1
|
Zhang J, Li Z, Song X, Cai P, Liu Q. Ginsenoside CK and retinol on UVA-induced photoaging exert the synergistic effect through antioxidant and antiapoptotic mechanisms. Sci Rep 2025; 15:16664. [PMID: 40360842 PMCID: PMC12075579 DOI: 10.1038/s41598-025-99304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Retinol and retinoids can effectively intervene skin aging process, but usually induce skin intolerance. In this study, we aimed to determine the synergistic anti-aging effects of retinol and two retinol derivatives-hydroxypinacolone retinoate (HPR) and retinol palmitate (VAPA) combined with ginsenoside CK in terms of preventing and treating the UVA radiation-induced skin aging. We found that the combination formulation of retinol and ginsenoside CK alleviated the inhibition of photoaging proliferation of HaCaT cells caused by UVA, and reduced the proportion of senescence. Additionally, the combination of retinol, HPR, VAPA with ginsenoside CK significantly down-regulated the expression of P53 and P21, up-regulated P63 in UVA irradiated cells, and had potential anti-apoptotic activity. Ginsenoside CK intervention also inhibited the degradation of collagen and elastin by reducing the expression of matrix metalloproteinases, and significantly alleviated oxidative stress. Further transcriptomic and molecular docking studies suggested that ginsenoside CK may play an anti-photoaging role by binding to the active pocket of AKR1C1 and AKR1C2 proteins. Zebrafish experiment showed that retinol combined with ginsenoside CK had the effect of reducing skin toxicity. In conclusion, our results show that retinol, HPR and VAPA combined with ginsenoside CK have good anti-aging and irritation-reducing effects in vitro and in vivo.
Collapse
Affiliation(s)
- Jingyin Zhang
- Guangzhou Guangya New Hanfang Cosmetic Technology Co., 18 Tianhui Road, Tianhe District, Guangzhou, 510630, Guangdong, China
- Guangzhou Guangya New Hanfang Biotechnology Co., 18 Tianhui Road, Tianhe District, Guangzhou, 510630, Guangdong, China
- Guangzhou Guangya Life Science Research Partnership, Guangzhou, 510630, Guangdong, China
| | - Zhuojun Li
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Xiaoping Song
- Guangzhou Guangya Life Science Research Partnership, Guangzhou, 510630, Guangdong, China
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Panpan Cai
- Guangzhou Guangya Life Science Research Partnership, Guangzhou, 510630, Guangdong, China
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Qingchao Liu
- Guangzhou Guangya Life Science Research Partnership, Guangzhou, 510630, Guangdong, China.
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
2
|
Halai P, Kiss O, Wang R, Chien AL, Kang S, O'Connor C, Bell M, Griffiths CEM, Watson REB, Langton AK. Retinoids in the treatment of photoageing: A histological study of topical retinoid efficacy in black skin. J Eur Acad Dermatol Venereol 2024; 38:1618-1627. [PMID: 38682699 DOI: 10.1111/jdv.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes that occur due to chronic exposure to solar ultraviolet radiation (UVR). The 'gold standard' for the treatment of photoaged white skin is all-trans retinoic acid (ATRA); however, cosmetic retinol (ROL) has also proven efficacious. Recent work has identified that black skin is susceptible to photoageing, characterized by disintegration of fibrillin-rich microfibrils (FRMs) at the dermal-epidermal junction (DEJ). However, the impact of topical retinoids for repair of black skin has not been well investigated. OBJECTIVES To determine the potential of retinoids to repair photoaged black skin. METHODS An exploratory intervention study was performed using an in vivo, short-term patch test protocol. Healthy but photoaged black volunteers (>45 years) were recruited to the study, and participant extensor forearms were occluded with either 0.025% ATRA (n = 6; 4-day application due to irritancy) or ROL (12-day treatment protocol for a cosmetic) at concentrations of 0.3% (n = 6) or 1% (n = 6). Punch biopsies from occluded but untreated control sites and retinoid-treated sites were processed for histological analyses of epidermal characteristics, melanin distribution and dermal remodelling. RESULTS Treatment with ATRA and ROL induced significant acanthosis (all p < 0.001) accompanied by a significant increase in keratinocyte proliferation (Ki67; all p < 0.01), dispersal of epidermal melanin and restoration of the FRMs at the DEJ (all p < 0.01), compared to untreated control. CONCLUSIONS This study confirms that topical ATRA has utility for the repair of photoaged black skin and that ROL induces comparable effects on epidermal and dermal remodelling, albeit over a longer timeframe. The effects of topical retinoids on black photoaged skin are similar to those reported for white photoaged skin and suggest conserved biology in relation to repair of UVR-induced damage. Further investigation of topical retinoid efficacy in daily use is warranted for black skin.
