1
|
Darmenbayeva A, Rajasekharan R, Massalimova B, Bektenov N, Taubayeva R, Bazarbaeva K, Kurmanaliev M, Mukazhanova Z, Nurlybayeva A, Bulekbayeva K, Kabylbekova A, Ungarbayeva A. Cellulose-Based Sorbents: A Comprehensive Review of Current Advances in Water Remediation and Future Prospects. Molecules 2024; 29:5969. [PMID: 39770058 PMCID: PMC11678280 DOI: 10.3390/molecules29245969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cellulose-based sorbents are promising materials for wastewater treatment due to their environmental friendliness, biodegradability, and high sorption capacity. This paper presents an overview of cellulose modification methods, including carboxylation, amination, oxidation, graphene, and plasma treatments, as well as combined approaches. Their effect on key physicochemical properties, such as porosity, morphology, and chemical stability, is considered. Examples from the literature confirm the effectiveness of modified cellulose sorbents in removing heavy metal ions and organic pollutants from wastewater. The analysis shows that combined methods allow for creating materials with improved characteristics that are resistant to extreme operating conditions. The main advantages and disadvantages of cellulose sorbents, as well as challenges associated with their scalability and cost-effectiveness, are discussed. The paper emphasizes the importance of further research to advance these materials as a key element of sustainable water treatment technologies.
Collapse
Affiliation(s)
- Akmaral Darmenbayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.T.); (A.N.); (K.B.)
| | - Reshmy Rajasekharan
- Department of Science and Humanities, Providence College of Engineering, Kerala 689122, India
| | - Bakytgul Massalimova
- Department of Chemistry and Chemical Engineering, M. Kozybayev North Kazakhstan University, Petropavlovsk 150000, Kazakhstan;
| | - Nessipkhan Bektenov
- Department of Chemistry, Abay Kazakh National Pedagogical University, Almaty 050010, Kazakhstan;
| | - Raushan Taubayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.T.); (A.N.); (K.B.)
| | - Karlygash Bazarbaeva
- Department of Biotechnology and Microbiology, Eurasian National University, Astana 140002, Kazakhstan;
| | - Musrepbek Kurmanaliev
- Department of Chemistry and Chemical Technology, Almaty Technological University, Almaty 050002, Kazakhstan;
| | - Zhazira Mukazhanova
- Higher School of IT and Natural Sciences, S. Amanzholov East Kazakhstan University, Ust-Kamenogorsk 070010, Kazakhstan;
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.T.); (A.N.); (K.B.)
| | - Kamila Bulekbayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.T.); (A.N.); (K.B.)
| | - Aisulu Kabylbekova
- Department of Chemistry, Biology and Physical Education, Miras University, Shymkent 160012, Kazakhstan;
| | - Aisulu Ungarbayeva
- Department of Chemistry, Biology and Ecology, Central Asian Innovation University, Shymkent 160000, Kazakhstan;
| |
Collapse
|
2
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
3
|
Liang L, Han M, Liu YQ, Huang C, Leng YL, Zhang YP, Cai XH. Schiff base functionalized dialdehyde starch for enhanced removal of Cu (II): Preparation, performances, DFT calculations. Int J Biol Macromol 2024; 268:131424. [PMID: 38615852 DOI: 10.1016/j.ijbiomac.2024.131424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Dialdehyde starch modified by 2-hydrazinopyridine (HYD-DAS) based on the reaction of dialdehyde starch (DAS) and 2-hydrazinopyridine was synthesized and characterized by FT-IR spectra, element analysis and SEM. HYD-DAS can efficiently adsorb Cu (II) ion to demonstrate visual color changes from yellow to dark brown in aqueous solutions. The influence on HYD-DAS to Cu (II) adsorption including pH value of solution, isotherm, kinetics, thermodynamics and possible mechanism had also been examined. Batch experiments indicate that HYD-DAS's to Cu (II) adsorption reaches equilibrium within 250 min, and its adsorption capacity and rate are 195.75 mg/g and 98.63 %, respectively. Moreover, HYD-DAS to Cu (II) adsorption remains robust and underscoring after five cycles to exhibit good selectivity and reusability. Kinetics studies suggest the absorption process follows a quasi-second-order with isotherms aligning to the Langmuir monolayer model, and thermodynamics reveals that it is a spontaneous endothermic nature of adsorption. Based on the analyses of XPS and DFT calculations, a possible mechanism for HYD-DAS to Cu (II) adsorption is that Cu (II) combined with nitrogen atoms from Schiff base and hydrazine pyridine ring in HYD-DAS.
