Qian Li
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Jintang Guo
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
| | - Xiangkui Ren
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic MedicineAffiliated HospitalLogistics University of People's Armed Police Force 220 Chenglin Road Tianjin 300162 China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of Chinese People's Armed Police Force Tianjin 300309 China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin 300072 China
| |
Collapse
|
15
|
Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, He Y, Yao H, Ding J. Bilayered PLGA/PLGA-HAp Composite Scaffold for Osteochondral Tissue Engineering and Tissue Regeneration. ACS Biomater Sci Eng 2018; 4:3506-3521. [PMID: 33465902 DOI: 10.1021/acsbiomaterials.8b00552] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Pingguo Duan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runsheng Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaofeng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haoqun Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
|
17
|
|
18
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Li Y, Li X, Zhao R, Wang C, Qiu F, Sun B, Ji H, Qiu J, Wang C. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:106-112. [DOI: 10.1016/j.msec.2016.11.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/25/2016] [Accepted: 11/13/2016] [Indexed: 12/31/2022]
|
20
|
Bai L, Li Q, Duo X, Hao X, Zhang W, Shi C, Guo J, Ren X, Feng Y. Electrospun PCL-PIBMD/SF blend scaffolds with plasmid complexes for endothelial cell proliferation. RSC Adv 2017. [DOI: 10.1039/c7ra06253b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PCL-PIBMD/SF scaffolds can maintain the integrity of plasmid complexes loaded in scaffolds, and thereby enhance the proliferation of endothelial cells.
Collapse
Affiliation(s)
- Lingchuang Bai
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xinghong Duo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Changcan Shi
- Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
21
|
Wang H, Li Q, Yang J, Guo J, Ren X, Feng Y, Zhang W. Comb-shaped polymer grafted with REDV peptide, PEG and PEI as targeting gene carrier for selective transfection of human endothelial cells. J Mater Chem B 2017; 5:1408-1422. [DOI: 10.1039/c6tb02379g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several REDV peptide molecules are covalently linked onto an amphiphilic block copolymer to obtain REDV-modified polycationic polymer as a gene carrier with targeting function. The targeting gene complexes show high cell recognition and binding affinity to human endothelial cells.
Collapse
Affiliation(s)
- Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Key Laboratory of Systems Bioengineering (Ministry of Education)
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| |
Collapse
|
22
|
Rychter M, Baranowska-Korczyc A, Lulek J. Progress and perspectives in bioactive agent delivery via electrospun vascular grafts. RSC Adv 2017. [DOI: 10.1039/c7ra04735e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review discusses the progress in the design and synthesis of bioactive agents incorporated into vascular grafts obtained by the electrospinning process.
Collapse
Affiliation(s)
- Marek Rychter
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- Poznan University of Medical Sciences
- 60-780 Poznan
- Poland
| | | | - Janina Lulek
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- Poznan University of Medical Sciences
- 60-780 Poznan
- Poland
| |
Collapse
|
23
|
Zhao J, Li Q, Hao X, Ren X, Guo J, Feng Y, Shi C. Multi-targeting peptides for gene carriers with high transfection efficiency. J Mater Chem B 2017; 5:8035-8051. [DOI: 10.1039/c7tb02012k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-viral gene carriers for gene therapy have been developed for many years.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Changcan Shi
- Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering
| |
Collapse
|
24
|
Gorrasi G, Meduri A, Rizzarelli P, Carroccio S, Curcuruto G, Pellecchia C, Pappalardo D. Preparation of poly(glycolide-co-lactide)s through a green process: Analysis of structural, thermal, and barrier properties. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Lih E, Park KW, Chun SY, Kim H, Kwon TG, Joung YK, Han DK. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21145-21154. [PMID: 27456613 DOI: 10.1021/acsami.6b03771] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chronic kidney disease is now recognized as a major health problem, but current therapies including dialysis and renal replacement have many limitations. Consequently, biodegradable scaffolds to help repairing injured tissue are emerging as a promising approach in the field of kidney tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) is a useful biomedical material, but its insufficient biocompatibility caused a reduction in cell behavior and function. In this work, we developed the kidney-derived extracellular matrix (ECM) incorporated PLGA scaffolds as a cell supporting material for kidney tissue regeneration. Biomimetic PLGA scaffolds (PLGA/ECM) with different ECM concentrations were prepared by an ice particle leaching method, and their physicochemical and mechanical properties were characterized through various analyses. The proliferation of renal cortical epithelial cells on the PLGA/ECM scaffolds increased with an increase in ECM concentrations (0.2, 1, 5, and 10%) in scaffolds. The PLGA scaffold containing 10% of ECM has been shown to be an effective matrix for the repair and reconstitution of glomerulus and blood vessels in partially nephrectomized mice in vivo, compared with only PLGA control. These results suggest that not only can the tissue-engineering techniques be an effective alternative method for treatment of kidney diseases, but also the ECM incorporated PLGA scaffolds could be promising materials for biomedical applications including tissue engineered scaffolds and biodegradable implants.
