1
|
Baig N, Shetty S, Abdul Wahed S, Hassan A, Das N, Alameddine B. Promising CO 2 Capture and Effective Iodine Adsorption of Hyper-Cross-Linked Conjugated Porous Organic Polymers Prepared from a Cyclopentannulation Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17783-17793. [PMID: 38606871 DOI: 10.1021/acsami.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Three novel conjugated porous organic polymers, denoted as C-POP1-3 and which consist of alternating pyrene cores with various contorted fluorene surrogates, were successfully synthesized from a versatile one-pot palladium-catalyzed [3+2] cyclocondensation reaction. The resulting polymers were obtained in excellent yields and displayed weight-average molecular weights (Mw) ranging from 12.2 to 20.2 kg/mol with polydispersity indices (Mw/Mn) ranging between 1.8 and 2.4, suggesting that the molecular masses are narrowly distributed and thus implying homogeneous polymer chains. Thermal stability exploration of C-POP1-3 by thermogravimetric analysis (TGA) revealed an impressive robustness with a 10% weight reduction temperature attaining 485 °C. Investigation of the inherent microporosity properties of C-POP1-3 via nitrogen adsorption experiments using Brunauer-Emmett-Teller (BET) theory discloses their surface areas which reach up to 560 m2 g-1 and pore volumes averaging 0.47 cm3 g-1. The target conjugated polymers were explored as adsorbents disclosing a maximum carbon dioxide adsorption of 83.0 mg g-1 at 273 K and low pressure for C-POP1, whereas iodine sorption tests portrayed prominent outcomes, notably for C-POP3 which proved to owe a strong affinity toward the hitherto mentioned halogen by achieving a maximum adsorption of 2220 mg g-1. Additionally, recyclability experiments confirmed the possibility to regenerate the polymers' adsorption capabilities even after seven consecutive cycles of adsorption-desorption cycles, which qualify them as auspicious iodine adsorbents.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
2
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Exploring Cyclopentannulation as an Effective Synthetic Tool to Design Polycyclic Aromatic Hydrocarbon AIEgens for Bioimaging. ACS OMEGA 2024; 9:36732-36740. [PMID: 39220501 PMCID: PMC11360036 DOI: 10.1021/acsomega.4c05526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Synthesis of various polycyclic aromatic hydrocarbons (PAHs) from a palladium-catalyzed [3 + 2] cyclocondensation reaction is reported herein. The design strategy consisted of reacting the sterically hindered 1,2-bis(3,5-ditert-butylphenyl)acetylene 2 with myriad brominated anthracene and pyrene surrogates, resulting in the formation of target molecules MCP1-2 and DCP1-3, which exhibited excellent solubility in commonly used organic solvents and unveiled prominent aggregation-induced emission (AIE) characteristics in tetrahydrofuran and water solvent mixtures. Calculations using density functional theory (DFT) were utilized to validate both the contorted structures of the target molecules and their electronic conjugation featuring HOMO-LUMO band gaps (ΔE) in the range of ∼2.88 to 2.97 eV for the monocylopentannulated PAHs MCP1-2, and between ∼2.23 to 2.41 eV for the dicyclopentannulated PAHs DCP1-3. Furthermore, the biomedical features of DCP2 were investigated in cell-imaging experiments employing the RAW 264.7 macrophage cell line as a model system showing a high biocompatibility for DCP2, thus paving the way for its potential application in bioimaging. These findings underscore the significance of the target compounds as prominent AIEgens with exceptional photophysical properties and biocompatibility, therefore promoting them as valuable tools for bioimaging applications.
