1
|
Zeng L, Lu X, Huang Y, Tu Q, He Y, Fang Z, Nie S, Huang Y, Yu M, Min X, Zhang C, Yu J, Zhang L. GPER1/ACACB are potential target genes associated with intracranial aneurysm and vascular endothelial cell senescence. Neurosurg Rev 2025; 48:321. [PMID: 40131497 DOI: 10.1007/s10143-025-03489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
The incidence of intracranial aneurysms (IAs) is markedly elevated in postmenopausal women compared to men and premenopausal women, a disparity historically linked to declining estrogen levels. Emerging evidence, however, suggests that the expression and functional roles of estrogen receptors (ERs), including ERα, ERβ, and GPER1, in vascular tissues may implicate estrogen-independent pathways in vascular aging and related pathologies. An integrative bioinformatics approach, combining three IA datasets (GSE75436, GSE122897, GSE54083) and two vascular endothelial cell senescence (VECS) datasets (GSE214476, GSE102397) from the Gene Expression Omnibus (GEO) database, was employed to investigate this hypothesis and define shared molecular mechanisms. This cross-disease differential expression analysis identified 452 significantly downregulated genes, suggesting conserved pathogenic pathways in IA and VECS. Among ERs, GPER1 was uniquely downregulated in both conditions. Subsequent weighted gene co-expression network analysis and subsequent module clustering revealed ACACB as a hub gene co-expressed with GPER1 and inversely correlated with IA and VECS progression. In vitro validation confirmed that GPER1 expression was reduced during VECS and that GPER1 silencing decreased ACACB expression and accelerated endothelial senescence, supporting its estrogen-independent role in vascular homeostasis. Computational pharmacological screening further identified PD0325901, SCH772984, and selumetinib as potential therapeutic agents targeting both GPER1 and ACACB, offering a dual-pathway therapeutic strategy. The identification of GPER1 and ACACB as potential target genes associated with IA and VECS provides a framework for developing therapies that circumvent hormone dependency, addressing an unmet need in the treatment of IA and age-related vascular pathologies.
Collapse
Affiliation(s)
- Lang Zeng
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuanzhen Lu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Yuzhen Huang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qin Tu
- Department of Neurosurgery, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Yongqi He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ziwei Fang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuyi Nie
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Huang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Maling Yu
- Department of Neurosurgery, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Xiaoli Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiasheng Yu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Le Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Chen R, Wang H, Zeng L, He J, Liu X, Ji X, Yao P, Gu S. Perinatal hypoxia-mediated neurodevelopment abnormalities in congenital heart disease mouse model. Mol Med 2025; 31:109. [PMID: 40114103 PMCID: PMC11927194 DOI: 10.1186/s10020-025-01158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Cyanotic congenital heart disease (CHD) in children has been associated with neurodevelopmental abnormalities, although the underlying mechanisms remain largely unknown. Multiple factors are likely involved in this process. This research aims to explore the potential effects of hypoxia and vascular system-derived factors in neurodevelopmental outcomes in offspring. METHODS Mouse aorta endothelial cells (MEC) and amygdala neurons were isolated to investigate the effects of hypoxia on pro-inflammatory cytokine release, gene expression, redox balance, mitochondrial function, and epigenetic modifications. A CHD mouse model was established to evaluate the impact of perinatal hypoxia on fetal brain development. Estrogen receptor β (ERβ) expression in endothelial cells was modulated using Tie2-driven lentivirus both in vitro and in vivo study to assess the vascular system's contribution to hypoxia-mediated neurodevelopmental abnormalities. RESULTS Hypoxia exposure, along with factors released from MEC, led to altered gene expression, oxidative stress, mitochondrial dysfunction, and epigenetic modifications in amygdala neurons. In the CHD mouse model, perinatal hypoxia resulted in compromised vascular function, altered gene expression, disrupted redox balance in brain tissues, and impaired behavioral outcomes in offspring. Prenatal expression of ERβ in endothelial cells partially ameliorated these neurodevelopmental abnormalities, while prenatal knockdown of ERβ mimicked the effects of perinatal hypoxia. CONCLUSIONS Hypoxia, combined with endothelial cell-derived factors, induces epigenetic changes in neurons. In the CHD mouse model, perinatal hypoxia causes vascular dysfunction, altered gene expression, and redox imbalance in brain tissues, leading to behavioral impairments in offspring. Prenatal expression of ERβ in endothelial cells mitigates these effects, suggesting that modulating gene expression in the vascular system during pregnancy could play a protective role against hypoxia-induced neurodevelopmental abnormalities in CHD.
Collapse
Affiliation(s)
- Renwei Chen
- The First Affiliated Hospital, The First Clinical College, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Haifan Wang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, 518033, China
| | - Jiafei He
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, 518033, China
| | - Xinting Ji
- The First Affiliated Hospital, The First Clinical College, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Paul Yao
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China.
| | - Shuo Gu
- The First Affiliated Hospital, The First Clinical College, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Signorile PG, Baldi A, Viceconte R, Boccellino M. The Role of Adenogenesis Factors in the Pathogenesis of Endometriosis. Int J Mol Sci 2025; 26:2076. [PMID: 40076699 PMCID: PMC11899868 DOI: 10.3390/ijms26052076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Endometriosis is a pathological condition characterized by the presence of the endometrial tissue, outside the uterine cavity. It affects nearly 10% of women of reproductive age and is responsible for infertility, chronic pain, and the weakening of the quality of life. Various pathogenetic mechanisms have been suggested; however, the essential pathogenesis of endometriosis remains insufficiently comprehended. A comprehensive literature search was conducted in databases such as PubMed, Scopus, and Web of Science up to December 2024. Inclusion criteria encompassed studies investigating the pathogenetic mechanisms of endometriosis, while exclusion criteria included reviews, case reports, and studies lacking primary data. The analyzed studies explored multiple pathogenetic mechanisms, including retrograde menstruation, coelomic metaplasia, embryological defects, stem cell involvement, and epigenetic modifications. Special emphasis was placed on the role of uterine adenogenesis factors in the development and progression of endometriosis. A deeper understanding of the various pathogenetic mechanisms underlying endometriosis is crucial for advancing targeted therapeutic strategies. Further research into uterine adenogenesis factors may provide new insights into the disease's pathophysiology and pave the way for novel treatment approaches.
Collapse
Affiliation(s)
- Pietro G. Signorile
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
| | - Alfonso Baldi
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
- Department of Life Science, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Rosa Viceconte
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
| | - Mariarosaria Boccellino
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
- Department of Life Science, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
4
|
Barcena ML, Christiansen-Mensch C, Aslam M, Haritonow N, Ladilov Y, Regitz-Zagrosek V. Upregulation of Mitochondrial Sirt3 and Alleviation of the Inflammatory Phenotype in Macrophages by Estrogen. Cells 2024; 13:1420. [PMID: 39272992 PMCID: PMC11393879 DOI: 10.3390/cells13171420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Aging and comorbidities like type 2 diabetes and obesity contribute to the development of chronic systemic inflammation, which impacts the development of heart failure and vascular disease. Increasing evidence suggests a role of pro-inflammatory M1 macrophages in chronic inflammation. A shift of metabolism from mitochondrial oxidation to glycolysis is essential for the activation of the pro-inflammatory M1 phenotype. Thus, reprogramming the macrophage metabolism may alleviate the pro-inflammatory phenotype and protect against cardiovascular diseases. In the present study, we hypothesized that the activation of estrogen receptors leads to the elevation of the mitochondrial deacetylase Sirt3, which supports mitochondrial function and mitigates the pro-inflammatory phenotype in macrophages. MATERIALS AND METHODS Experiments were performed using the mouse macrophage cell line RAW264.7, as well as primary male or female murine bone marrow macrophages (BMMs). Macrophages were treated for 24 h with estradiol (E2) or vehicle (dextrin). The effect of E2 on Sirt3 expression was investigated in pro-inflammatory M1, anti-inflammatory/immunoregulatory M2, and naïve M0 macrophages. Mitochondrial respiration was measured by Seahorse assay, and protein expression and acetylation were determined by western blotting. RESULTS E2 treatment upregulated mitochondrial Sirt3, reduced mitochondrial protein acetylation, and increased basal mitochondrial respiration in naïve RAW264.7 macrophages. Similar effects on Sirt3 expression and mitochondrial protein acetylation were observed in primary female but not in male murine BMMs. Although E2 upregulated Sirt3 in naïve M0, pro-inflammatory M1, and anti-inflammatory/immunoregulatory M2 macrophages, it reduced superoxide dismutase 2 acetylation and suppressed mitochondrial reactive oxygen species formation only in pro-inflammatory M1 macrophages. E2 alleviated the pro-inflammatory phenotype in M1 RAW264.7 cells. CONCLUSIONS The study suggests that E2 treatment upregulates Sirt3 expression in macrophages. In primary BMMs, female-specific Sirt3 upregulation was observed. The Sirt3 upregulation was accompanied by mitochondrial protein deacetylation and the alleviation of the oxidative and pro-inflammatory phenotype in M1 macrophages. Thus, the E2-Sirt3 axis might be used in a therapeutic strategy to fight chronic systemic inflammation and prevent the development of inflammation-linked diseases.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Urology, Eberhard Karl University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Cardiovascular Research (DZHK), Berlin Partner Site, 10115 Berlin, Germany
| | | | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Cardiovascular Research (DZHK), RheinMain Partner Site, 61231 Bad Nauheim, Germany
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Yury Ladilov
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School, Bernau bei Berlin, 16321 Brandenburg, Germany;
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Charité–Universitätsmedizin Berlin, 10115 Berlin, Germany; (C.C.-M.)
- Department of Cardiology, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
5
|
Wang J, Liang Y, Liang X, Peng H, Wang Y, Xu M, Liang X, Yao H, Liu X, Zeng L, Yao P, Xiang D. Evodiamine suppresses endometriosis development induced by early EBV exposure through inhibition of ERβ. Front Pharmacol 2024; 15:1426660. [PMID: 39148548 PMCID: PMC11324466 DOI: 10.3389/fphar.2024.1426660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction: Endometriosis (EMS) is characterized as a prevalent gynecological inflammatory disorder marked by the existence of endometrial tissues situated beyond the uterus. This condition leads to persistent pelvic pain and may contribute to infertility. In this investigation, we explored the potential mechanism underlying the development of endometriosis (EMS) triggered by transient exposure to either latent membrane protein 1 (LMP1) or Epstein-Barr virus (EBV) in a mouse model. Additionally, we examined the potential inhibitory effect of evodiamine (EDM) on EMS. Methods: Immortalized human endometrial stromal cells (HESC) or epithelial cells (HEEC) were transiently exposed to either EBV or LMP1. The presence of evodiamine (EDM) was assessed for its impact on estrogen receptor β (ERβ) expression, as well as on cell metabolism parameters such as redox balance, mitochondrial function, inflammation, and proliferation. Additionally, a mixture of LMP1-treated HESC and HEEC was administered intraperitoneally to generate an EMS mouse model. Different dosages of EDM were employed for treatment to evaluate its potential suppressive effect on EMS development. Results: Transient exposure to either EBV or LMP1 triggers persistent ERβ expression through epigenetic modifications, subsequently modulating related cell metabolism for EMS development. Furthermore, 4.0 µM of EDM can efficiently reverse this effect in in vitro cell culture studies. Additionally, 20 mg/kg body weight of EDM treatment can partly suppress EMS development in the in vivo EMS mouse model. Conclusion: Transient EBV/LMP1 exposure triggers permanent ERβ expression, favoring later EMS development, EDM inhibits EMS development through ERβ suppression. This presents a novel mechanism for the development of endometriosis (EMS) in adulthood stemming from early Epstein-Barr virus (EBV) exposure during childhood. Moreover, evodiamine (EDM) stands out as a prospective candidate for treating EMS.