Collapse
Affiliation(s)
- Le Liang
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Mei Han
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Yong-Qing Liu
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Chan Huang
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Yan-Li Leng
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Yu-Peng Zhang
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Xiao-Hua Cai
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Adeiga OI, Pillay K. Rooibos tea waste binary oxide composite: An adsorbent for the removal of nickel ions and an efficient photocatalyst for the degradation of ciprofloxacin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120274. [PMID: 38452618 DOI: 10.1016/j.jenvman.2024.120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
In this study, rooibos tea waste (RTW) incorporated with a binary oxide (BO; Fe2O3-SnO2) has been reported for the first time as a highly efficient adsorbent material for the elimination of Ni(II) ions. The as-synthesised rooibos tea waste-binary oxide (RWBO) composite adsorbent was characterised using miscellaneous techniques such as FTIR, XRD, SEM, EDX, TGA, BET, and XPS. The RWBO was then tested for the removal of Ni(II) in a batch adsorption experiment. The composite adsorbent showed a great removal efficiency of about 99.75% for Ni(II) ions at 45 °C, 180 min agitation time, pH 7, and dosage of 250 mg. The adsorption process was found to be endothermic and spontaneous. Also, the spent adsorbent [RWBO-Ni(II)] was found to be solar light active with a narrow band gap of 1.4 eV. It was further used as a photocatalyst for the photocatalytic abatement of 10 mg/L ciprofloxacin with an extent of degradation of 83% obtained after 150 min. In addition, the extent of mineralisation of the ciprofloxacin by the spent adsorbent as obtained from the TOC data was found to be 64%. Overall, the RWBO composite adsorbent lends itself as an efficient, eco-friendly and promising material for environmental remediation.
Collapse
Affiliation(s)
- Opeoluwa I Adeiga
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Kriveshini Pillay
- Department of Chemical Sciences, University of Johannesburg, South Africa.
| |
Collapse
|
5
|
El-Khouly AS, Takahashi Y. Synthesis, Characterization, and Evaluation of the Adsorption Behavior of Cellulose-Graft-Poly(Acrylonitrile-co-Acrylic Acid) and Cellulose-Graft-Poly(Acrylonitrile-co-Styrene) towards Ni(II) and Cu(II) Heavy Metals. Polymers (Basel) 2024; 16:445. [PMID: 38337334 DOI: 10.3390/polym16030445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the synthesis and characterization of grafted cellulose fiber with binary monomers mixture obtained using a KMnO4/citric acid redox initiator were investigated. Acrylonitrile (AN) was graft copolymerized with acrylic acid (AA) and styrene (Sty) at different monomer ratios with evaluating percent graft yield (GY%). Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were characterized by SEM, FT-IR, 13C CP MAS NMR, TGA, and XRD. An AN monomer was used as principle-acceptor monomer, and GY% increases with AN ratio up to 60% of total monomers mixture volume. The adsorption behaviors of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were studied for the adsorption of Ni(II) and Cu(II) metal ions from aqueous solution. Optimal adsorption conditions were determined, including 8 h contact time, temperature of 30 °C, and pH 5.5. Cell-g-P(AN-co-AA) showed maximum adsorption capacity of 435.07 mg/g and 375.48 mg/g for Ni(II) and Cu(II), respectively, whereas Cell-g-P(AN-co-Sty) showed a maximum adsorption capacity of 379.2 mg/g and 349.68 mg/g for Ni(II) and Cu(II), respectively. Additionally, adsorption equilibrium isotherms were studied, and the results were consistent with the Langmuir model. The Langmuir model's high determinant coefficient (R2) predicted monolayer sorption of metal ions. Consequently, Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) prepared by a KMnO4/citric acid initiator were found to be efficient adsorbents for heavy metals from wastewater as an affordable and adequate alternative.