Collapse
Affiliation(s)
- P Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - O Kiss
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - M Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
3
|
Jariwala N, Ozols M, Eckersley A, Mambwe B, Watson REB, Zeef L, Gilmore A, Debelle L, Bell M, Bradley EJ, Doush Y, Keenan A, Courage C, Leroux R, Peschard O, Mondon P, Ringenbach C, Bernard L, Pitois A, Sherratt MJ. Prediction, screening and characterization of novel bioactive tetrapeptide matrikines for skin rejuvenation. Br J Dermatol 2024; 191:92-106. [PMID: 38375775 DOI: 10.1093/bjd/ljae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Extracellular matrices play a critical role in tissue structure and function and aberrant remodelling of these matrices is a hallmark of many age-related diseases. In skin, loss of dermal collagens and disorganization of elastic fibre components are key features of photoageing. Although the application of some small matrix-derived peptides to aged skin has been shown to beneficially affect in vitro cell behaviour and, in vivo, molecular architecture and clinical appearance, the discovery of new peptides has lacked a guiding hypothesis. OBJECTIVES To identify, using protease cleavage site prediction, novel putative matrikines with beneficial activities for skin composition and structure. METHODS Here, we present an in silico (peptide cleavage prediction) to in vitro (proteomic and transcriptomic activity testing in cultured human dermal fibroblasts) to in vivo (short-term patch test and longer-term split-face clinical study) discovery pipeline, which enables the identification and characterization of peptides with differential activities. RESULTS Using this pipeline we showed that cultured fibroblasts were responsive to all applied peptides, but their associated bioactivity was sequence-dependent. Based on bioactivity, toxicity and protein source, we further characterized a combination of two novel peptides, GPKG (glycine-proline-lysine-glycine) and LSVD (leucine-serine-valine-aspartate), that acted in vitro to enhance the transcription of matrix -organization and cell proliferation genes and in vivo (in a short-term patch test) to promote processes associated with epithelial and dermal maintenance and remodelling. Prolonged use of a formulation containing these peptides in a split-face clinical study led to significantly improved measures of crow's feet and firmness in a mixed population. CONCLUSIONS This approach to peptide discovery and testing can identify new synthetic matrikines, providing insights into biological mechanisms of tissue homeostasis and repair and new pathways to clinical intervention.
Collapse
Affiliation(s)
- Nathan Jariwala
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science
| | - Matiss Ozols
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science
- Division of Musculoskeletal and Dermatological Sciences
| | | | - Rachel E B Watson
- Division of Musculoskeletal and Dermatological Sciences
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR) and National Skin Centre, Skin Research Institute of Singapore, Republic of Singapore
| | | | - Andrew Gilmore
- Wellcome Centre for Cell Matrix Research, Division of Cancer Sciences; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Laurent Debelle
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science
- UMR CNRS 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, SFR CAP Santé, Moulin de la Housse, Reims, France
| | - Mike Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | | | - Yegor Doush
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Amy Keenan
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Carole Courage
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | | | | | | | | | | | | | - Michael J Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science
| |
Collapse
|
4
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
5
|