Collapse
Affiliation(s)
- Junling Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoru Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijuan Peng
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxia Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingtao Xu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Helen Yao
- University of California at Riverside, Riverside, CA, United States
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Paul Yao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfang Xiang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
7
|
Malik S, Chakraborty D, Agnihotri P, Sharma A, Biswas S. Mitochondrial functioning in Rheumatoid arthritis modulated by estrogen: Evidence-based insight into the sex-based influence on mitochondria and disease. Mitochondrion 2024; 76:101854. [PMID: 38403096 DOI: 10.1016/j.mito.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Alteration of immune response and synovium microvasculature in Rheumatoid arthritis (RA) progression has been suggested to be associated with mitochondrial functioning. Mitochondria, with maternally inherited DNA, exhibit differential response to the female hormone estrogen. Various epidemiological evidence has also shown the prominence of RA in the female population, depicting the role of estrogen in modulating the pathogenesis of RA. As estrogen regulates the expression of differential proteins and associated signaling pathways of RA, its influence on mitochondrial functioning seems evident. Thus, in this review, the studies related to mitochondria and their relation with estrogen and Rheumatoid arthritis were retrieved. We analyzed the different mitochondrial activities that are altered in RA and the possibility of their estrogenic control. The study expands to in silico analysis, revealing the differential mitochondrial proteins expressed in RA and examining these proteins as potential estrogenic targets. It was found that ALDH2, CASP3, and SOD2 are the major mitochondrial proteins involved in RA progression and are also potent estradiol targets. The analysis establishes the role of mitochondrial proteins in RA progression, which were found to be direct or indirect targets of estrogen, depicting its potential for regulating mitochondrial functions in RA.
Collapse
Affiliation(s)
- Swati Malik
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Alankrita Sharma
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
8
|
Zeng L, Zhang X, Shen Q, He L, Liu X, Zeng X, Wu Q, Ma I, Zheng S, Cheng L, Li L, Yao P. Exposure to Progestin 17-OHPC Induces Gastrointestinal Dysfunction through Claudin-1 Suppression in Female Mice with Increased Anxiety-Like Behaviors. Neuroendocrinology 2024; 114:623-638. [PMID: 38583420 PMCID: PMC11232951 DOI: 10.1159/000538692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Progestin, commonly used in oral contraception and preventing preterm birth, elicits various off-target side effects on brain and gastrointestinal (GI) functions, yet the precise mechanisms remain elusive. This study aims to probe progestin's impact on GI function and anxiety-like behaviors in female mice. METHODS Colon stem cells were utilized to explore the mechanism underlying progestin 17-hydroxyprogesterone caproate (17-OHPC)-mediated suppression of claudin-1 (CLDN1), crucial for epithelial integrity. Chromatin immunoprecipitation and luciferase assays identified potential progestin-response elements on the CLDN1 promoter, with subsequent assessment of oxidative stress and pro-inflammatory cytokine release. Manipulation of vitamin D receptor (VDR) or estrogen receptor β (ERβ) expression elucidated their roles in 17-OHPC-mediated effects. Intestine-specific VDR deficient mice were generated to evaluate 17-OHPC's impact on GI dysfunction and anxiety-like behaviors in female mice. Additionally, gene expression was analyzed in various brain regions, including the amygdala, hypothalamus, and hippocampus. RESULTS Exposure to 17-OHPC suppressed CLDN1 expression via epigenetic modifications and VDR dissociation from the CLDN1 promoter. Furthermore, 17-OHPC intensified oxidative stress and pro-inflammatory cytokine release. VDR knockdown partly mimicked, while overexpression of either VDR or ERβ partly restored 17-OHPC-mediated effects. Intestinal VDR deficiency partly mirrored 17-OHPC-induced GI dysfunction, with minimal impact on 17-OHPC-mediated anxiety-like behaviors. CONCLUSIONS 17-OHPC suppresses CLDN1 expression through VDR, contributing to GI dysfunction in female mice, distinct from 17-OHPC-induced anxiety-like behaviors. This study reveals a new mechanism and potential negative impact of progestin exposure on the GI tract, alongside inducing anxiety-like behaviors in female mice.
Collapse
Affiliation(s)
- Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | | | - Qingjun Shen
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Li He
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Xiangyue Zeng
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Qiaozhu Wu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Irene Ma
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Shuangyun Zheng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Liqin Cheng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Ling Li
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Paul Yao
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
- Hainan Women and Children’s Medical Center, Haikou, PR China
| |
Collapse
|
9
|
Kehmeier MN, Khurana A, Bedell BR, Cullen AE, Cannon AT, Henson GD, Walker AE. Effects of dietary soy content on cerebral artery function and behavior in ovariectomized female mice. Am J Physiol Heart Circ Physiol 2024; 326:H636-H647. [PMID: 38156886 PMCID: PMC11221805 DOI: 10.1152/ajpheart.00618.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
As females age, they transition through menopause, experiencing a decrease in estrogen and an increase in cardiovascular and neurodegenerative disease risk. Most standard rodent chows contain phytoestrogen-rich soybean meal, which can mimic the effects of estrogen. Understanding the impact of this soybean meal on vascular outcomes is crucial to proper experimental design. Thus, this study aimed to compare the effects of standard and soy-free chows on cerebral artery endothelial function and cognitive function in ovariectomized mice. Young female C57Bl/6J mice (n = 43; ∼6 mo) were randomly assigned to three groups: sham, ovariectomy (OVX), or ovariectomy on a diet containing soy (OVX + Soy). In posterior cerebral arteries, the OVX mice had a 27% lower maximal response to insulin compared with the sham mice. The OVX + Soy mice had a 27% greater maximal vasodilation to insulin compared with the OVX mice and there were no differences in vasodilation between the OVX + Soy and sham groups. The group differences in vasodilation were mediated by differences in nitric oxide bioavailability. The OVX + Soy mice also had greater insulin receptor gene expression in cerebral arteries compared with the OVX mice. However, no differences in aortic or cerebral artery stiffness were observed between groups. Interestingly, the OVX + Soy group scored better on nesting behavior compared with both sham and OVX groups. In summary, we found that ovariectomy impairs insulin-mediated vasodilation in cerebral arteries, but a diet containing soy mitigates these effects. These findings highlight the importance of considering dietary soy when performing vascular and behavioral tests in mice, particularly in females.NEW & NOTEWORTHY To properly design experiments, we must consider how variables like diet impact our outcomes, particularly the effects of soy on females. We found that cerebral artery vasodilation in response to insulin was impaired in ovariectomized female mice compared with intact shams. However, ovariectomized mice fed a soy diet had a preserved cerebral artery insulin-mediated vasodilation. These results highlight that the effects of diet on vascular function may explain inconsistencies found between studies.
Collapse
Affiliation(s)
- Mackenzie N Kehmeier
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Bradley R Bedell
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Abigail E Cullen
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Audrey T Cannon
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
10
|
Xiao L, Feng J, Zhang W, Pan J, Wang M, Zhang C, Li L, Su X, Yao P. Autism-like behavior of murine offspring induced by prenatal exposure to progestin is associated with gastrointestinal dysfunction due to claudin-1 suppression. FEBS J 2023. [PMID: 36855792 DOI: 10.1111/febs.16761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Autism spectrum disorders (ASD) are associated with the contribution of many prenatal risk factors; in particular, the sex hormone progestin and vitamin D receptor (VDR) are associated with gastrointestinal (GI) symptoms in ASD development, although the related mechanism remains unclear. We investigated the possible role and mechanism of progestin 17-hydroxyprogesterone caproate (17-OHPC) exposure-induced GI dysfunction and autism-like behaviours (ALB) in mouse offspring. An intestine-specific VDR-deficient mouse model was established for prenatal treatment, while transplantation of haematopoietic stem cells (HSCT) with related gene manipulation was used for postnatal treatment for 17-OHPC exposure-induced GI dysfunction and ALB in mouse offspring. The in vivo mouse experiments found that VDR deficiency mimics prenatal 17-OHPC exposure-mediated GI dysfunction, but has no effect on 17-OHPC-mediated autism-like behaviours (ALB) in mouse offspring. Furthermore, prenatal 17-OHPC exposure induces CLDN1 suppression in intestine epithelial cells, and transplantation of HSCT with CLDN1 expression ameliorates prenatal 17-OHPC exposure-mediated GI dysfunction, but has no effect on 17-OHPC-mediated ALB in offspring. In conclusion, prenatal 17-OHPC exposure triggers GI dysfunction in autism-like mouse offspring via CLDN1 suppression, providing a possible explanation for the involvement of CLDN1 and VDR in prenatal 17-OHPC exposure-mediated GI dysfunction with ASD.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jianqing Feng
- Hainan Women and Children's Medical Center, Haikou, China
| | - Wanhua Zhang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jie Pan
- Hainan Women and Children's Medical Center, Haikou, China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, China
| | - Cheng Zhang
- College of Liberal Arts and Sciences, Long Island University (Post), Brookville, NY, USA
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, China
| | - Xi Su
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Paul Yao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China.,Hainan Women and Children's Medical Center, Haikou, China
| |
Collapse
|
11
|
Kehmeier MN, Bedell BR, Cullen AE, Khurana A, D'Amico HJ, Henson GD, Walker AE. In vivo arterial stiffness, but not isolated artery endothelial function, varies with the mouse estrous cycle. Am J Physiol Heart Circ Physiol 2022; 323:H1057-H1067. [PMID: 36240435 PMCID: PMC9678414 DOI: 10.1152/ajpheart.00369.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
With the increasing appreciation for sex as a biological variable and the inclusion of female mice in research, it is important to understand the influence of the estrous cycle on physiological function. Sex hormones are known to modulate vascular function, but the effects of the mouse estrous cycle phase on arterial stiffness, endothelial function, and arterial estrogen receptor expression remain unknown. In 23 female C57BL/6 mice (6 mo of age), we determined the estrous cycle stage via vaginal cytology and plasma hormone concentrations. Aortic stiffness, assessed by pulse wave velocity, was lower during the estrus phase compared with diestrus. In ex vivo assessment of isolated pressurized mesenteric and posterior cerebral arteries, the responses to acetylcholine, insulin, and sodium nitroprusside, as well as nitric oxide-mediated dilation, were not different between estrous cycle phases. In the aorta, expression of phosphorylated estrogen receptor-α was higher for mice in estrus compared with mice in proestrus. In the cerebral arteries, gene expression for estrogen receptor-β (Esr2) was lowest for mice in estrus compared with diestrus and proestrus. These results demonstrate that the estrus phase is associated with lower in vivo large artery stiffness in mice. In contrast, ex vivo resistance artery endothelial function is not different between estrous cycle phases. Estrogen receptor expression is modulated by the estrus cycle in an artery-dependent manner. These results suggest that the estrous cycle phase should be considered when measuring in vivo arterial stiffness in young female mice.NEW & NOTEWORTHY To design rigorous vascular research studies using young female rodents, the influence of the estrous cycle on vascular function must be known. We found that in vivo aortic stiffness was lower during estrus compared with the diestrus phase in female mice. In contrast, ex vivo mesenteric and cerebral artery endothelial function did not differ between estrous cycle stages. These results suggest that the estrous cycle stage should be accounted for when measuring in vivo arterial stiffness.