Collapse
Affiliation(s)
- Noorullah Baig
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak
Al-Abdullah, Hawally 32093, Kuwait
| | - Suchetha Shetty
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak
Al-Abdullah, Hawally 32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sumit Kumar Pramanik
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bassam Alameddine
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak
Al-Abdullah, Hawally 32093, Kuwait
| |
Collapse
|
3
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Iodine Uptake of Ultra Thermally Stable Conjugated Copolymers Bearing Biaceanthrylenyl Moieties and Contorted Aromatic Units Using a [3 + 2] Palladium-Catalyzed Cyclopolymerization Reaction. ACS OMEGA 2023; 8:43227-43235. [PMID: 38024763 PMCID: PMC10653061 DOI: 10.1021/acsomega.3c07108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
A novel series of copolymers made from alternating aromatic surrogates with contorted and spiro compounds, denoted as BCP1-3, was successfully synthesized employing a palladium-catalyzed one-pot [3 + 2] cyclopentannulation reaction. The resulting copolymers BCP1-3, which were isolated in high yields, exhibited weight-average molecular weights (Mw) ranging from 11.0 to 61.5 kg mol-1 (kDa) and polydispersity index (Mw/Mn) values in the range of 1.7 and 2.0, which suggest a narrow molecular weight distribution, thus indicating the formation of uniform copolymer chains. Investigation of the thermal properties of BCP1-3 by thermogravimetric analysis disclosed outstanding stability with 10% weight loss temperature values reaching 800 °C. Iodine adsorption tests revealed remarkable results, particularly for BCP2, which demonstrated a strong affinity toward iodine reaching an uptake of 2900 mg g-1. Additionally, recyclability tests showcased the effective regeneration of BCP2 after several successive iodine adsorption-desorption cycles.
Collapse
Affiliation(s)
- Noorullah Baig
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
| | - Suchetha Shetty
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Bassam Alameddine
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
| |
Collapse
|
4
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Removal of Carcinogenic Azo Dyes from Water Using Iron(II) Clathrochelate Derived Metalorganic Copolymers Made from a Copper-Catalyzed [4 + 2] Cyclobenzannulation Reaction. Polymers (Basel) 2023; 15:2948. [PMID: 37447593 DOI: 10.3390/polym15132948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
A novel synthetic strategy is disclosed to prepare a new class of metalorganic copolymers that contain iron(II) clathrochelate building blocks by employing a mild and cost-effective copper-catalyzed [4 + 2] cyclobenzannulation reaction, using three specially designed diethynyl iron(II) clathrochelate synthons. The target copolymers CBP1-3 were isolated in high purity and excellent yields as proven by their structural and photophysical characterization, namely, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and UV-VIS absorption and emission spectroscopies. The thermogravimetric analysis (TGA) of CBP1-3 revealed an excellent chemical stability. Investigation of the adsorption properties of the target copolymers towards the carcinogenic methyl red dye from aqueous solution revealed a quantitative uptake in 30 min. Isothermal adsorption studies disclosed that methyl red uptake from aqueous solution followed the Langmuir model for all of the target copolymers, reaching a maximum adsorption capacity (qm) of 431 mg g-. Kinetic investigation revealed that the adsorption followed pseudo-first-order with an equilibrium adsorption capacity (qe,cal) of 79.35 mg g- and whose sorption property was sustained even after its reuse several times.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
5
|
Baig N, Shetty S, Tiwari R, Pramanik SK, Alameddine B. Aggregation-Induced Emission of Contorted Polycondensed Aromatic Hydrocarbons Made by Edge Extension Using a Palladium-Catalyzed Cyclopentannulation Reaction. ACS OMEGA 2022; 7:45732-45739. [PMID: 36530321 PMCID: PMC9753205 DOI: 10.1021/acsomega.2c07168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 06/02/2023]
Abstract
Contorted polycyclic aromatic hydrocarbons (PAHs), CPA1-2 and CPB1-2, bearing peripheral five-membered rings were synthesized employing a palladium-catalyzed cyclopentannulation reaction using specially designed diaryl acetylene synthons TPE and TPEN with commercially available dibromo- anthracene DBA and bianthracene DBBA derivatives. The resulting target compounds CPA1-2 and CPB1-2 were isolated in excellent yield and found to be highly soluble in common organic solvents, which allowed for their structural characterization and investigation of the photophysical properties, disclosing their aggregation-induced emission (AIE) properties in THF at selective concentration ranges of water fractions in the solvent mixture. Examination of the contorted PAH structures by means of density functional theory (DFT) revealed higher electronic conjugation in the more rigid and planar anthracene-containing CPA1-2 derivatives when compared to the twisted bianthracene-bearing moieties CBPA1-2 with HOMO-LUMO bandgaps (ΔE) of ∼2.32 eV for the former PAHs and ∼2.78 eV for the latter ones.