Bergman MR, Deravi LF. Manipulating polydispersity of lens β-crystallins using divalent cations demonstrates evidence of calcium regulation. Proc Natl Acad Sci U S A 2022; 119:e2212051119. [PMID: 36417439 PMCID: PMC9860307 DOI: 10.1073/pnas.2212051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Crystallins comprise the protein-rich tissue of the eye lens. Of the three most common vertebrate subtypes, β-crystallins exhibit the widest degree of polydispersity due to their complex multimerization properties in situ. While polydispersity enables precise packing densities across the concentration gradient of the lens for vision, it is unclear why there is such a high degree of structural complexity within the β-crystallin subtype and what the role of this feature is in the lens. To investigate this, we first characterized β-crystallin polydispersity and then established a method to dynamically disrupt it in a process that is dependent on isoform composition and the presence of divalent cationic salts (CaCl2 or MgCl2). We used size-exclusion chromatography together with dynamic light scattering and mass spectrometry to show how high concentrations of divalent cations dissociate β-crystallin oligomers, reduce polydispersity, and shift the overall protein surface charge-properties that can be reversed when salts are removed. While the direct, physiological relevance of these divalent cations in the lens is still under investigation, our results support that specific isoforms of β-crystallin modulate polydispersity through multiple chemical equilibria and that this native state is disrupted by cation binding. This dynamic process may be essential to facilitating the molecular packing and optical function of the lens.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
| | - Leila F. Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
| |
Collapse
|
6
|
Esposito G, Balzamino BO, Rocco ML, Aloe L, Micera A. Nerve Growth Factor (NGF) as Partaker in the Modulation of UV-Response in Cultured Human Conjunctival Fibroblasts. Int J Mol Sci 2022; 23:ijms23116337. [PMID: 35683016 PMCID: PMC9181148 DOI: 10.3390/ijms23116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Corroborating data sustain the pleiotropic effect of nerve growth factor (NGF) in the protection of the visual system from dangerous stimuli, including ultraviolet (UV). Since UV exposure might promote ocular surface changes (conjunctival inflammation and matrix rearrangement), as previously reported from in vivo studies sustaining some protective NGF effects, in vitro cultures of human conjunctival fibroblasts (FBs) were developed and exposed to a single UV exposure over 15 min (0.277 W/m2), either alone or supplemented with NGF (1–10–100 ng/mL). Conditioned media and cell monolayers were collected and analyzed for protein release (ELISA, ELLA microfluidic) and transcript expression (real-time PCR). A specific “inflammatory to remodeling” pattern (IL8, VEGF, IL33, OPN, and CYR61) as well as a few epigenetic transcripts (known as modulator of cell differentiation and matrix-remodeling (DNMT3a, HDAC1, NRF2 and KEAP1)) were investigated in parallel. UV-exposed FBs (i), showed no proliferation or significant cytoskeleton rearrangement; (ii), displayed a trkANGFR/p75NTR phenotype; and (iii), synthesized/released IL8, VEGF-A, IL33, OPN, and CYR61, as compared to unexposed ones. NGF addition counteracted IL8, IL33, OPN, and CYR61 protein release merely at lower NGF concentrations but not VEGF. NGF supplementation did not affect DNMT3a or HDAC1 transcripts, while it significantly upregulated NRF2 at lowest NGF doses and did not change KEAP1 expression. Taken together, a single UV exposure activated conjunctival FBs to release pro-inflammatory/fibrogenic factors in association with epigenetic changes. The effects were selectively counteracted by NGF supplementation in a dose-dependent fashion, most probably accountable to the trkANGFR/p75NTR phenotype. Further in vitro studies are underway to better understand this additional NGF pleiotropic effect. Since UV-shield impairments represent a worldwide alert and UV radiation can slowly affect ocular surface homeostasis (photo-ageing, cataract) or might exacerbate ocular diseases with a preexisting fibrosis (pterygium, VKC), these findings on NGF modulation of UV-exposed FBs might provide additional information for protecting the ocular surface (homeostasis) from low-grade long-lasting UV insults.
Collapse
Affiliation(s)
- Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00198 Rome, Italy; (G.E.); (B.O.B.)
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00198 Rome, Italy; (G.E.); (B.O.B.)
| | - Maria Luisa Rocco
- Institute of Cell Biology and Neurobiology, CNR, 00143 Rome, Italy;
- Fondazione IRET, 40064 Bologna, Italy;
| | - Luigi Aloe
- Fondazione IRET, 40064 Bologna, Italy;
- Associazione NGF ONLUS, 00172 Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00198 Rome, Italy; (G.E.); (B.O.B.)
- Correspondence:
| |
Collapse
|
7
|
Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 2022; 185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.