Collapse
Affiliation(s)
| | - Bradley R Bedell
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Abigail E Cullen
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Holly J D'Amico
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
12
|
Dosunmu-Ogunbi A, Yuan S, Shiwarski DJ, Tashman JW, Reynolds M, Feinberg A, Novelli EM, Shiva S, Straub AC. Endothelial superoxide dismutase 2 is decreased in sickle cell disease and regulates fibronectin processing. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac005. [PMID: 35274104 PMCID: PMC8900267 DOI: 10.1093/function/zqac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
Sickle cell disease (SCD) is a genetic red blood cell disorder characterized by increased reactive oxygen species (ROS) and a concordant reduction in antioxidant capacity in the endothelium. Superoxide dismutase 2 (SOD2) is a mitochondrial-localized enzyme that catalyzes the dismutation of superoxide to hydrogen peroxide. Decreased peripheral blood expression of SOD2 is correlated with increased hemolysis and cardiomyopathy in SCD. Here, we report for the first time that endothelial cells exhibit reduced SOD2 protein expression in the pulmonary endothelium of SCD patients. To investigate the impact of decreased SOD2 expression in the endothelium, SOD2 was knocked down in human pulmonary microvascular endothelial cells (hPMVECs). We found that SOD2 deficiency in hPMVECs results in endothelial cell dysfunction, including reduced cellular adhesion, diminished migration, integrin protein dysregulation, and disruption of permeability. Furthermore, we uncover that SOD2 mediates changes in endothelial cell function via processing of fibronectin through its inability to facilitate dimerization. These results demonstrate that endothelial cells are deficient in SOD2 expression in SCD patients and suggest a novel pathway for SOD2 in regulating fibronectin processing.
Collapse
Affiliation(s)
- Atinuke Dosunmu-Ogunbi
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA
| | - Joshua W Tashman
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Department of Biomedical Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA
| | - Michael Reynolds
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Adam Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA,Department of Materials Science and Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA
| | - Enrico M Novelli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | | |
Collapse
|
13
|
Xiao L, Wang M, Zhang W, Song Y, Zeng J, Li H, Yu H, Li L, Gao P, Yao P. Maternal diabetes-mediated RORA suppression contributes to gastrointestinal symptoms in autism-like mouse offspring. BMC Neurosci 2022; 23:8. [PMID: 35164690 PMCID: PMC8842926 DOI: 10.1186/s12868-022-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoic acid-related orphan receptor alpha (RORA) has been reported to be suppressed in autistic patients and is associated with autism spectrum disorders (ASD), although the potential role and mechanism of RORA on gastrointestinal (GI) symptoms in ASD patients is still not reported. In this study, we aim to investigate the contribution of RORA to GI symptoms through a maternal diabetes-mediated autism-like mouse model. RESULTS Male offspring of diabetic dams were treated with either superoxide dismutase (SOD) mimetic MnTBAP or RORA agonist SR1078, or were crossbred with intestine epithelial cells (IEC)-specific RORA knockout (RORA-/-) mouse. Gene expression, oxidative stress and inflammation were measured in brain tissues, peripheral blood mononuclear cells (PBMC) and IEC, and GI symptoms were evaluated. Our results showed that SOD mimetic MnTBAP completely, while RORA agonist SR1078 partly, reversed maternal diabetes-mediated oxidative stress and inflammation in the brain, PBMC and IEC, as well as GI symptoms, including intestine permeability and altered gut microbiota compositions. IEC-specific RORA deficiency either mimicked or worsened maternal diabetes-mediated GI symptoms as well as oxidative stress and inflammation in IEC, while there was little effect on maternal diabetes-mediated autism-like behaviors. CONCLUSIONS We conclude that RORA suppression contributes to maternal diabetes-mediated GI symptoms in autism-like mouse offspring, this study provides a potential therapeutical target for maternal diabetes-mediated GI symptoms in offspring through RORA activation.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Wanhua Zhang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Yuan Song
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Jiaying Zeng
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Huilin Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Hong Yu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| | - Pingming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China.
| | - Paul Yao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China.
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| |
Collapse
|
14
|
Yu H, Niu Y, Jia G, Liang Y, Chen B, Sun R, Wang M, Huang S, Zeng J, Lu J, Li L, Guo X, Yao P. Maternal diabetes-mediated RORA suppression in mice contributes to autism-like offspring through inhibition of aromatase. Commun Biol 2022; 5:51. [PMID: 35027651 PMCID: PMC8758718 DOI: 10.1038/s42003-022-03005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening. Hong Yu, Yanbin Niu, Guohua Jia et al. integrate in vitro, in vivo, and human experiments to examine a link between RORA expression on autism-like behavior. Their results suggest that maternal diabetes may contribute to autism-like behavior via RORA suppression.
Collapse
Affiliation(s)
- Hong Yu
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Yanbin Niu
- Teachers College, Columbia University, New York, NY, 10027, USA
| | - Guohua Jia
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Baolin Chen
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Ruoyu Sun
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Saijun Huang
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jiaying Zeng
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jianpin Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China.
| | - Paul Yao
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China. .,Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| |
Collapse
|
15
|
Huang S, Zeng J, Sun R, Yu H, Zhang H, Su X, Yao P. Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring. Front Endocrinol (Lausanne) 2022; 13:840398. [PMID: 35370982 PMCID: PMC8964973 DOI: 10.3389/fendo.2022.840398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have shown that maternal hormone exposure is associated with autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous neuropeptide that plays an important role in social behaviors as well as ASD etiology, although the detailed mechanism remains largely unknown. In this study, we aim to investigate the potential role and contribution of OXT to prenatal progestin exposure-mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated from paraventricular nuclei area of mice showed that transient progestin exposure causes persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen receptor β (ERβ) and retinoic acid-related orphan receptor α (RORA) from the OXT promoter with subsequent persistent OXT suppression. Our in vivo study showed that prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics, while postnatal ERβ expression or postnatal OXT peptide injection partly ameliorates, prenatal MPA exposure-mediated social deficits, which include impaired social interaction and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated oxytocin suppression contributes to social deficits in mouse offspring.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jiaying Zeng
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Ruoyu Sun
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Su
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| | - Paul Yao
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| |
Collapse
|
16
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
17
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23395-23404. [PMID: 33443732 DOI: 10.1007/s11356-021-12350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) has been considered a risk factor for cardiovascular diseases by inducing an oxidative and inflammatory phenotype. Besides, the reduction of 17β-estradiol (E2) levels during menopause is a natural risk for cardiovascular outcomes. During the E2 downfall, there is a high requirement of the 70-kDa heat shock proteins (HSP70), which present essential antioxidant, anti-inflammatory, and anti-senescence roles. We investigated if the ovariectomy, an animal model for menopause, could induce additional effects in cardiac health by impairing oxidative and heat shock response parameters of female rats chronically exposed to residual oil fly ash (ROFA; an inorganic fraction of PM2.5). Thus, ROFA was obtained from São Paulo (Brazil) and solubilized it in saline. Further, female Wistar rats were exposed to 50 μL of saline (control group) or ROFA solution (250 μg) (polluted) by intranasal instillation, 5 days/week, 12 weeks. At the 12th week, animals were subdivided into four groups (n = 6 p/group): control, OVX, polluted, and polluted + OVX. Control and polluted were submitted to false surgery, while OVX and polluted + OVX were ovariectomized. ROFA or saline exposure continued for 12 weeks. Ovariectomy reduced the cardiac catalase activity and iHSP70 expression in female rats exposed to ROFA. Neither plasma eHSP72 levels nor H-index (eHSP72 to cardiac iHSP70 ratio) was affected. In conclusion, ovariectomy reduces the cardiac cytoprotection and antioxidant defense, and enhances the susceptibility to premature cellular senescence in rats exposed to ROFA.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
18
|
Chaudhuri P, Smith AH, Graham LM, Rosenbaum MA. Inhibition of P110α and P110δ catalytic subunits of PI3 kinase reverses impaired arterial healing after injury in hypercholesterolemic male mice. Am J Physiol Cell Physiol 2021; 320:C943-C955. [PMID: 33689479 DOI: 10.1152/ajpcell.00600.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cell (EC) migration is critical for healing arterial injuries, such as those that occur with angioplasty. Impaired re-endothelialization following arterial injury contributes to vessel thrombogenicity, intimal hyperplasia, and restenosis. Oxidized lipid products, including lysophosphatidylcholine (lysoPC), induce canonical transient receptor potential 6 (TRPC6) externalization leading to increased [Ca2+]i, activation of calpains, and alterations of the EC cytoskeletal structure that inhibit migration. The p110α and p110δ catalytic subunit isoforms of phosphatidylinositol 3-kinase (PI3K) regulate lysoPC-induced TRPC6 externalization in vitro. The goal of this study was to assess the in vivo relevance of those in vitro findings to arterial healing following a denuding injury in hypercholesterolemic mice treated with pharmacologic inhibitors of the p110α and p110δ isoforms of PI3K and a general PI3K inhibitor. Pharmacologic inhibition of the p110α or the p110δ isoform of PI3K partially preserves healing in hypercholesterolemic male mice, similar to a general PI3K inhibitor. Interestingly, the p110α, p110δ, and the general PI3K inhibitor do not improve arterial healing after injury in hypercholesterolemic female mice. These results indicate a potential new role for isoform-specific PI3K inhibitors in male patients following arterial injury/intervention. The results also identify significant sex differences in the response to PI3K inhibition in the cardiovascular system, where female sex generally has a cardioprotective effect. This study provides a foundation to investigate the mechanism for the sex differences in response to PI3K inhibition to develop a more generally applicable treatment option.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Andrew H Smith
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio.,Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Linda M Graham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio.,Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Michael A Rosenbaum
- Surgical Service, Louis B. Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
19
|
Xie W, Zhou X, Hu W, Chu Z, Ruan Q, Zhang H, Li M, Zhang H, Huang X, Yao P. Pterostilbene accelerates wound healing by modulating diabetes-induced estrogen receptor β suppression in hematopoietic stem cells. BURNS & TRAUMA 2021; 9:tkaa045. [PMID: 33654697 PMCID: PMC7901710 DOI: 10.1093/burnst/tkaa045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Background Delayed wound healing is one of the major complications of diabetes mellitus and is characterized by prolonged inflammation, delayed re-epithelialization and consistent oxidative stress, although the detailed mechanism remains unknown. In this study, we aimed to investigate the potential role and effect of pterostilbene (PTE) and hematopoietic stem cells (HSCs) on diabetic wound healing. Methods Diabetic rats were used to measure the epigenetic changes in both HSCs and peripheral blood mononuclear cells (PBMCs). A cutaneous burn injury was induced in the rats and PTE-treated diabetic HSCs were transplanted for evaluation of wound healing. In addition, several biomedical parameters, including gene expression, oxidative stress, mitochondrial function and inflammation in macrophages, were also measured. Results Our data showed that PTE had a much stronger effect than resveratrol on accelerating diabetic wound healing, likely because PTE can ameliorate diabetes-induced epigenetic changes to estrogen receptor β promoter in HSCs, while resveratrol cannot. Further investigation showed that bone marrow transplantation of PTE-treated diabetic HSCs restores diabetes-induced suppression of estrogen receptor β and its target genes, including nuclear respiratory factor-1 and superoxide dismutase 2, and protects against diabetes-induced oxidative stress, mitochondrial dysfunction and elevated pro-inflammatory cytokines in both PBMCs and macrophages, subsequently accelerating cutaneous wound healing. Conclusions HSC may play an important role in wound healing through transferring epigenetic modifications to subsequent PBMCs and macrophages by differentiation, while PTE accelerates diabetic wound healing by modulating diabetes-induced epigenetic changes in HSCs. Thus, PTE may be a novel therapeutic strategy for diabetic wound healing.