Collapse
Affiliation(s)
- Eugene Lih
- Center for Biomaterials, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
| | - Ki Wan Park
- Center for Biomaterials, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University , Seoul 04107, Republic of Korea
| | - So Young Chun
- Department of Urology, School of Medicine, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University , Seoul 04107, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon 34113, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon 34113, Republic of Korea
| |
Collapse
|
26
|
Feng Y, Liu W, Ren X, Lu W, Guo M, Behl M, Lendlein A, Zhang W. Evaluation of Electrospun PCL-PIBMD Meshes Modified with Plasmid Complexes in Vitro and in Vivo. Polymers (Basel) 2016; 8:E58. [PMID: 30979153 PMCID: PMC6432533 DOI: 10.3390/polym8030058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 01/30/2023] Open
Abstract
Functional artificial vascular meshes from biodegradable polymers have been widely explored for certain tissue engineered meshes. Still, the foreign body reaction and limitation in endothelialization are challenges for such devices. Here, degradable meshes from phase-segregated multiblock copolymers consisting of poly(ε-caprolactone) (PCL) and polydepsipeptide segments are successfully prepared by electrospinning and electrospraying techniques. The pEGFP-ZNF580 plasmid microparticles (MPs-pZNF580) were loaded into the electrospun meshes to enhance endothelialization. These functional meshes were evaluated in vitro and in vivo. The adhesion and proliferation of endothelial cells on the meshes were enhanced in loaded mesh groups. Moreover, the hemocompatibility and the tissue response of the meshes were further tested. The complete tests showed that the vascular meshes modified with MPs-pZNF580 possessed satisfactory performance with an average fiber diameter of 550 ± 160 nm, tensile strength of 27 ± 3 MPa, Young's modulus of 1. 9 ± 0.2 MPa, water contact angle of 95° ± 2°, relative cell number of 122% ± 1% after 7 days of culture, and low blood platelet adhesion as well as weak inflammatory reactions compared to control groups.
Collapse
Affiliation(s)
- Yakai Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China.
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wen Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China.
| | - Wei Lu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Mengyang Guo
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Marc Behl
- Institute of Biomaterial Science, Berlin Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Kantstr. 55, 14513 Teltow, Germany.
| | - Andreas Lendlein
- Institute of Biomaterial Science, Berlin Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Kantstr. 55, 14513 Teltow, Germany.
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China.
| |
Collapse
|
27
|
Feng Y, Lu W, Ren X, Liu W, Guo M, Ullah I, Zhang W. Electrospun Poly(lactide- co-glycolide- co-3( S)-methyl-morpholine-2,5-dione) Nanofibrous Scaffolds for Tissue Engineering. Polymers (Basel) 2016; 8:E13. [PMID: 30979132 PMCID: PMC6432582 DOI: 10.3390/polym8020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023] Open
Abstract
Biomimetic scaffolds have been investigated in vascular tissue engineering for many years. Excellent biodegradable materials are desired as temporary scaffolds to support cell growth and disappear gradually with the progress of guided tissue regeneration. In the present paper, a series of biodegradable copolymers were synthesized and used to prepared micro/nanofibrous scaffolds for vascular tissue engineering. Poly(lactide-co-glycolide-co-3(S)-methyl-morpholine-2,5-dione) [P(LA-co-GA-co-MMD)] copolymers with different l-lactide (LA), glycolide (GA), and 3(S)-methyl-2,5-morpholinedione (MMD) contents were synthesized using stannous octoate as a catalyst. Moreover, the P(LA-co-GA-co-MMD) nanofibrous scaffolds were prepared by electrospinning technology. The morphology of scaffolds was analyzed by scanning electron microscopy (SEM), and the results showed that the fibers are smooth, regular, and randomly oriented with diameters of 700 ± 100 nm. The weight loss of scaffolds increased significantly with the increasing content of MMD, indicating good biodegradable property of the scaffolds. In addition, the cytocompatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells. It is demonstrated that the cells could attach and proliferate well on P(LA-co-GA-co-MMD) scaffolds and, consequently, form a cell monolayer fully covering on the scaffold surface. Furthermore, the P(LA-co-GA-co-MMD) scaffolds benefit to excellent cell infiltration after subcutaneous implantation. These results indicated that the P(LA-co-GA-co-MMD) nanofibrous scaffolds could be potential candidates for vascular tissue engineering.