Collapse
Affiliation(s)
- Noorullah Baig
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Kuwait City 1886644, Kuwait
- Functional
Materials Group, GUST, Kuwait City 1886644, Kuwait
| | - Suchetha Shetty
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Kuwait City 1886644, Kuwait
- Functional
Materials Group, GUST, Kuwait City 1886644, Kuwait
| | - Rajeshwari Tiwari
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Bassam Alameddine
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Kuwait City 1886644, Kuwait
- Functional
Materials Group, GUST, Kuwait City 1886644, Kuwait
| |
Collapse
|
6
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
7
|
Baig N, Shetty S, Habib SS, Husain AA, Al-Mousawi S, Alameddine B. Synthesis of Iron(II) Clathrochelate-Based Poly(vinylene sulfide) with Tetraphenylbenzene Bridging Units and Their Selective Oxidation into Their Corresponding Poly(vinylene sulfone) Copolymers: Promising Materials for Iodine Capture. Polymers (Basel) 2022; 14:polym14183727. [PMID: 36145872 PMCID: PMC9504420 DOI: 10.3390/polym14183727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
The development of a simple and efficient synthetic methodology to engineer functional polymer materials for gas adsorption is necessary due to its relevance for various applications. Herein, we report the synthesis of metalorganic poly(vinylene sulfide) copolymers CTP1-3 with iron(II) clathrochelate of various side groups connected by tetraphenylbenzene units. CTP1-3 were subsequently oxidized into their respective poly(vinylene sulfone) copolymers CTP4-6 under green reaction conditions. The target copolymers CTP1-6 were characterized using various instrumental analysis techniques. Examination of the iodine adsorption properties of the copolymers revealed high iodine uptake properties, reaching 2360 mg g−1 for CTP2, and whose reusability tests proved its efficient regeneration, thus proving the importance of iron(II) clathrochelate polymers in iodine capture.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Sameh S. Habib
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Ali A. Husain
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh Al-Mousawi
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| |
Collapse
|
8
|
Tang YX, Zhuang SY, Liu JY, Chen XL, Zhou Y, Wu YD, Wu AX. I2-DMSO mediated N1/C5 difunctionalization of anthranils with aryl methyl ketones: A facile access to multicarbonyl compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|
10
|
|
11
|
Shetty S, Baig N, Hassan A, Al-Mousawi S, Das N, Alameddine B. Fluorinated Iron(ii) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Adv 2021; 11:14986-14995. [PMID: 35424059 PMCID: PMC8697800 DOI: 10.1039/d1ra02357h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
We report the synthesis of metalorganic copolymers made from the palladium catalyzed Sonogashira cross-coupling reaction between various iron(ii) clathrochelate building blocks with diethynyl-triptycene and fluorene derivatives. The target copolymers CCP1-5 were isolated in excellent yield and characterized by various instrumental analysis techniques. Interestingly, investigation of the copolymers' porosity properties discloses BET surface areas up to 337 m2 g-1 for the target compounds bearing fluorinated iron(ii) clathrochelate units CCP2,5. Moreover, the fluorinated copolymers display an outstanding uptake capacity of iodine with a maximum adsorption of 200 wt%. The target metalorganic copolymers CCP1-5 reveal very good adsorption of organic dyes, namely, methyl blue and methylene blue, from aqueous media.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | | | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| |
Collapse
|
12
|
Triptycene based and nitrogen rich hyper cross linked polymers (TNHCPs) as efficient CO2 and iodine adsorbent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
14
|
Ansari M, Hassan A, Alam A, Jana A, Das N. Triptycene based fluorescent polymers with azo motif pendants: Effect of alkyl chain on fluorescence, morphology and picric acid sensing. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|