Collapse
Affiliation(s)
- Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Xueqing Zhou
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Weigang Hu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| |
Collapse
|
20
|
Spent Hen Muscle Protein-Derived RAS Regulating Peptides Show Antioxidant Activity in Vascular Cells. Antioxidants (Basel) 2021; 10:antiox10020290. [PMID: 33671990 PMCID: PMC7919344 DOI: 10.3390/antiox10020290] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Spent hens are egg-laying hens reaching the end of their egg-laying cycles, being a major byproduct of the egg industry. Recent studies have been focusing on finding new value-added uses for spent hens. We have previously identified four bioactive peptides from spent hen muscle proteins, including three angiotensin-converting enzyme (ACE) inhibitory (ACEi) peptides (VRP, LKY, and VRY), and one ACE2 upregulating (ACE2u) peptide (VVHPKESF (V-F)). In the current study, we further assessed their antioxidant and cytoprotective activities in two vascular cell lines-vascular smooth muscle A7r5 cells (VSMCs) and endothelial EA.hy926 cells (ECs)-upon stimulation by tumor necrosis factor alpha (TNFα) and angiotensin (Ang) II, respectively. The results from our study revealed that all four peptides attenuated oxidative stress in both cells. None of the investigated peptides altered the expression of TNFα receptors in ECs; however, VRY and V-F downregulated Ang II type 1 receptor (AT1R), while V-F upregulated the Mas receptor (MasR) in VSMCs. Further, we found that the antioxidant effects of VRP, LKY, and VRY were likely through acting as direct radical scavengers, while that of V-F was at least partially ascribed to increased endogenous antioxidant enzymes (GPx4 and SOD2) in both cells. Besides, as an ACE2u peptide, V-F exerted antioxidant effect in a MasR-dependent manner, indicating a possible involvement of the upregulated ACE2-MasR axis underlying its antioxidant action. The antioxidant activities of VRP, LKY, VRY, and V-F in vascular cells indicated their multifunctional properties, in addition to their ACEi or ACE2u activity, which supports their potential use as functional food ingredients against hypertension.
Collapse
|
21
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
23
|
Gavish L, Gilon D, Beeri R, Zuckerman A, Nachman D, Gertz SD. Photobiomodulation and estrogen stabilize mitochondrial membrane potential in angiotensin-II challenged porcine aortic smooth muscle cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202000329. [PMID: 32888351 DOI: 10.1002/jbio.202000329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Rupture of Abdominal aortic aneurysm (AAA) is among the 15 leading causes of death after age 65. Using high frequency ultrasound, we showed that photobiomodulation (PBM) prevents formation and progression of AAA in the angiotensin-II (Ang-II)-infused, apolipoprotein-e-deficient mouse model. In the current study we report that while challenge of porcine aortic Smooth Muscle Cells (SMCs) with Ang-II (1 μM) resulted in a marked decay in mitochondrial membrane potential (MitMP) vs non-challenged cells, treatment with PBM (continuous diode laser, 780 nm, 6.7 mW/cm2 , 5 minutes, 2 J/cm2 ) or pre-incubation with estrogen (50 nM, 1 hour) significantly attenuated this deterioration in MitMP. We also report that PBM and estrogen markedly affected porcine aortic SMC contraction and modified mitochondrial dispersion reflecting important influence on SMC function. These studies provide strong evidence of the important underlying role of mitochondria in the preventive effect of PBM on formation and progression of AAA and its reduced incidence and delayed onset in women.
Collapse
Affiliation(s)
- Lilach Gavish
- Institute for Research in Military Medicine (IRMM) of The Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
- The Saul and Joyce Brandman Cardiovascular Research Hub of the Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Gilon
- Institute for Research in Military Medicine (IRMM) of The Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
- The Saul and Joyce Brandman Cardiovascular Research Hub of the Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiology, Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Beeri
- The Saul and Joyce Brandman Cardiovascular Research Hub of the Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiology, Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet Zuckerman
- The Saul and Joyce Brandman Cardiovascular Research Hub of the Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dean Nachman
- Institute for Research in Military Medicine (IRMM) of The Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
- The Saul and Joyce Brandman Cardiovascular Research Hub of the Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S David Gertz
- Institute for Research in Military Medicine (IRMM) of The Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
- The Saul and Joyce Brandman Cardiovascular Research Hub of the Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Jusic A, Salgado-Somoza A, Paes AB, Stefanizzi FM, Martínez-Alarcón N, Pinet F, Martelli F, Devaux Y, Robinson EL, Novella S. Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. Int J Mol Sci 2020; 21:E4890. [PMID: 32664454 PMCID: PMC7402336 DOI: 10.3390/ijms21144890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Ana B. Paes
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Núria Martínez-Alarcón
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Florence Pinet
- INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, U1167 F-59000 Lille, France;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, and INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain
| |
Collapse
|
25
|
Barcena de Arellano ML, Pozdniakova S, Kühl AA, Baczko I, Ladilov Y, Regitz-Zagrosek V. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging (Albany NY) 2020; 11:1918-1933. [PMID: 30964749 PMCID: PMC6503880 DOI: 10.18632/aging.101881] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Aging is associated with increased inflammation and alterations in mitochondrial biogenesis, which promote the development of cardiovascular diseases. Emerging evidence suggests a role for sirtuins, which are NAD+-dependent deacetylases, in the regulation of cardiovascular inflammation and mitochondrial biogenesis. Sirtuins are regulated by sex or sex hormones and are decreased during aging in animal models. We hypothesized that age-related alterations in cardiac Sirt1 and Sirt3 occur in the human heart and examined whether these changes are associated with a decrease in anti-oxidative defense, inflammatory state and mitochondrial biogenesis. Using human ventricular tissue from young (17-40 years old) and old (50-68 years old) individuals, we found significantly lower Sirt1 and Sirt3 expression in old female hearts than in young female hearts. Additionally, lower expression of the anti-oxidative protein SOD2 was observed in old female hearts than in young female hearts. Aging in female hearts was associated with a significant increase in the number of cardiac macrophages and pro-inflammatory cytokines, as well as NF-kB upregulation, indicating a pro-inflammatory shift. Aging-associated pathways in the male hearts were different, and no changes in Sirt1 and Sirt3 or cardiovascular inflammation were observed. In conclusion, the present study revealed a female sex-specific downregulation of Sirt1 and Sirt3 in aged hearts, as well as a decline in mitochondrial anti-oxidative defense and a pro-inflammatory shift in old female hearts but not in male hearts.
Collapse
Affiliation(s)
- Maria Luisa Barcena de Arellano
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Sofya Pozdniakova
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, iPATH.Berlin-Immunopathology for Experimental Models, Berlin, Germany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Yury Ladilov
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| |
Collapse
|
26
|
Xiang D, Lu J, Wei C, Cai X, Wang Y, Liang Y, Xu M, Wang Z, Liu M, Wang M, Liang X, Li L, Yao P. Berberine Ameliorates Prenatal Dihydrotestosterone Exposure-Induced Autism-Like Behavior by Suppression of Androgen Receptor. Front Cell Neurosci 2020; 14:87. [PMID: 32327976 PMCID: PMC7161090 DOI: 10.3389/fncel.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 01/03/2023] Open
Abstract
Many epidemiology studies have shown that maternal polycystic ovary syndrome (PCOS) results in a greater risk of autism spectrum disorders (ASD) development, although the detailed mechanism remains unclear. In this study, we aimed to investigate the potential mechanism and provide a possible treatment for PCOS-mediated ASD through three experiments: Experiment 1: real-time PCR and western blots were employed to measure gene expression in human neurons, and the luciferase reporter assay and chromatin immunoprecipitation (ChIP) was used to map the responsive elements on related gene promoters. Experiment 2: pregnant dams were prenatally exposed to dihydrotestosterone (DHT), androgen receptor (AR) knockdown (shAR) in the amygdala, or berberine (BBR), and the subsequent male offspring were used for autism-like behavior (ALB) assay followed by biomedical analysis, including gene expression, oxidative stress, and mitochondrial function. Experiment 3: the male offspring from prenatal DHT exposed dams were postnatally treated by either shAR or BBR, and the offspring were used for ALB assay followed by biomedical analysis. Our findings showed that DHT treatment suppresses the expression of estrogen receptor β (ERβ) and superoxide dismutase 2 (SOD2) through AR-mediated hypermethylation on the ERβ promoter, and BBR treatment suppresses AR expression through hypermethylation on the AR promoter. Prenatal DHT treatment induces ERβ suppression, oxidative stress and mitochondria dysfunction in the amygdala with subsequent ALB behavior in male offspring, and AR knockdown partly diminishes this effect. Furthermore, both prenatal and postnatal treatment of BBR partly restores prenatal DHT exposure-mediated ALB. In conclusion, DHT suppresses ERβ expression through the AR signaling pathway by hypermethylation on the ERβ promoter, and BBR restores this effect through AR suppression. Prenatal DHT exposure induces ALB in offspring through AR-mediated ERβ suppression, and both prenatal and postnatal treatment of BBR ameliorates this effect. We conclude that BBR ameliorates prenatal DHT exposure-induced ALB through AR suppression, this study may help elucidate the potential mechanism and identify a potential treatment through using BBR for PCOS-mediated ASD.