Collapse
Affiliation(s)
- Amany S El-Khouly
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yoshiaki Takahashi
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| |
Collapse
|
6
|
Akl MA, El-Zeny AS, Hashem MA, El-Gharkawy ESRH, Mostafa AG. Flax fiber based semicarbazide biosorbent for removal of Cr(VI) and Alizarin Red S dye from wastewater. Sci Rep 2023; 13:8267. [PMID: 37217542 PMCID: PMC10203277 DOI: 10.1038/s41598-023-34523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
In the present study, flax fiber based semicarbazide biosorbent was prepared in two successive steps. In the first step, flax fibers were oxidized using potassium periodate (KIO4) to yield diadehyde cellulose (DAC). Dialdehyde cellulose was, then, refluxed with semicarbazide.HCl to produce the semicarbazide functionalized dialdehyde cellulose (DAC@SC). The prepared DAC@SC biosorbent was characterized using Brunauer, Emmett and Teller (BET) and N2 adsorption isotherm, point of zero charge (pHPZC), elemental analysis (C:H:N), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The DAC@SC biosorbent was applied for the removal of the hexavalent chromium (Cr(VI)) ions and the alizarin red S (ARS) anionic dye (individually and in mixture). Experimental variables such as temperature, pH, and concentrations were optimized in detail. The monolayer adsorption capacities from the Langmuir isotherm model were 97.4 mg/g and 18.84 for Cr(VI) and ARS, respectively. The adsorption kinetics of DAC@SC indicated that the adsorption process fit PSO kinetic model. The obtained negative values of ΔG and ΔH indicated that the adsorption of Cr(VI) and ARS onto DAC@SC is a spontaneous and exothermic process. The DAC@SC biocomposite was successfully applied for the removal of Cr(VI) and ARS from synthetic effluents and real wastewater samples with a recovery (R, %) more than 90%. The prepared DAC@SC was regenerated using 0.1 M K2CO3 eluent. The plausible adsorption mechanism of Cr(VI) and ARS onto the surface of DAC@SC biocomposite was elucidated.
Collapse
Affiliation(s)
- Magda A Akl
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Abdelrahman S El-Zeny
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed A Hashem
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Aya G Mostafa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Jiang H, Wu S, Zhou J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. Int J Biol Macromol 2023; 236:123916. [PMID: 36898461 DOI: 10.1016/j.ijbiomac.2023.123916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Heavy metals are a notable pollutant in aquatic ecosystems that results in many deadly diseases of the human body after enrichment through the food chain. As an environmentally friendly renewable resource, nanocellulose can be competitive with other materials at removing heavy metal ions due to its large specific surface area, high mechanical strength, biocompatibility and low cost. In this review, the research status of modified nanocellulose for heavy metal adsorbents is primarily reviewed. Two primary forms of nanocellulose are cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). The preparation process of nanocellulose was derived from natural plants, and the preparation process included noncellulosic constituent removal and extraction of nanocellulose. Focusing on heavy metal adsorption, the modification of nanocellulose was explored in depth, including direct modification methods, surface grafting modification methods based on free radical polymerization and physical activation. The adsorption principles of nanocellulose-based adsorbents when removing heavy metals are analyzed in detail. This review may further facilitate the application of the modified nanocellulose in the field of heavy metal removal.