Collapse
|
8
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Weihermann AC, de Carvalho CM, Schuck DC, Swinka BB, Stuart RM, Graf RM, Lorencini M, Brohem CA. Modulation of Photoaging-Induced Cutaneous Elastin: Evaluation of Gene and Protein Expression of Markers Related to Elastogenesis Under Different Photoexposure Conditions. Dermatol Ther (Heidelb) 2021; 11:2043-2056. [PMID: 34648146 PMCID: PMC8611133 DOI: 10.1007/s13555-021-00603-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Photoaging is the process by which ultraviolet rays gradually induce clinical and histological changes in the skin through the production and organization of biological molecules, such as elastin, which is critical to skin strength and elasticity. After exposure to radiation, elastin may undergo alternative mRNA splicing, resulting in modified proteins that contribute to the formation of aging characteristics, such as solar elastosis. The present work aimed to study two different forms of elastin under these conditions: normal elastin and elastin that had been altered in exon 26A. METHODS These different forms of elastin were characterized for gene expression by quantitative real-time polymerase chain reaction (qPCR) and for protein expression by immunohistochemistry of ex vivo skins (from photoexposed and non-photoexposed areas) and in vitro reconstituted skin. In addition, up- and downstream molecules in the elastin signaling cascade were evaluated. RESULTS As a result, a significant increase in the gene expression of elastin 26A was observed in both ex vivo photoexposed skin tissues and the in vitro photoexposed reconstituted skins. Additionally, significant increases in the gene expression levels of matrix metalloproteinase-12 (MMP12) and lysyl oxidase (LOX) were observed in the ex vivo skin model. The evaluation of protein expression levels of some photoaging markers on the reconstituted skin revealed increased tropoelastin and fibrillin-1 expression after photoexposure. CONCLUSION This work contributes to a better understanding of the biological mechanisms involved in photoaging, making it possible to obtain new strategies for the development of dermocosmetic active ingredients to prevent and treat skin aging.
Collapse
Affiliation(s)
- Ana Cristina Weihermann
- Department of Research and Innovation, Laboratory of Molecular Biology, Grupo Boticário, Rua Alfredo Pinto, 1500, São José dos Pinhais, Paraná, 83065-150, Brazil. .,Master's Program in Industrial Biotechnology, Universidade Positivo (Universidade Positivo-UP), Curitiba, Paraná, Brazil.
| | - Camila Miranda de Carvalho
- Master's Program in Industrial Biotechnology, Universidade Positivo (Universidade Positivo-UP), Curitiba, Paraná, Brazil
| | - Desirée Cigaran Schuck
- Department of Research and Innovation, Laboratory of Molecular Biology, Grupo Boticário, Rua Alfredo Pinto, 1500, São José dos Pinhais, Paraná, 83065-150, Brazil
| | - Bruna Bastos Swinka
- Department of Research and Innovation, Laboratory of Molecular Biology, Grupo Boticário, Rua Alfredo Pinto, 1500, São José dos Pinhais, Paraná, 83065-150, Brazil
| | - Rodrigo Makowiecky Stuart
- Department of Research and Innovation, Laboratory of Molecular Biology, Grupo Boticário, Rua Alfredo Pinto, 1500, São José dos Pinhais, Paraná, 83065-150, Brazil
| | - Ruth Maria Graf
- Department of Plastic Surgery, Federal University of Paraná (Universidade Federal do Paraná-UFPR), Curitiba, Paraná, Brazil
| | - Márcio Lorencini
- Department of Research and Innovation, Laboratory of Molecular Biology, Grupo Boticário, Rua Alfredo Pinto, 1500, São José dos Pinhais, Paraná, 83065-150, Brazil
| | - Carla Abdo Brohem
- Department of Research and Innovation, Laboratory of Molecular Biology, Grupo Boticário, Rua Alfredo Pinto, 1500, São José dos Pinhais, Paraná, 83065-150, Brazil
| |
Collapse
|
10
|
Eckersley A, Ozols M, O'Connor C, Bell M, Sherratt MJ. Predicting and characterising protein damage in the extracellular matrix. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Baumann L, Bernstein EF, Weiss AS, Bates D, Humphrey S, Silberberg M, Daniels R. Clinical Relevance of Elastin in the Structure and Function of Skin. Aesthet Surg J Open Forum 2021; 3:ojab019. [PMID: 34195612 PMCID: PMC8239663 DOI: 10.1093/asjof/ojab019] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/14/2022] Open
Abstract