Collapse
Affiliation(s)
- Dongfang Xiang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Chongxia Wei
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xiaofan Cai
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Yongxia Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Mingtao Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Min Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xuefang Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Li
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China.,Hainan Maternal and Child Health Hospital, Haikou, China
| |
Collapse
|
27
|
Xiang D, Zhao M, Cai X, Wang Y, Zhang L, Yao H, Liu M, Yang H, Xu M, Li H, Peng H, Wang M, Liang X, Li L, Yao P. Betulinic Acid Inhibits Endometriosis Through Suppression of Estrogen Receptor β Signaling Pathway. Front Endocrinol (Lausanne) 2020; 11:604648. [PMID: 33362719 PMCID: PMC7759155 DOI: 10.3389/fendo.2020.604648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is an inflammatory gynecological disorder characterized by endometrial tissue growth located outside of the uterine cavity in addition to chronic pelvic pain and infertility. In this study, we aim to develop a potential therapeutic treatment based on the pathogenesis and mechanism of Endometriosis. Our preliminary data showed that the expression of estrogen receptor β (ERβ) was significantly increased, while ERα was significantly decreased, in endometriotic cells compared to normal endometrial cells. Further investigation showed that betulinic acid (BA) treatment suppressed ERβ expression through epigenetic modification on the ERβ promoter, while had no effect on ERα expression. In addition, BA treatment suppresses ERβ target genes, including superoxide dismutase 2 (SOD2), nuclear respiratory factor-1 (NRF1), cyclooxygenase 2 (COX2), and matrix metalloproteinase-1 (MMP1), subsequently increasing oxidative stress, triggering mitochondrial dysfunction, decreasing elevated proinflammatory cytokines, and eventually suppressing endometriotic cell proliferation, mimicking the effect of ERβ knockdown. On the other hand, gain of ERβ by lentivirus infection in normal endometrial cells resulted in increased cell proliferation and proinflammatory cytokine release, while BA treatment diminished this effect through ERβ suppression with subsequent oxidative stress and apoptosis. Our results indicate that ERβ may be a major driving force for the development of endometriosis, while BA inhibits Endometriosis through specific suppression of the ERβ signaling pathway. This study provides a novel therapeutic strategy for endometriosis treatment through BA-mediated ERβ suppression.
Collapse
Affiliation(s)
- Dongfang Xiang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhao
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiaofan Cai
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Yongxia Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Helen Yao
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Min Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Yang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Mingtao Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huilin Li
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Huijuan Peng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xuefang Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Paul Yao, ; Ling Li, ; Xuefang Liang,
| | - Ling Li
- Hainan Maternal and Child Health Hospital, Haikou, China
- *Correspondence: Paul Yao, ; Ling Li, ; Xuefang Liang,
| | - Paul Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Hainan Maternal and Child Health Hospital, Haikou, China
- *Correspondence: Paul Yao, ; Ling Li, ; Xuefang Liang,
| |
Collapse
|
28
|
Filiponi M, Gougoura SG, Befani C, Bargiota Α, Liakos P, Koukoulis GN. 17-β estradiol attenuates the pro-oxidant activity of corticotropin-releasing hormone in macroendothelial cells. Cell Biol Int 2019; 43:1407-1415. [PMID: 31141240 DOI: 10.1002/cbin.11188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/25/2019] [Indexed: 01/24/2023]
Abstract
Corticotropin-releasing hormone, which is the predominant regulator of neuroendocrine responses to stress, attenuates inflammation through stimulation of glucocorticoid release. Enhanced corticotropin-releasing hormone expression has been detected in inflammatory cells of the vascular endothelium, where it acts as a local regulator of endothelial redox homeostasis. Estrogens have beneficial effects on endothelial integrity and function, though the mechanism underlying their antioxidative effect remains as yet largely unknown. We therefore investigated the effect of 17β-estradiol on pro-oxidant action of corticotropin-releasing hormone in vitro in macroendothelial cells, and, more specifically, the role of 17β-estradiol on corticotropin-releasing hormone-induced activities/release of the antioxidant enzymes namely, endothelial nitric oxide synthase, superoxide dismutase, catalase, and glutathione. We observed that 17β-estradiol abolished the stimulatory effect of corticotropin-releasing hormone on intracellular reactive oxygen species levels and counteracted its inhibitory effect on endothelial nitric oxide synthase activity and nitric oxide release. In addition, 17β-estradiol significantly induced superoxide dismutase and catalase activity, an effect that was not significantly influenced by corticotropin-releasing hormone. Finally, 17β-estradiol significantly increased glutathione levels and the glutathione/glutathione + glutathione disulfide ratio, an action that was partially blocked by corticotropin-releasing hormone. Our results reveal that 17β-estradiol counterbalances corticotropin-releasing hormone-mediated pro-inflammatory action and thereby maintains the physiological threshold of the endothelial cell redox environment. These observations may be of importance, considering the protective role of estrogen in the development of atherosclerosis.
Collapse
Affiliation(s)
- Maria Filiponi
- Department of Endocrinology and Metabolic Diseases, Research Laboratory, Larissa University Hospital, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Sofia G Gougoura
- Department of Endocrinology and Metabolic Diseases, Research Laboratory, Larissa University Hospital, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Αlexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Research Laboratory, Larissa University Hospital, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George N Koukoulis
- Department of Endocrinology and Metabolic Diseases, Research Laboratory, Larissa University Hospital, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
29
|
Maternal diabetes induces autism-like behavior by hyperglycemia-mediated persistent oxidative stress and suppression of superoxide dismutase 2. Proc Natl Acad Sci U S A 2019; 116:23743-23752. [PMID: 31685635 PMCID: PMC6876200 DOI: 10.1073/pnas.1912625116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia induces persistent oxidative stress and superoxide dismutase 2 (SOD2) suppression in neurons. SOD2 suppression is caused by oxidative stress-mediated histone methylation and subsequent dissociation of Egr1 on the SOD2 promoter. Maternal diabetes induces autism-like behavior in offspring with SOD2 suppression in the amygdala in rats, while SOD2 overexpression in the amygdala ameliorates autism-like behavior. Postnatal treatment of the blood–brain barrier-permeable antioxidant resveratrol partly restores this effect. This study describes a potential mechanism for maternal diabetes-induced autism-like behavior in offspring. Epidemiological studies show that maternal diabetes is associated with an increased risk of autism spectrum disorders (ASDs), although the detailed mechanisms remain unclear. The present study aims to investigate the potential effect of maternal diabetes on autism-like behavior in offspring. The results of in vitro study showed that transient hyperglycemia induces persistent reactive oxygen species (ROS) generation with suppressed superoxide dismutase 2 (SOD2) expression. Additionally, we found that SOD2 suppression is due to oxidative stress-mediated histone methylation and the subsequent dissociation of early growth response 1 (Egr1) on the SOD2 promoter. Furthermore, in vivo rat experiments showed that maternal diabetes induces SOD2 suppression in the amygdala, resulting in autism-like behavior in offspring. SOD2 overexpression restores, while SOD2 knockdown mimics, this effect, indicating that oxidative stress and SOD2 expression play important roles in maternal diabetes-induced autism-like behavior in offspring, while prenatal and postnatal treatment using antioxidants permeable to the blood–brain barrier partly ameliorated this effect. We conclude that maternal diabetes induces autism-like behavior through hyperglycemia-mediated persistent oxidative stress and SOD2 suppression. Here we report a potential mechanism for maternal diabetes-induced ASD.
Collapse
|
30
|
GLIEMANN LASSE, RYTTER NICOLAI, TAMARIZ-ELLEMANN ANDREA, EGELUND JON, BRANDT NINA, CARTER HOWARDH, HELLSTEN YLVA. Lifelong Physical Activity Determines Vascular Function in Late Postmenopausal Women. Med Sci Sports Exerc 2019; 52:627-636. [DOI: 10.1249/mss.0000000000002180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Sheinberg DL, McCarthy DJ, Elwardany O, Bryant JP, Luther E, Chen SH, Thompson JW, Starke RM. Endothelial dysfunction in cerebral aneurysms. Neurosurg Focus 2019; 47:E3. [PMID: 31389675 DOI: 10.3171/2019.4.focus19221] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endothelial cell (EC) dysfunction is known to contribute to cerebral aneurysm (CA) pathogenesis. Evidence shows that damage or injury to the EC layer is the first event in CA formation. The mechanisms behind EC dysfunction in CA disease are interrelated and include hemodynamic stress, hazardous nitric oxide synthase (NOS) activity, oxidative stress, estrogen imbalance, and endothelial cell-to-cell junction compromise. Abnormal variations in hemodynamic stress incite pathological EC transformation and inflammatory zone formation, ultimately leading to destruction of the vascular wall and aneurysm dilation. Hemodynamic stress activates key molecular pathways that result in the upregulation of chemotactic cytokines and adhesion molecules, leading to inflammatory cell recruitment and infiltration. Concurrently, oxidative stress damages EC-to-EC junction proteins, resulting in interendothelial gap formation. This further promotes leukocyte traffic into the vessel wall and the release of matrix metalloproteinases, which propagates vascular remodeling and breakdown. Abnormal hemodynamic stress and inflammation also trigger adverse changes in NOS activity, altering proper EC mediation of vascular tone and the local inflammatory environment. Additionally, the vasoprotective hormone estrogen modulates gene expression that often suppresses these harmful processes. Crosstalk between these sophisticated pathways contributes to CA initiation, progression, and rupture. This review aims to outline the complex mechanisms of EC dysfunction in CA pathogenesis.
Collapse
|
32
|
Gliemann L, Hellsten Y. The exercise timing hypothesis: can exercise training compensate for the reduction in blood vessel function after menopause if timed right? J Physiol 2019; 597:4915-4925. [DOI: 10.1113/jp277056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- L. Gliemann
- Department of Nutrition, Exercise and SportsUniversity of Copenhagen Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and SportsUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
33
|
Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension. Antioxidants (Basel) 2019; 8:antiox8050135. [PMID: 31100969 PMCID: PMC6562572 DOI: 10.3390/antiox8050135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is one of the diseases with a well-established gender dimorphism. The prevalence of PAH is increased in females with a ratio of 4:1, while poor survival prognosis is associated with the male gender. Nevertheless, the specific contribution of gender in disease development and progression is unclear due to the complex nature of the PAH. Oxidative and nitrosative stresses are important contributors in PAH pathogenesis; however, the role of gender in redox homeostasis has been understudied. This review is aimed to overview the possible sex-specific mechanisms responsible for the regulation of the balance between oxidants and antioxidants in relation to PAH pathobiology.
Collapse
|
34
|
Liao TL, Lee YC, Tzeng CR, Wang YP, Chang HY, Lin YF, Kao SH. Mitochondrial translocation of estrogen receptor β affords resistance to oxidative insult-induced apoptosis and contributes to the pathogenesis of endometriosis. Free Radic Biol Med 2019; 134:359-373. [PMID: 30684560 DOI: 10.1016/j.freeradbiomed.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 11/18/2022]
Abstract
Endometriosis is the major cause of female infertility and has been linked to the action of estrogen and estrogen receptor (ER). A new pool of ERβ locates within mitochondria, which regulates the endometriotic cell withstanding external insults, but its effect remains controversial. We hypothesize that mitochondrial estrogen receptor ERβ (mtERβ) is a pivotal regulator in estradiol-mediated cell protection leading to the endometriotic progression. We observed elevated levels of ERβ in the endometriotic tissues. A dramatic increase of ERβ in mitochondria (mtERβ) was found in the ectopic endometriotic tissues, or the estradiol-primed primary endometriotic cells. We analyzed the mtERβ-specific overexpressing clone (mtsERβ), which exhibited higher mitochondrial bioenergetics and lower reactive oxygen species (ROS) generation. The mtsERβ-overexpressed endometriotic cells displayed an enhanced migration phenotype, whereas significantly attenuated migration by mitochondrial respiratory inhibitor (oligomycin) or ERβ deficiency by shERβ. Further investigations revealed that ERβ directly modulated mitochondrial DNA (mtDNA) gene expression by interacting with mtDNA D-loop and polymerase γ. The mtsERβ afforded a resistance to oxidative insult-induced apoptosis through the induction of the ROS scavenger enzyme Mn-superoxide dismutase and anti-apoptotic protein Bcl-2. Collectively, the demonstration of mtERβ responses in restoration of mitochondrial bioenergetics and inhibition of mitochondria-dependent apoptotic events provides insight into the pathogenesis of endometriosis, suggesting ERβ-selective estrogen receptor modulator may serve as novel therapeutics of endometriosis in the future.