Collapse
Affiliation(s)
- Haoyuan Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| |
Collapse
|
8
|
Chen Y, Wang X, Hao D, Ding Y, Fan H. Chelating cellulose functionalized with four amino acids: A comparative study on the enhanced adsorptive removal of cadmium and lead ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kumar R, Chauhan S. Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin. Int J Biol Macromol 2022; 221:842-864. [PMID: 36100000 DOI: 10.1016/j.ijbiomac.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a complex disease that starts with genetic alterations and mutations in healthy cells. The past decade has witnessed a huge demand for new biocompatibility and high-performance intelligent drug delivery systems. Curcumin (CUR) is a bioactive stimulant with numerous medical benefits. However, because of its hydrophobic nature, it has low bioavailability. The utilization of many biobased materials has been found to improve the loading of hydrophobic drugs. Cellulose nanocrystals (CNCs) with exceptional qualities and a wide range of applications, feature strong hydrophilicity and lipophilicity, great emulsification stability, high crystallinity and outstanding mechanical attributes. In this review, numerous CNCs-based composites have been evaluated for involvement in the controlled release of CUR. The first part of the review deals with recent advancements in the extraction of CNCs from lignocellulose biomass. The second elaborates some recent developments in the post-processing of CNCs in conjunction with other materials like natural polymers, synthetic polymers, β-CD, and surfactants for CUR loading/encapsulation and controlled release. Furthermore, numerous CUR drug delivery systems, challenges, and techniques for effective loading/encapsulation of CUR on CNCs-based composites have been presented. Finally, conclusions and future outlooks are also explored.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Punjab 144205, India.
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| |
Collapse
|
10
|
Alizadeh M, Peighambardoust SJ, Foroutan R, Azimi H, Ramavandi B. Surface magnetization of hydrolyzed Luffa Cylindrica biowaste with cobalt ferrite nanoparticles for facile Ni 2+ removal from wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113242. [PMID: 35413302 DOI: 10.1016/j.envres.2022.113242] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
A novel magnetic adsorbent based on hydrolyzed Luffa Cylindrica (HLC) was synthesized through the chemical co-precipitation technique, and its potential was evaluated in the adsorptive elimination of divalent nickel ions from water medium. Morphological assessment and properties of the adsorbent were performed using FTIR, SEM, EDX, XRD, BET, and TEM techniques. The effect of pH, temperature, time and nickel concentration on the removal efficiency was studied, and pH = 6, room temperature (25 °C), contact time of 60 min, and Ni2+ ion concentration of 10 mg.L-1 were introduced as the optimal values. At optimal conditions, the removal efficiency of Ni2+ ions using HLC and HLC/CoFe2O4 magnetic composite was calculated as 96.38 and 99.13%, respectively. The adsorption process kinetic followed a pseudo-first-order model. Langmuir isotherm was suitable for modelling the experimental data of the Ni2+ adsorption. The maximum elimination capacity of HLC and HLC/CoFe2O4 samples was calculated as 42.75 and 44.42 mg g-1, respectively. Furthermore, thermodynamic investigations proved the spontaneous and exothermic nature of the process. The adsorption efficiency was decreased with increasing the content of Ca2+ and Na + cations in aqueous media. During reusability of the synthesized adsorbents, it was found that after 8 cycles, no significant decrease has occurred in the adsorption efficiency. In addition, real wastewater treatment results proved that HLC/CoFe2O4 magnetic composite has an excellent performance in removal of heavy metals pollutant from shipbuilding effluent.