Collapse
Affiliation(s)
- Yakai Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China.
- Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China.
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wei Lu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China.
- Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China.
| | - Wen Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Mengyang Guo
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China.
| |
Collapse
|
28
|
Lv J, Yang J, Hao X, Ren X, Feng Y, Zhang W. Biodegradable PEI modified complex micelles as gene carriers with tunable gene transfection efficiency for ECs. J Mater Chem B 2016; 4:997-1008. [PMID: 32263173 DOI: 10.1039/c5tb02310f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, gene therapy has evoked an increasing interest in clinical treatments of coronary diseases because it is a potential strategy to realize rapid endothelialization of artificial vascular grafts. The balance of high transfection efficiency and low cytotoxicity of nonviral gene carriers is an important issue to be solved. In this study, we aim to establish a gene delivery system offering an elegant way to tune the transfection activity and cytotoxicity. Biodegradable complex micelles were prepared from polyethylenimine-b-poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)-b-polyethylenimine (PEI-b-PLMD-b-PEI) and methoxy-poly(ethylene glycol)-b-poly(lactide-co-3(S)-methyl-morpholine-2,5-dione) (mPEG-b-PLMD) copolymers by a co-assembly method. Then the ZNF580 gene plasmid (pDNA) was encapsulated into the complex micelles. The hydrodynamic size and zeta potential of these complex micelles and micelles/pDNA complexes indicated that they were feasible for use in cellular uptake and gene transfection. As expected, the transfection efficiency and cytotoxicity of these micelles/pDNA complexes could be conveniently tuned by changing the mass ratio of mPEG-b-PLMD to PEI-b-PLMD-b-PEI (3/1, 2/2, 1/3 and 0/4) in the mixed mPEG/PEI shell. The transfection efficiency increased as the mass ratio of mPEG-b-PLMD/PEI-b-PLMD-b-PEI decreased from 3/1 to 0/4, while the cytotoxicity showed an opposite tendency. Moreover, ZNF580 protein expression determined by Western blot analysis and the migration of transfected endothelial cells (ECs) by wound healing assay were consistent with the result of transfection efficiency. All these results indicated that the co-assembled complex micelles could act as suitable gene carriers with tunable gene transfection efficiency and cytotoxicity, which should have great potential for the transfection of vascular ECs.
Collapse
Affiliation(s)
- Juan Lv
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
29
|
Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W. REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. J Mater Chem B 2016; 4:3365-3376. [DOI: 10.1039/c6tb00686h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy provides a new strategy for promoting endothelialization, and rapid endothelialization has attracted increasing attention for inhibiting thrombosis and restenosis in artificial vascular implants.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Wen Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
30
|
Yang J, Feng Y, Zhang L. Biodegradable carrier/gene complexes to mediate the transfection and proliferation of human vascular endothelial cells. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin China
| | - Li Zhang
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin China
| |
Collapse
|
31
|
Yang J, Khan M, Zhang L, Ren X, Guo J, Feng Y, Wei S, Zhang W. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. J Mater Chem B 2015; 3:7682-7697. [DOI: 10.1039/c5tb01155h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional surfaces have been created by surface modification and click reactions. These surfaces possess excellent hemocompatibility and endothelialization, as well as effective antimicrobial activity.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Musammir Khan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Li Zhang
- Tianjin University Helmholtz-Zentrum Geesthacht
- Joint Laboratory for Biomaterials and Regenerative Medicine
- 300072 Tianjin
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Shuping Wei
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
32
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|