Collapse
Affiliation(s)
- Tien-Ling Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Pei Wang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
35
|
Lin Q, Wang DG, Zhang ZQ, Liu DP. Applications of Virus Vector-Mediated Gene Therapy in China. Hum Gene Ther 2019; 29:98-109. [PMID: 29284296 DOI: 10.1089/hum.2017.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the increased safety and efficiency of virus vectors, virus vector-mediated gene therapy is now widely used for various diseases, including monogenic diseases, complex disorders, and infectious diseases. Recent gene therapy trials have shown significant therapeutic benefits, and Chinese researchers have contributed significantly to this progress. This review highlights disease applications and strategies for virus vector-mediated gene therapy in preclinical studies and clinical trials in China.
Collapse
Affiliation(s)
- Qiong Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng-Gao Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Zhou X, Li M, Xiao M, Ruan Q, Chu Z, Ye Z, Zhong L, Zhang H, Huang X, Xie W, Li L, Yao P. ERβ Accelerates Diabetic Wound Healing by Ameliorating Hyperglycemia-Induced Persistent Oxidative Stress. Front Endocrinol (Lausanne) 2019; 10:499. [PMID: 31396159 PMCID: PMC6667639 DOI: 10.3389/fendo.2019.00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Delayed wound healing in diabetic patients is a serious diabetic complication, resulting in major health problems as well as high mortality and disability. The detailed mechanism still needs to be fully understood. In this study, we aim to investigate potential mechanisms and explore an efficient strategy for clinical treatment of diabetic wound healing. Human umbilical endothelial cells were exposed to hyperglycemia for 4 days, then switched to normoglycemia for an additional 4 days. The cells were harvested for the analysis of reactive oxygen species (ROS) generation, gene expression and VEGF signaling pathway. Furthermore, the diabetic wound model was established in rats for the evaluation of wound healing rates under the treatment of either ERβ agonist/antagonist or SOD mimetic MnTBAP. Our results show that transient hyperglycemia exposure results in persistent ROS overgeneration after the switch to normoglycemia, along with suppressed expression of ERβ, SOD2, and the VEGF signaling pathway. Either ERβ expression or activation diminishes ROS generation. In vivo experiments with diabetic rats show that ERβ activation or SOD mimetic MnTBAP diminishes ROS generation in tissues and accelerates diabetic wound healing. Transient hyperglycemia exposure induces ROS generation and suppresses ERβ expression, subsequently resulting in SOD2 suppression with additional elevated ROS generation. This forms a positive-feed forward loop for ROS generation with persistent oxidative stress. ERβ expression or activation breaks this loop and ameliorates this effect, thereby accelerating diabetic wound healing. We conclude that ERβ accelerates diabetic wound healing by ameliorating hyperglycemia-induced persistent oxidative stress. This provides a new strategy for clinical treatment of diabetic wound healing based on ERβ activation.
Collapse
Affiliation(s)
- Xueqing Zhou
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Meifang Xiao
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Ziqing Ye
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Liyan Zhong
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
- *Correspondence: Weiguo Xie
| | - Ling Li
- Hainan Maternal and Child Health Hospital, Haikou, China
- Ling Li
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
- Hainan Maternal and Child Health Hospital, Haikou, China
- Paul Yao
| |
Collapse
|
37
|
Role of miRNA in the Regulatory Mechanisms of Estrogens in Cardiovascular Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6082387. [PMID: 30671171 PMCID: PMC6317101 DOI: 10.1155/2018/6082387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are a worldwide health problem and are the leading cause of mortality in developed countries. Together with experimental data, the lower incidence of cardiovascular diseases in women than in men of reproductive age points to the influence of sex hormones at the cardiovascular level and suggests that estrogens play a protective role against cardiovascular disease and that this role is also modified by ageing. Estrogens affect cardiovascular function via their specific estrogen receptors to trigger gene expression changes at the transcriptional level. In addition, emerging studies have proposed a role for microRNAs in the vascular effects mediated by estrogens. miRNAs regulate gene expression by repressing translational processes and have been estimated to be involved in the regulation of approximately 30% of all protein-coding genes in mammals. In this review, we highlight the current knowledge of the role of estrogen-sensitive miRNAs, and their influence in regulating vascular ageing.
Collapse
|
38
|
Xie W, Ge X, Li L, Yao A, Wang X, Li M, Gong X, Chu Z, Lu Z, Huang X, Jiao Y, Wang Y, Xiao M, Chen H, Xiang W, Yao P. Resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Mol Autism 2018; 9:43. [PMID: 30123446 PMCID: PMC6090838 DOI: 10.1186/s13229-018-0225-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Recent literatures indicate that maternal hormone exposure is a risk factor for autism spectrum disorder (ASD). We hypothesize that prenatal progestin exposure may counteract the neuroprotective effect of estrogen and contribute to ASD development, and we aim to develop a method to ameliorate prenatal progestin exposure-induced autism-like behavior. Methods Experiment 1: Prenatal progestin exposure-induced offspring are treated with resveratrol (RSV) through either prenatal or postnatal exposure and then used for autism-like behavior testing and other biomedical analyses. Experiment 2: Prenatal norethindrone (NET) exposure-induced offspring are treated with ERβ knockdown lentivirus together with RSV for further testing. Experiment 3: Pregnant dams are treated with prenatal NET exposure together with RSV, and the offspring are used for further testing. Results Eight kinds of clinically relevant progestins were used for prenatal exposure in pregnant dams, and the offspring showed decreased ERβ expression in the amygdala with autism-like behavior. Oral administration of either postnatal or prenatal RSV treatment significantly reversed this effect with ERβ activation and ameliorated autism-like behavior. Further investigation showed that RSV activates ERβ and its target genes by demethylation of DNA and histone on the ERβ promoter, and then minimizes progestin-induced oxidative stress as well as the dysfunction of mitochondria and lipid metabolism in the brain, subsequently ameliorating autism-like behavior. Conclusions We conclude that resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Our data suggest that prenatal progestin exposure is a strong risk factor for autism-like behavior. Many potential clinical progestin applications, including oral contraceptive pills, preterm birth drugs, and progestin-contaminated drinking water or seafood, may be risk factors for ASD. In addition, RSV may be a good candidate for clinically rescuing or preventing ASD symptoms in humans, while high doses of resveratrol used in the animals may be a potential limitation for human application.
Collapse
Affiliation(s)
- Weiguo Xie
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Xiaohu Ge
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Ling Li
- 3Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, 570206 People's Republic of China
| | - Athena Yao
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Xiaoyan Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Min Li
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Xiang Gong
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Zhigang Chu
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Zhe Lu
- 3Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, 570206 People's Republic of China
| | - Xiaodong Huang
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Yun Jiao
- 3Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, 570206 People's Republic of China
| | - Yifei Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Meifang Xiao
- 3Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, 570206 People's Republic of China
| | - Haijia Chen
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Wei Xiang
- 3Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, 570206 People's Republic of China
| | - Paul Yao
- 1Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China.,3Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, 570206 People's Republic of China
| |
Collapse
|
39
|
Pérez-Cremades D, Mompeón A, Vidal-Gómez X, Hermenegildo C, Novella S. miRNA as a New Regulatory Mechanism of Estrogen Vascular Action. Int J Mol Sci 2018; 19:ijms19020473. [PMID: 29415433 PMCID: PMC5855695 DOI: 10.3390/ijms19020473] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
The beneficial effects of estrogen on the cardiovascular system have been reported extensively. In fact, the incidence of cardiovascular diseases in women is lower than in age-matched men during their fertile stage of life, a benefit that disappears after menopause. These sex-related differences point to sexual hormones, mainly estrogen, as possible cardiovascular protective factors. The regulation of vascular function by estrogen is mainly related to the maintenance of normal endothelial function and is mediated by both direct and indirect gene transcription through the activity of specific estrogen receptors. Some of these mechanisms are known, but many remain to be elucidated. In recent years, microRNAs have been established as non-coding RNAs that regulate the expression of a high percentage of protein-coding genes in mammals and are related to the correct function of human physiology. Moreover, within the cardiovascular system, miRNAs have been related to physiological and pathological conditions. In this review, we address what is known about the role of estrogen-regulated miRNAs and their emerging involvement in vascular biology.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Ana Mompeón
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Xavier Vidal-Gómez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| |
Collapse
|
40
|
Chen W, Sun Q, Ju J, Chen W, Zhao X, Zhang Y, Yang Y. Astragalus polysaccharides inhibit oxidation in high glucose-challenged or SOD2-silenced H9C2 cells. Diabetes Metab Syndr Obes 2018; 11:673-681. [PMID: 30425545 PMCID: PMC6204861 DOI: 10.2147/dmso.s177269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Oxidative stress plays an important role in the development of diabetic cardio-myopathy (DCM). Previously, we reported that Astragalus polysaccharides (APS) improved DCM by inhibition of cardiac oxidative stress. In this study, we evaluated the beneficial effect of APS on high glucose-induced oxidative stress in cardiomyocytes in vitro. MATERIALS AND METHODS H9C2 cells were cultured in the presence of high concentration of glucose or transfected with siRNASOD2, followed by APS treatment. The cellular mitochondrial ultrastructure was observed using a transmission electron microscope. Cell apoptosis was detected using hairpin oligonucleotide probes and quantified by flow cytometry analysis. Superoxide production was determined by immunohistochemistry using the fluorescent dye dihydroethidium (DHE). Nitrotyrosine and 8-OH-dG antibodies were employed to detect oxidative damage to cytoplasmic proteins and oxidative stress in the nuclei, respectively. Superoxide dismutase (SOD) activity was measured utilizing the SOD Assay Kit, and SOD protein levels were analyzed by Western blotting. RESULTS APS treatment protected cellular mitochondrial ultrastructure, reduced cell apoptosis (hairpin-1), inhibited cellular superoxide production (DHE), and reduced oxidative damage to cytoplasmic proteins (nitrotyrosine) and oxidative stress in the nuclei (8-OH-dG) in high glucose-induced and/or SOD2-silenced H9C2 cells, together with induction of SOD2 enzyme activity and increase of protein levels. CONCLUSION Our findings indicated the beneficial effect of APS on high glucose-challenged H9C2 cells, which was associated with inhibition of oxidative stress in vitro.