Collapse
Affiliation(s)
- Mehran Alizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Hamidreza Azimi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
11
|
Godiya CB, Revadekar C, Kim J, Park BJ. Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129112. [PMID: 35605498 DOI: 10.1016/j.jhazmat.2022.129112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Herein, we represent a novel ecofriendly bilayer-amine group incorporated microcrystalline cellulose (MCC)/chitosan (CS) hydrogel, fabricated via integrating polydopamine (PDA) and polyethyleneimine (PEI) for reliable and effective extraction of copper (Cu2+), zinc (Zn2+), and nickel (Ni2+) ions from effluents. Owing to abundant adsorptive sites, the MCC-PDA-PEI/CS-PDA-PEI hydrogel showed excellent Cu2+, Zn2+, and Ni2+ adsorbabilities of ~434.8, ~277.7, and ~261.8 mg/g, respectively, in a single-ion adsorption system with the adsorption kinetics and isotherm complied with pseudo-second-order and Langmuir models, respectively. In a multi-ion adsorption system, hydrogel removes mixed metal cations with slightly higher selectivity for Cu2+. In accordance with X-ray photoelectron and Fourier-transform-infrared spectrometric analyses, a plausible binding mechanism of metal cations on the as-prepared hydrogel was proposed by chelation between hydrogel functional groups and metal ions. In the repetitive adsorption/desorption experiments, the hydrogel retained >40% metal ion adsorption and desorption capacities after four cycles. Furthermore, the Cu2+-adsorbing hydrogel could serve as a support for the in situ development of Cu nanoparticles, which showed excellent catalytic performance as demonstrated by the transformation of 4-nitrophenol (4-NP) to 4-aminophenol. This work provides a novel ecofriendly, reusable, and highly-efficient adsorbent, as well as a biocatalyst for remediation of heavy metal cations and 4-NP polluted effluents.
Collapse
Affiliation(s)
- Chirag Batukbhai Godiya
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Chetan Revadekar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Jinsoo Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
12
|
Lv M, Du Y, Zhang T, Du X, Yin X. Cassava Starch-Based Thermo-Responsive Pb(II)-Imprinted Material: Preparation and Adsorption Performance on Pb(II). Polymers (Basel) 2022; 14:828. [PMID: 35215742 PMCID: PMC8963116 DOI: 10.3390/polym14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Heavy metal pollution is currently an increasing threat to the ecological environment, and the development of novel absorbents with remarkable adsorption performance and cost-effectiveness are highly desired. In this study, a cassava starch-based Pb(II)-imprinted thermo-responsive hydrogel (CPIT) had been prepared by using cassava starch as the bio-substrate, N-isopropyl acrylamide (NIPAM) as the thermo-responsive monomer, and Pb(II) as the template ions. Later, a variety of modern techniques including FTIR, DSC, SEM, and TGA were employed to comprehensively analyze the characteristic functional groups, thermo-responsibility, morphology, and thermal stability of CPIT. The obtained material exhibited superior performance in adsorption of Pb(II) and its maximum adsorption capacity was high-up to 114.6 mg/g under optimized conditions. Notably, the subsequent desorption (regeneration) process was fairly convenient by simply rinsing with cold deionized water and the highest desorption efficiency could be achieved as 93.8%. More importantly, the adsorption capacity of regenerated CPIT still maintained 88.2% of the value of starting material even after 10 recyclings. In addition, the excellence of CPIT in selective adsorption of Pb(II) should also be highlighted as its superior adsorption ability (97.9 mg/g) over the other seven interfering metal ions.
Collapse
Affiliation(s)
| | | | | | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| |
Collapse
|
13
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
14
|
Chemical Modification of Chitosan for Removal of Pb(II) Ions from Aqueous Solutions. MATERIALS 2021; 14:ma14247894. [PMID: 34947486 PMCID: PMC8707187 DOI: 10.3390/ma14247894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
Biomacromolecule have a significant contribution to the adsorption of metal ions. Moreover, chitosan is one of the most studied biomacromolecule, which has shown a good performance in the field of wastewater treatment. In this context, a new adsorbent of the aminophosphonic modified chitosan-supported Ni(II) ions type was prepared from the naturally biopolymer, chitosan. In the first step, modified chitosan with aminophosphonic acid groups was prepared using the “one-pot” Kabachnik-Fields reaction. It was characterized by different techniques: FTIR, SEM/EDAX, TGA, and 31P-NMR. In the second step, the modified chitosan with aminophosphonic acid was impregnated with Ni(II) ions using the hydrothermal reaction at different values of pH (5, 6 and 7). The physical-chemical characteristics of final products (modified chitosan carrying aminophosphonic groups and Ni(II) ions) were investigated using FTIR, SEM images, EDAX spectra and thermogravimetric analysis. In this work, the most important objective was the investigation of the adsorbent performance of the chitosan modified with aminophosphonic groups and Ni(II) ions in the process of removing Pb(II) ions from aqueous solutions by studying the effect of pH, contact time, and Pb(II) ions concentration. For removal of Pb(II) ions from the aqueous solution, the batch adsorption method was used.