Elastin is the main component of elastic fibers, which provide stretch, recoil, and elasticity to the skin. Normal levels of elastic fiber production, organization, and integration with other cutaneous extracellular matrix proteins, proteoglycans, and glycosaminoglycans are integral to maintaining healthy skin structure, function, and youthful appearance. Although elastin has very low turnover, its production decreases after individuals reach maturity and it is susceptible to damage from many factors. With advancing age and exposure to environmental insults, elastic fibers degrade. This degradation contributes to the loss of the skin's structural integrity; combined with subcutaneous fat loss, this results in looser, sagging skin, causing undesirable changes in appearance. The most dramatic changes occur in chronically sun-exposed skin, which displays sharply altered amounts and arrangements of cutaneous elastic fibers, decreased fine elastic fibers in the superficial dermis connecting to the epidermis, and replacement of the normal collagen-rich superficial dermis with abnormal clumps of solar elastosis material. Disruption of elastic fiber networks also leads to undesirable characteristics in wound healing, and the worsening structure and appearance of scars and stretch marks. Identifying ways to replenish elastin and elastic fibers should improve the skin's appearance, texture, resiliency, and wound-healing capabilities. However, few therapies are capable of repairing elastic fibers or substantially reorganizing the elastin/microfibril network. This review describes the clinical relevance of elastin in the context of the structure and function of healthy and aging skin, wound healing, and scars and introduces new approaches being developed to target elastin production and elastic fiber formation.
Collapse
Affiliation(s)
- Leslie Baumann
- Corresponding Author: Dr Leslie Baumann, 4500 Biscayne Blvd., Miami, FL 33137, USA. E-mail:
| | | | - Anthony S Weiss
- Biochemistry and Professor of Biochemistry and Molecular Biotechnology, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Shannon Humphrey
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC Canada
| | | | - Robert Daniels
- Allergan Aesthetics, an AbbVie Company, Gordon, NSW, Australia
| |
Collapse
|
12
|
Ozols M, Eckersley A, Mellody KT, Mallikarjun V, Warwood S, O'Cualain R, Knight D, Watson REB, Griffiths CEM, Swift J, Sherratt MJ. Peptide location fingerprinting reveals modification-associated biomarker candidates of ageing in human tissue proteomes. Aging Cell 2021; 20:e13355. [PMID: 33830638 PMCID: PMC8135079 DOI: 10.1111/acel.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Kieran T. Mellody
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
| | - Venkatesh Mallikarjun
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Stacey Warwood
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Ronan O'Cualain
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - David Knight
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Rachel E. B. Watson
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Christopher E. M. Griffiths
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| |
Collapse
|
13
|
Ozols M, Eckersley A, Platt CI, Stewart-McGuinness C, Hibbert SA, Revote J, Li F, Griffiths CEM, Watson REB, Song J, Bell M, Sherratt MJ. Predicting Proteolysis in Complex Proteomes Using Deep Learning. Int J Mol Sci 2021; 22:3071. [PMID: 33803033 PMCID: PMC8002881 DOI: 10.3390/ijms22063071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be key effectors of tissue remodeling. We have previously shown that comparison of amino acid composition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting protein susceptibility to endogenous proteases remains challenging. Here, we aim to develop bioinformatics tools to (i) predict cleavage site locations (and hence putative protein susceptibilities) and (ii) compare the predicted vulnerabilities of skin proteins to protease- and ROS-mediated proteolysis. The first goal of this study was to experimentally evaluate the ability of existing protease cleavage site prediction models (PROSPER and DeepCleave) to identify experimentally determined MMP9 cleavage sites in two purified proteins and in a complex human dermal fibroblast-derived extracellular matrix (ECM) proteome. We subsequently developed deep bidirectional recurrent neural network (BRNN) models to predict cleavage sites for 14 tissue proteases. The predictions of the new models were tested against experimental datasets and combined with amino acid composition analysis (to predict ultraviolet radiation (UVR)/ROS susceptibility) in a new web app: the Manchester proteome susceptibility calculator (MPSC). The BRNN models performed better in predicting cleavage sites in native dermal ECM proteins than existing models (DeepCleave and PROSPER), and application of MPSC to the skin proteome suggests that: compared with the elastic fiber network, fibrillar collagens may be susceptible primarily to protease-mediated proteolysis. We also identify additional putative targets of oxidative damage (dermatopontin, fibulins and defensins) and protease action (laminins and nidogen). MPSC has the potential to identify potential targets of proteolysis in disparate tissues and disease states.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Christopher I. Platt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Callum Stewart-McGuinness
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Sarah A. Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Jerico Revote
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3800, Australia;
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Mike Bell