Collapse
Affiliation(s)
- Wei Chen
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China,
| | - Qilin Sun
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China,
| | - Jing Ju
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China,
| | - Wenjie Chen
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China,
| | - Xuelan Zhao
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China,
| | - Yu Zhang
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China,
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China,
| |
Collapse
|
41
|
Li L, Li M, Lu J, Ge X, Xie W, Wang Z, Li X, Li C, Wang X, Han Y, Wang Y, Zhong L, Xiang W, Huang X, Chen H, Yao P. Prenatal Progestin Exposure Is Associated With Autism Spectrum Disorders. Front Psychiatry 2018; 9:611. [PMID: 30510526 PMCID: PMC6252360 DOI: 10.3389/fpsyt.2018.00611] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
We have previously reported that prenatal progestin exposure induces autism-like behavior in offspring through ERβ (estrogen receptor β) suppression in the brain, indicating that progestin may induce autism spectrum disorders (ASD). In this study, we aim to investigate whether prenatal progestin exposure is associated with ASD. A population-based case-control epidemiology study was conducted in Hainan province of China. The ASD children were first screened with the Autism Behavior Checklist (ABC) questionnaire, and then diagnosed by clinical professionals using the ASD diagnosis criteria found in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Eventually, 235 cases were identified as ASD from 37863 children aged 0-6 years old, and 682 matched control subjects with typically developing children were selected for the analysis of potential impact factors on ASD prevalence using multivariate logistic regression. Our data show that the ASD prevalence rate in Hainan was 0.62% with a boy:girl ratio of 5.4:1. Interestingly, we found that the following factors were strongly associated with ASD prevalence: use of progestin to prevent threatened abortion, use of progestin contraceptives at the time of conception, and prenatal consumption of progestin-contaminated seafood during the first trimester of pregnancy. All the above factors were directly or indirectly involved with prenatal progestin exposure. Additionally, we conducted in vivo experiments in rats to further confirm our findings. Either endogenous (progesterone) or synthetic progestin (norethindrone)-treated seafood zebrafish were used to feed pregnant dams, and the subsequent offspring showed autism-like behavior, which further demonstrated that prenatal progestin exposure may induce ASD. We conclude that prenatal progestin exposure may be associated with ASD development.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Min Li
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Xiaohu Ge
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Weiguo Xie
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Xiaoling Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Chao Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xiaoyan Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Yan Han
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Yifei Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Liyan Zhong
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Wei Xiang
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xiaodong Huang
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Haijia Chen
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Paul Yao
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China.,Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China.,Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
42
|
MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure. Sci Rep 2017; 7:14747. [PMID: 29116107 PMCID: PMC5676691 DOI: 10.1038/s41598-017-15011-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023] Open
Abstract
Although several risk factors such as infarct size have been identified, the progression of heart failure (HF) remains difficult to predict in clinical practice. Using an experimental rat model of post-myocardial infarction (MI), we previously identified 45 proteins differentially modulated during HF by proteomic analysis. This study sought to identify microRNAs (miRNAs) able to regulate these proteins and to test their relevance as biomarkers for HF. In silico bioinformatical analysis selected 13 miRNAs related to the 45 proteins previously identified. These miRNAs were analyzed in the rat and in cohorts of patients phenotyped for left ventricular remodeling (LVR). We identified that 3 miRNAs, miR-21-5p, miR-23a-3p and miR-222-3p, and their target Mn superoxide dismutase (SOD2) were significantly increased in LV and plasma of HF-rats. We found by luciferase activity a direct interaction of miR-222-3p with 3'UTR of SOD2. Transfection of human cardiomyocytes with miR-222-3p mimic or inhibitor induced respectively a decrease and an increase of SOD2 expression. Circulating levels of the 3 miRNAs and their target SOD2 were associated with high LVR post-MI in REVE-2 patients. We demonstrated for the first time the potential of microRNAs regulating SOD2 as new circulating biomarkers of HF.
Collapse
|
43
|
Schüller ÁK, Mena Canata DA, Hackenhaar FS, Engers VK, Heemann FM, Putti JS, Salomon TB, Benfato MS. Effects of lipoic acid and n-3 long-chain polyunsaturated fatty acid on the liver ovariectomized rat model of menopause. Pharmacol Rep 2017; 70:263-269. [PMID: 29475009 DOI: 10.1016/j.pharep.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bilateral ovariectomy is an experimental model used to analyse the effects of menopause and develop strategies to mitigate the deleterious effects of this condition. Supplementation of the diet with antioxidants has been used to reduce potential oxidative stress caused by menopause. The purpose of the study was to analyse the effects of α-lipoic acid (LA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), dietary supplementation on oxidative stress in the livers of ovariectomized rats. METHODS In this study, we evaluated the effect of dietary supplementation with LA, DHA and EPA for a period of 16 weeks on oestrogen levels and oxidative stress biomarkers in the livers of ovariectomized 25 three-month-old rats. RESULTS Serum oestrogen levels were lower after ovariectomy but were not altered by dietary treatments. LA was capable of acting in the liver, recovering the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and reducing protein oxidative damage. Moreover, LA supplementation reduced nitrite and nitrate levels. DHA and EPA recovered the antioxidant activity of cytosolic and mitochondrial superoxide dismutase, decreasing protein oxidation. Protection against lipid oxidation differed between treatments. The DHA-treated group showed increased levels of the lipid peroxidation biomarker malondialdehyde compared to the ovariectomized group. However, malondialdehyde levels were not altered by EPA treatment. CONCLUSIONS The results suggest that the antioxidant response varies among evaluated supplementations and all supplements were able to alter enzymatic and non-enzymatic antioxidants in the livers of ovariectomized rats. DHA presented the most evident antioxidant effect, decreasing protein and lipid damage.
Collapse
Affiliation(s)
- Ártur Krumberg Schüller
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Antonio Mena Canata
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Schäfer Hackenhaar
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Krüger Engers
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Maciel Heemann
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Salete Putti
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara Silveira Benfato
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
44
|
Zou Y, Lu Q, Zheng D, Chu Z, Liu Z, Chen H, Ruan Q, Ge X, Zhang Z, Wang X, Lou W, Huang Y, Wang Y, Huang X, Liu Z, Xie W, Zhou Y, Yao P. Prenatal levonorgestrel exposure induces autism-like behavior in offspring through ERβ suppression in the amygdala. Mol Autism 2017; 8:46. [PMID: 28824796 PMCID: PMC5561609 DOI: 10.1186/s13229-017-0159-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by impairments in social communication and restricted or repetitive behaviors or interests. ASD is now diagnosed in more than one out of 100 children and is biased towards males by a ratio of at least 4:1. Many possible explanations and potential causative factors have been reported, such as genetics, sex, and environmental factors, although the detailed mechanisms of ASD remain unclear. METHODS The dams were exposed through oral contraceptives to either vehicle control (VEH) alone, levonorgestrel (LNG) alone, ethinyl estradiol (EE) alone, or a combination of LNG/EE for 21 days during their pregnancy. The subsequent 10-week-old offspring were used for autism-like behavior testing, and the limbic tissues were isolated for analysis. In another experimental group, 8-week-old male offspring were treated by infusion of ERβ overexpression/knockdown lentivirus in the amygdala, and the offspring were analyzed after 2 weeks. RESULTS We show that prenatal exposure of either LNG alone or a LNG/EE combination, but not EE alone, results in suppression of ERβ (estrogen receptor β) and its target genes in the amygdala with autism-like behavior in male offspring, while there is a much smaller effect on female offspring. However, we find that there is no effect on the hippocampus and hypothalamus. Further investigation shows that ERβ suppression is due to LNG-mediated altered methylation on the ERβ promoter and results in tissue damage with oxidative stress and the dysfunction of mitochondria and fatty acid metabolism, which subsequently triggers autism-like behavior. Overexpression of ERβ in the amygdala completely restores LNG-induced ERβ suppression and autism-like behaviors in offspring, while ERβ knockdown mimics this effect, indicating that ERβ expression in the amygdala plays an important role in autism-like behavior development. CONCLUSIONS We conclude that prenatal levonorgestrel exposure induces autism-like behavior in offspring through ERβ suppression in the amygdala. To our knowledge, this is the first time the potential effect of oral contraceptives on the contribution of autism-like behavior in offspring has been discovered.
Collapse
Affiliation(s)
- Yuanlin Zou
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China
| | - Qiaomei Lu
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China
| | - Dan Zheng
- Institute of Environmental Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Zhaoyu Liu
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China
| | - Haijia Chen
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Xiaohu Ge
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Ziyun Zhang
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China
| | - Xiaoyan Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Wenting Lou
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Yongjian Huang
- Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China
| | - Yifei Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD, Guangzhou, 510055 People's Republic of China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Zhengxiang Liu
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Yikai Zhou
- Institute of Environmental Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Paul Yao
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,Tongji Wenchang Hospital, Huazhong University of Science and Technology, Wenchang, 571321 People's Republic of China.,Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| |
Collapse
|
45
|
Xie W, Ren M, Li L, Zhu Y, Chu Z, Zhu Z, Ruan Q, Lou W, Zhang H, Han Z, Huang X, Xiang W, Wang T, Yao P. Perinatal testosterone exposure potentiates vascular dysfunction by ERβ suppression in endothelial progenitor cells. PLoS One 2017; 12:e0182945. [PMID: 28809938 PMCID: PMC5557363 DOI: 10.1371/journal.pone.0182945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/27/2017] [Indexed: 12/04/2022] Open
Abstract
Recent clinical cohort study shows that testosterone therapy increases cardiovascular diseases in men with low testosterone levels, excessive circulating androgen levels may play a detrimental role in the vascular system, while the potential mechanism and effect of testosterone exposure on the vascular function in offspring is still unknown. Our preliminary results showed that perinatal testosterone exposure in mice induces estrogen receptor β (ERβ) suppression in endothelial progenitor cells (EPCs) in offspring but not mothers, while estradiol (E2) had no effect. Further investigation showed that ERβ suppression is due to perinatal testosterone exposure-induced epigenetic changes with altered DNA methylation on the ERβ promoter. During aging, EPCs with ERβ suppression mobilize to the vascular wall, differentiate into ERβ-suppressed mouse endothelial cells (MECs) with downregulated expression of SOD2 (mitochondrial superoxide dismutase) and ERRα (estrogen-related receptor α). This results in reactive oxygen species (ROS) generation and DNA damage, and the dysfunction of mitochondria and fatty acid metabolism, subsequently potentiating vascular dysfunction. Bone marrow transplantation of EPCs that overexpressed with either ERβ or a SIRT1 single mutant SIRT1-C152(D) that could modulate SIRT1 phosphorylation significantly ameliorated vascular dysfunction, while ERβ knockdown worsened the problem. We conclude that perinatal testosterone exposure potentiates vascular dysfunction through ERβ suppression in EPCs.