Collapse
|
15
|
Yin X, Zhang N, Du M, Zhu H, Ke T. Preparation of bio-absorbents by modifying licorice residue via chemical methods and removal of copper ions from wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3528-3540. [PMID: 34928824 DOI: 10.2166/wst.2021.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue (LR) with NaOH, Na2CO3 and citric acid, and were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, scanning electron microscopy (SEM), thermogravimetry (TG) and X-ray diffraction (XRD). Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second-order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, while LR-NaOH and LR-Na2CO3 significantly enhanced this value up to 43.65 mg/g and 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be a potential approach for use in the water treatment.
Collapse
Affiliation(s)
- Xiaochun Yin
- School of Public Health, Gansu University of Chinese Medicine, Gansu 730000, China E-mail: ; Collaborative Innovation Center of Traditional Chinese Medicine for Prevention and Control of Environmental and Nutrition-Related Disease in Northwest China, Gansu University of Chinese Medicine, Gansu 730000, China
| | - Nadi Zhang
- Zhang Ye People's Hospital Affiliated to University, Gansu 734000, China
| | - Meixia Du
- School of Public Health, Gansu University of Chinese Medicine, Gansu 730000, China E-mail:
| | - Hai Zhu
- School of Public Health, Gansu University of Chinese Medicine, Gansu 730000, China E-mail:
| | - Ting Ke
- School of Public Health, Gansu University of Chinese Medicine, Gansu 730000, China E-mail:
| |
Collapse
|
16
|
Li M, Zhang S, Cui S, Qin K, Zhang Y, Li P, Cao Q, Xiao H, Zeng Q. Pre-grafting effect on improving adsorption efficiency of cellulose based biosorbent for Hg (II) removal from aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Özkahraman B, Yıldırım E, Emik S, Acar I. The removal of Cu(II) and Pb(II) ions from aqueous solutions by temperature-sensitive hydrogels based on N-isopropylacrylamide and itaconic acid. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study deals with the potential use of poly(N-isopropylacrylamide-co-itaconic acid) temperature-sensitive hydrogels as an adsorbent for the removal of Cu(II) and Pb(II) ions from aqueous solutions. For this aim, the adsorption properties of hydrogels were examined by adsorption capacities, adsorption isotherm, and adsorption kinetics experiments. To describe the adsorption characteristics of hydrogels, the obtained experimental data were evaluated by Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich isotherm models. Adsorption kinetics experiments were carried out not only in single systems but also in binary systems where both ions were at equal initial concentrations for competitive adsorption studies. To predict the behaviors of the competitive and non-competitive adsorption process of ions onto hydrogels, the experimental adsorption data were analyzed by the pseudo-first-order model and the pseudo-second-order model. According to non-competitive ion removal findings, the adsorption capacities followed order Cu(II) > Pb(II) for all hydrogels, and the pseudo-second-order kinetic model explained the adsorption properties of the hydrogels. Competitive ion removal studies showed that all hydrogels were selective to Cu(II) ion. Furthermore, in the case of comparative investigations both of competitive Cu(II) and competitive Pb(II) removal by hydrogels, the metal ion removal capacity of N10 hydrogel was found as a bit higher than that of N7.5 and N5 in 48 h. That is, as the acidic group content increased in the hydrogel network, the adsorption capacity values also increased. In addition, the reusability of temperature-sensitive hydrogels seems possible without regeneration or after regenerating with acid, in case the temperature is increased above the LCST. Furthermore, even if it cannot be reused, these hydrogels that retain metal ions reach very small volumes by shrinking when the LSCT is exceeded, and thus they can be eliminated more easily than other conventional gels due to their small size. As a result, this temperature-sensitive hydrogel may propose as an alternative environmentally friendly adsorbent candidate for can be used for water purification and wastewater treatment.