- Research and Development, Walgreens Boots Alliance, Thane Road, Nottingham NG90 1BS, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| |
Collapse
|
14
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
15
|
Langton AK, Ayer J, Griffiths TW, Rashdan E, Naidoo K, Caley MP, Birch-Machin MA, O'Toole EA, Watson REB, Griffiths CEM. Distinctive clinical and histological characteristics of atrophic and hypertrophic facial photoageing. J Eur Acad Dermatol Venereol 2020; 35:762-768. [PMID: 33275818 PMCID: PMC7986784 DOI: 10.1111/jdv.17063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes which occur following chronic exposure to solar ultraviolet radiation (UVR). Amongst White Northern Europeans, facial photoageing appears as distinct clinical phenotypes: 'hypertrophic' photoageing (HP) and 'atrophic' photoageing (AP). Deep, coarse wrinkles predominate in individuals with HP, whereas those with AP have relatively smooth, unwrinkled skin with pronounced telangiectasia. AP individuals have an increased propensity for developing keratinocyte cancers. OBJECTIVES To investigate whether histological differences underlie these distinct phenotypes of facial photoageing. METHODS Facial skin biopsies were obtained from participants with AP (10 M, 10 F; mean age: 78.7 years) or HP (10 M, 10 F; mean age: 74.5 years) and were assessed histologically and by immunohistochemistry. RESULTS Demographic characterization revealed 95% of AP subjects, as compared to 35% with HP, were Fitzpatrick skin type I/II; of these, 50% had a history of one or more keratinocyte cancers. There was no history of keratinocyte cancers in the HP cohort. Analysis of UVR-induced mitochondrial DNA damage confirmed that all volunteers had received similar lifetime cumulative doses of sun exposure. Histologically, male AP had a significantly thicker epidermis than did AP females or those of either sex with HP. HP facial skin exhibited severe solar elastosis, whereas in AP facial skin, solar elastosis was apparent only in females. Loss of papillary dermal fibrillin-rich microfibrils occurred in all HP and AP female subjects, but not in AP males. Furthermore, male AP had a significant reduction in collagen VII at the dermal-epidermal junction than did AP females or those of either sex with HP. CONCLUSIONS This study provides further evidence that AP and HP represent distinct clinical and histological entities. Knowledge of these two phenotypes is clinically relevant due to the increased prevalence of keratinocyte cancers in those - particularly males - with the AP phenotype.
Collapse
Affiliation(s)
- A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - J Ayer
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - T W Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - E Rashdan
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - K Naidoo
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Dermatology Department, James Cook University Hospital, Middlesbrough, UK
| | - M P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M A Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - E A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
16
|
Investigation of fibrillin microfibrils in the canine cruciate ligament in dogs with different predispositions to ligament rupture. Res Vet Sci 2020; 133:53-58. [PMID: 32937286 DOI: 10.1016/j.rvsc.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022]
Abstract
Cranial cruciate ligament disease (CCLD) is the most common cause of pelvic limb lameness in dogs but its precise aetiopathogenesis is uncertain. Fibrillin microfibrils (FM) are complex macro-molecular assemblies found in many tissues including ligaments, where they are thought to play an important mechanical role. We hypothesised that FM ultrastructural variation correlates with the differing predisposition of canine breeds to CCLD. Non-diseased cranial and caudal cruciate ligaments (CCLs and CaCLs) were obtained from Greyhound (GH) and Staffordshire Bull Terrier (SBT) cadavers. Fibrillin microfibrils were extracted from the ligaments by bacterial collagenase digestion, purified by size-exclusion chromatography and subsequently visualized by atomic force microscopy (AFM). With AFM, FMs have a characteristic beads-on-a-string appearance. For each FM, periodicity (bead-bead distance) and length (number of beads/FM) was measured. Fibrillin microfibril length was found to be similar for GH and SBT, with non-significant inter-breed and inter-ligament differences. Fibrillin microfibril periodicity varied when comparing GH and SBT for CCL (GH 60.2 ± 1.4 nm; SBT 56.2 ± 0.8 nm) and CaCL (GH 55.5 ± 1.6 nm; SBT 61.2 ± 1.2 nm). A significant difference was found in the periodicity distribution when comparing CCL for both breeds (P < 0.00001), further, intra-breed differences in CCL vs CaCL were statistically significant within both breeds (P < 0.00001). The breed at low risk of CCLD exhibited a periodicity profile which may be suggestive of a repair and remodelling within the CCL.