Collapse
Affiliation(s)
- Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R.China
| | - Ling Li
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, P.R.China
| | - Yin Zhu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Zhigang Zhu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Wenting Lou
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Haimou Zhang
- School of Life Sciences, Hubei University, Wuhan, P.R.China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R.China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, P.R.China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R.China
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, P.R.China
| |
Collapse
|
46
|
Xue W, Deng Y, Wang YF, Sun AJ. Effect of Half-dose and Standard-dose Conjugated Equine Estrogens Combined with Natural Progesterone or Dydrogesterone on Components of Metabolic Syndrome in Healthy Postmenopausal Women: A Randomized Controlled Trial. Chin Med J (Engl) 2017; 129:2773-2779. [PMID: 27900987 PMCID: PMC5146781 DOI: 10.4103/0366-6999.194646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Menopausal hormone therapy (MHT) has been proven to have beneficial effects on several components of metabolic syndrome. However, the effects vary according to different regimens, dosages, and duration of MHT. The aim of the study was to evaluate the effect of standard-dose 0.625 mg conjugated equine estrogen (CEE) and half-dose 0.3 mg CEE daily with different progestogens in a continuous sequential regimen on postmenopausal metabolic parameters in generally healthy postmenopausal women. Methods: A prospective, open-label, randomized controlled clinical trial was conducted between February 2014 and December 2015. Totally 123 Chinese postmenopausal women with climacteric symptoms were included in this study and were randomly assigned to three groups: Group A received CEE 0.3 mg/micronized progesterone (MP) 100 mg daily; Group B received CEE 0.625 mg/MP 100 mg daily; and Group C received CEE 0.625 mg/dydrogesterone 10 mg daily. Drugs were given in a continuous sequential pattern. The duration of treatment was 12 months. Clinical, anthropometrical, and metabolic variables were measured. Data were analyzed according to intention-to-treat analysis, using Student's t-test and analysis of variance. Results: A total of 107 participants completed the 12-month follow-up and were included in the data analysis. At 12 months of treatment, high-density lipoprotein cholesterol and apolipoprotein A significantly increased, and low-density lipoprotein cholesterol, fasting glucose, and glycosylated hemoglobin significantly decreased in Groups B and C, compared with baseline (all P < 0.05). Among the three groups, only Group C showed significantly increased triglycerides compared with baseline (1.61 ± 0.80 mmol/L vs. 1.21 ± 0.52 mmol/L, P = 0.026). Each group showed a neutral effect on total cholesterol, lipoprotein A, apolipoprotein B, and fasting insulin levels. No cardiovascular and venous thromboembolic events occurred in the three groups. Conclusions: Among Chinese postmenopausal women, half-dose CEE was not sufficient to induce a favorable lipid and carbohydrate profile compared with standard-dose CEE. Adding natural MP may counterbalance the TG-increasing effect of CEE. Trial Registration: ClinicalTrials.gov, NCT01698164; https://clinicaltrials.gov/ct2/show/NCT01698164?term=NCT01698164&rank=1.
Collapse
Affiliation(s)
- Wei Xue
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan-Fang Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ai-Jun Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
47
|
Ju J, Chen W, Lai Y, Wang L, Wang H, Chen WJ, Zhao X, Ye H, Li Y, Zhang Y. Astragalus polysaccharides improve cardiomyopathy in STZ-induced diabetic mice and heterozygous (SOD2+/-) knockout mice. ACTA ACUST UNITED AC 2017; 50:e6204. [PMID: 28700033 PMCID: PMC5505521 DOI: 10.1590/1414-431x20176204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
Oxidative stress plays an important role in the development of diabetic cardiomyopathy. In the present study, we determined whether the effect of astragalus polysaccharides (APS) on diabetic cardiomyopathy was associated with its impact on oxidative stress. Streptozotocin (STZ)-induced diabetic mice and heterozygous superoxide dismutase (SOD2+/-) knockout mice were administered APS. The hemodynamics, cardiac ultrastructure, and the apoptosis, necrosis and proliferation of cardiomyocytes were assessed to evaluate the effect of APS on diabetic and oxidative cardiomyopathy. Furthermore, H2O2 formation, oxidative stress/damage, and SOD activity in cardiomyocytes were evaluated to determine the effects of APS on cardiac oxidative stress. APS therapy improved hemodynamics and myocardial ultrastructure with reduced apoptosis/necrosis, and enhanced proliferation in cardiomyocytes from both STZ-induced diabetic mice and heterozygous SOD2+/- knockout mice. In addition, APS therapy reduced H2O2 formation and oxidative stress/damage, and enhanced SOD activity in both groups of mice. Our findings suggest that APS had benefits in diabetic cardiomyopathy, which may be partly associated with its impact on cardiac oxidative stress.
Collapse
Affiliation(s)
- J Ju
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - W Chen
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Lai
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - L Wang
- Core Center of Clinical Skill Training, Shanghai Medical College, Fudan University, Shanghai, China
| | - H Wang
- Experimental Center of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - W J Chen
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - X Zhao
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - H Ye
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Zhang
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Yu H, Zhang H, Chu Z, Ruan Q, Chen X, Kong D, Huang X, Li H, Tang H, Wu H, Wang Y, Xie W, Ding Y, Yao P. Combination of betulinic acid and chidamide synergistically inhibits Epstein-Barr virus replication through over-generation of reactive oxygen species. Oncotarget 2017; 8:61646-61661. [PMID: 28977893 PMCID: PMC5617453 DOI: 10.18632/oncotarget.18661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) has widely infected more than 90% of human populations. Currently, there is no efficient way to remove the virus because the EBV carriers are usually in a latent stage that allows them to escape the immune system and common antiviral drugs. In the effort to develop an efficient strategy for the removal of the EBV virus, we have shown that betulinic acid (BA) slightly suppresses EBV replication through SOD2 suppression with subsequent reactive oxygen species (ROS) generation and DNA damage in EBV-transformed LCL (lymphoblastoid cell line) cells. Chidamide (CDM, CS055), a novel histone deacetylase inhibitor (HDACi), could significantly switch EBV from the latent stage to the lytic stage with increased gene expression of BZLF1 and BMRF1, but has a small effect on EBV replication due to the suppression effect of CDM-mediated ROS generation. Interestingly, a combination of BA and CDM synergistically inhibits EBV replication with ROS over-generation and subsequent DNA damage and apoptosis. Overexpression of SOD2 diminishes this effect, while SOD2 knockdown mimics this effect. An in vivo xenograft tumor development study with the tail vein injection of EBV-transformed LCL cells in nude mice proves that the combination of BA and CDM synergistically increases superoxide anion release in tumor tissues and suppresses EBV replication and tumor growth, and significantly prolongs mouse survival. We conclude that the combination of BA and CDM could be an efficient strategy for clinical EBV removal.
Collapse
Affiliation(s)
- Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xueru Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Danli Kong
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Huawen Li
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University 3 Hospital, Beijing 100080, PR China
| | - Yifei Wang
- Guangzhou Biomedical Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yuanling Ding
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Paul Yao
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China.,Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China.,Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
49
|
Wang L, Zheng Q, Yuan Y, Li Y, Gong X. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats. Exp Ther Med 2017; 13:2537-2543. [PMID: 28565876 DOI: 10.3892/etm.2017.4243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Quan Zheng
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yadong Yuan
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanpeng Li
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaowei Gong
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
50
|
Kong D, Zhan Y, Liu Z, Ding T, Li M, Yu H, Zhang L, Li H, Luo A, Zhang D, Wang Y, Wang S, Zhang Z, Zhang H, Huang X, Yao P, Ding Y, Liu Z. SIRT1-mediated ERβ suppression in the endothelium contributes to vascular aging. Aging Cell 2016; 15:1092-1102. [PMID: 27470296 PMCID: PMC6398526 DOI: 10.1111/acel.12515] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/23/2023] Open
Abstract
SIRT1 has many important molecular functions in aging, and the estrogen receptors (ERs) have a vasculoprotective effect, although the detailed mechanism for the roles of SIRT1 and ERs in vascular aging remains unclear. We found that ERβ expression in the endothelium was reduced in aging mice, and the expression of ERα and SIRT1 did not change, while SIRT1 activity declined. Further investigation showed that the ERβ expression was regulated by SIRT1 through complexes of SIRT1‐PPARγ/RXR‐p300 that bind to a PPRE (PPAR response element) site on the ERβ promoter, and the declined SIRT1 function in aging mice was due to compromised phosphorylation at S154. A single‐mutant SIRT1‐C152(D) restored the reduced ERβ expression in the endothelium with minimized reactive oxygen species generation and DNA damage and increased mitochondrial function and fatty acid metabolism. In high‐fat diet aging mice, the endothelium‐specific delivery of ERβ or SIRT1‐C152(D) on the vascular wall reduced the circulating lipids with ameliorated vascular damage, including the restored vessel tension and blood pressure. We conclude that SIRT1‐mediated ERβ suppression in the endothelium contributes to vascular aging, and the modulation of SIRT1 phosphorylation through a single‐mutant SIRT1‐C152(D) restores this effect.
Collapse
Affiliation(s)
- Danli Kong
- School of Public Health Guangdong Medical College Dongguan 523808 China
| | - Ying Zhan
- Tongji Wenchang Hospital Huazhong University of Science and Technology Wenchang 571321 China
- Tongji Hospital Huazhong University of Science and Technology Wuhan 430030 China
| | - Zhaoyu Liu
- Tongji Hospital Huazhong University of Science and Technology Wuhan 430030 China
| | - Ting Ding
- Tongji Hospital Huazhong University of Science and Technology Wuhan 430030 China
| | - Min Li
- Tongji Wenchang Hospital Huazhong University of Science and Technology Wenchang 571321 China
- Inner Mongolia University for the Nationalities #1742 Huolinhe Str. Tongliao Inner Mongolia 028000 China
| | - Haibing Yu
- School of Public Health Guangdong Medical College Dongguan 523808 China
| | - Laxi Zhang
- Tongji Hospital Huazhong University of Science and Technology Wuhan 430030 China
| | - Huawen Li
- School of Public Health Guangdong Medical College Dongguan 523808 China
| | - Aiyue Luo
- Tongji Hospital Huazhong University of Science and Technology Wuhan 430030 China
| | - Dongwei Zhang
- Inner Mongolia University for the Nationalities #1742 Huolinhe Str. Tongliao Inner Mongolia 028000 China
| | - Yifei Wang
- Guangzhou Biomedical Research and Development Center Jinan University Guangzhou 510632 China
| | - Shixuan Wang
- Tongji Hospital Huazhong University of Science and Technology Wuhan 430030 China
| | - Zhefan Zhang
- Personalized Treatment Research Center The Third Hospital of Wuhan Wuhan 430060 China
| | - Hongyu Zhang
- Department of Hematology Peking University ShenZhen Hospital ShenZhen 518036 China
| | - Xiaodong Huang
- Personalized Treatment Research Center The Third Hospital of Wuhan Wuhan 430060 China
| | - Paul Yao
- School of Public Health Guangdong Medical College Dongguan 523808 China
- Tongji Wenchang Hospital Huazhong University of Science and Technology Wenchang 571321 China
| | - Yuanling Ding
- School of Public Health Guangdong Medical College Dongguan 523808 China
| | - Zhengxiang Liu
- Tongji Wenchang Hospital Huazhong University of Science and Technology Wenchang 571321 China
| |
Collapse
|