Collapse
Affiliation(s)
- Bengi Özkahraman
- Hitit University, Faculty of Engineering, Polymer Engineering Department, Çorum, Turkey
| | - Eren Yıldırım
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Chemical Engineering Department, Avcılar, Istanbul, Turkey
| | - Serkan Emik
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Chemical Engineering Department, Avcılar, Istanbul, Turkey
| | - Işıl Acar
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Chemical Engineering Department, Avcılar, Istanbul, Turkey
| |
Collapse
|
18
|
Gomes C, Dias R, Costa M. Hybrid cellulose-poly(4-vinylpyridine) adsorbents produced via ATRP and their application to target polyphenols in winemaking, olive oil production and almond processing residues. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Abou-Zeid RE, Kamal KH, Abd El-Aziz ME, Morsi SM, Kamel S. Grafted TEMPO-oxidized cellulose nanofiber embedded with modified magnetite for effective adsorption of lead ions. Int J Biol Macromol 2020; 167:1091-1101. [PMID: 33186652 DOI: 10.1016/j.ijbiomac.2020.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
According to the World Health Organization, nearly a billion people do not have incoming to pure drinking water and much of that water is contaminated with high levels of heavy elements. In this study, adsorption of lead ions has been studied by nanocomposites which prepared through acrylic acid grafting and amino-functionalized magnetized (FM-NPs) TEMPO-oxidized cellulose nanofiber (TEMPO-CNF). The amino-functionalized magnetite was acting as a crosslinked. The crystallinity of TEMPO-CNF was 75 with a 4-10 nm diameter range, while the average particle size of FM-NPs was 30 nm. The adsorption studies illustrated that the elimination efficiency of lead ions was 80% by the prepared nanocomposite that includes a minimum amount of crosslinker (1%), which demonstrated that the magnetic grafted oxidized cellulose nanofiber nanocomposite is a promising green adsorbent material to eliminate heavy metal ions and is additionally easy to get rid of due to its magnetic property. The kinetics and isotherms studied found that the sorption reaction follows a pseudo-second-order model (R2 = 0.997) and Freundlich model (R2 = 0.993), respectively, this indicated that the adsorption of lead ion occurs within the pores and via the functional groups present on the nanocomposite.
Collapse
Affiliation(s)
- Ragab E Abou-Zeid
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Kholod H Kamal
- Water Pollution Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - M E Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - S M Morsi
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
20
|
Chakraborty R, Asthana A, Singh AK, Verma R, Sankarasubramanian S, Yadav S, Carabineiro SAC, Susan MABH. Chicken feathers derived materials for the removal of chromium from aqueous solutions: kinetics, isotherms, thermodynamics and regeneration studies. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1842760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rupa Chakraborty
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, India
| | - Anupama Asthana
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, India
| | - Renu Verma
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, India
| | - Sreevidya Sankarasubramanian
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, India
- Department of Chemistry, Kalyan PG College, Bhilai Nagar, Durg, Chhattisgarh, India
| | - Sushma Yadav
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, India
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | | |
Collapse
|
21
|
Naseem K, Farooqi ZH, Begum R, Ur Rehman MZ, Ghufran M, Wu W, Najeeb J, Irfan A. Synthesis and characterization of poly(N-isopropylmethacrylamide-acrylic acid) smart polymer microgels for adsorptive extraction of copper(II) and cobalt(II) from aqueous medium: kinetic and thermodynamic aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28169-28182. [PMID: 32415448 DOI: 10.1007/s11356-020-09145-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Extraction of toxic heavy metal ions from aqueous medium using poly(N-isopropylmethacrylamide-acrylic acid) (P(NiPmA-Ac)) microgels as adsorbent has been investigated in present study. P(NiPmA-Ac) microgel particles were prepared by free radical precipitation polymerization in aqueous medium. Morphology and size of the prepared microgel particles was investigated by transmission electron microscopy (TEM). The Fourier transform infrared (FT-IR) analysis of pure and metal ion-loaded microgel particles was performed to confirm the presence of various functionalities of microgel particles and their interaction with metal ions extracted from aqueous medium. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the thermal stability and thermal behavior of pure and metal ion-loaded microgel particles. Contents of metal ions loaded into microgel particles were determined by TGA analysis. It was observed that P(NiPmA-Ac) particles have a potential to extract Cu2+ and Co2+ ions from aqueous medium. The Freundlich adsorption isotherm model best interprets the adsorption process as compared with the Langmuir model. Value of R2 according to the Freundlich adsorption isotherm was found to be 0.994 and 0.993 for Cu2+ and Co2+ ions, respectively. Adsorption process was followed by pseudo second order kinetics for Cu2+ and Co2+ ions with R2 values of 0.999 for both metal ions. Thermodynamic study showed that adsorption process was spontaneous, feasible, and endothermic in nature. Entropy was decreased at adsorbate-adsorbent interface during adsorption process. Adsorbent was recycled and reused for removal of Cu2+ ions, and adsorption efficiency was found to be maintained up to three cycles. Microgel particles also have ability to extract Cu2+ ions efficiently from electroplating wastewater. Graphical abstract.
Collapse
Affiliation(s)
- Khalida Naseem
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
- Faculty of Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Zia Ur Rehman
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Maida Ghufran
- Department of Chemistry, Kinnaird College for Women, Lahore, 54000, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jawayria Najeeb
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University, Abha, Aseer, 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Aseer, 61413, Saudi Arabia
| |
Collapse
|
22
|
Vu HT, Phan MTD, Tran UTT, Nguyen GD, Duong VB, Tran DB. N(4)-Morpholinothiosemicarbazide-Modified Cellulose: Synthesis, Structure, Kinetics, Thermodynamics, and Ni(II) Removal Studies. ACS OMEGA 2020; 5:15229-15239. [PMID: 32637796 PMCID: PMC7331069 DOI: 10.1021/acsomega.0c01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, cellulose extracted from straw was modified using N(4)-morpholinothiosemicarbazide to generate a novel adsorbent as a chelate-complex-based material. The effects of pH, time, temperature, and mass ratios of KIO4: cellulose on the yield of the oxidation were analyzed using iodometric titration and photometric methods. The accuracy and precision of the above two methods were evaluated using Student and Fisher statistical distribution. The structure of the material was characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The kinetic order of Ni(II) adsorption was dependent on the concentration of Ni(II). The surface response design enabled to optimize the condition for Ni(II) adsorption at 58 °C, pH of 4.98, within 106 min. The maximum Ni(II) adsorption capacity was 90 mg g-1. This kind of adsorbent can be reused at least five times without a significant decrease in its adsorption efficiency.
Collapse
Affiliation(s)
- Huy T. Vu
- Faculty
of Chemistry, Ho Chi Minh City University
of Education, Ho Chi Minh City 700000 Vietnam
| | - My T. D. Phan
- Faculty
of Chemistry, Ho Chi Minh City University
of Education, Ho Chi Minh City 700000 Vietnam
| | - Uyen T. T. Tran
- Faculty
of Chemistry, Ho Chi Minh City University
of Education, Ho Chi Minh City 700000 Vietnam
| | - Giao D. Nguyen
- VNU-HCM
High School for the Gifted, Ho
Chi Minh City 700000, Vietnam
| | - Vu B. Duong
- Faculty
of Chemistry, Ho Chi Minh City University
of Education, Ho Chi Minh City 700000 Vietnam
| | - Dang B. Tran
- Faculty
of Chemistry, Ho Chi Minh City University
of Education, Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
23
|
Saeedi-Jurkuyeh A, Jafari AJ, Kalantary RR, Esrafili A. A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104397] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Sajednia G, Rahimi E, Alvand N, Karbassi A, Baghdadi M. Fibrous adsorbent derived from sulfonation of cotton waste: application for removal of cadmium sulfide nanoparticles from aquatic media. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|