Collapse
|
17
|
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62:101127. [PMID: 32721499 DOI: 10.1016/j.arr.2020.101127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Excessive exposure of skin to UV radiation triggers the generation of oxidative stress, inflammation, immunosuppression, apoptosis, matrix-metalloproteases production, and DNA mutations leading to the onset of photo ageing and photo-carcinogenesis. At the molecular level, these changes occur via activation of several protein kinases as well as transcription pathways, formation of reactive oxygen species, and release of cytokines, interleukins and prostaglandins together. Current therapies available on the market only provide limited solutions and exhibit several side effects. The present paper provides insight into scientific studies that have elucidated the positive role of phytochemicals in counteracting the UV-induced depletion of antioxidant enzymes, increased lipid peroxidation, inflammation, DNA mutations, increased senescence, dysfunctional apoptosis and immune suppression. The contribution of phytochemicals to the downregulation of expression of oxidative-stress sensitive transcription factors (Nrf2, NF-Kb, AP-1 and p53) and protein kinases (MSK, ERK, JNK, p38 MAPK, p90RSK2 and CaMKs) involved in inflammation, apoptosis, immune suppression, extracellular matrix remodelling, senescence, photo ageing and photo-carcinogenesis, is also discussed. Conclusively, several phytochemicals hold potential for the development of a viable solution against UV irradiation-mediated photo ageing, photo-carcinogenesis and related manifestations.
Collapse
|
18
|
Wang T, Jian Z, Baskys A, Yang J, Li J, Guo H, Hei Y, Xian P, He Z, Li Z, Li N, Long Q. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials 2020; 257:120264. [PMID: 32791387 DOI: 10.1016/j.biomaterials.2020.120264] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a major cause of skin injury induced by damaging stimuli such as UV radiation. Currently, owing to their immunomodulatory properties, mesenchymal stem cell-derived exosomes (MSC-Exo), as a nanotherapeutic agent, have attracted considerable attention. Here, we investigated the therapeutic effects of MSC-Exo on oxidative injury in H2O2-stimulated epidermal keratinocytes and UV-irradiated wild type and nuclear factor-erythroid 2-related factor-2 (Nrf2) knocked down cell and animal models. Our findings showed that MSC-Exo treatment reduced reactive oxygen species generation, DNA damage, aberrant calcium signaling, and mitochondrial changes in H2O2-stimulated keratinocytes or UV-irradiated mice skin. Exosome therapy also improved antioxidant capacities shown by increased ferric ion reducing antioxidant power and glutathione peroxidase or superoxide dismutase activities in oxidative stress-induced cell and skin injury. In addition, it alleviated cellular and histological responses to inflammation and oxidation in cell or animal models. Furthermore, the NRF2 signaling pathway was involved in the antioxidation activity of MSC-Exo, while Nrf2 knockdown attenuated the antioxidant capacities of MSC-Exo in vitro and in vivo, suggesting that these effects are partially mediated by the NRF2 signaling pathway. These results indicate that MSC-Exo can repair oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Thus, MSC-Exo may be used as a potential dermatological nanotherapeutic agent for treating oxidative stress-induced skin diseases or disorders.
Collapse
Affiliation(s)
- Tian Wang
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Andrius Baskys
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Junle Yang
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Jianying Li
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Hua Guo
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yue Hei
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Panpan Xian
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Zhongzheng He
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Zhengyu Li
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Namiao Li
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China.
| |
Collapse
|
19
|
Langton AK, Tsoureli-Nikita E, Merrick H, Zhao X, Antoniou C, Stratigos A, Akhtar R, Derby B, Sherratt MJ, Watson RE, Griffiths CE. The systemic influence of chronic smoking on skin structure and mechanical function. J Pathol 2020; 251:420-428. [PMID: 32472631 DOI: 10.1002/path.5476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
One of the major functions of human skin is to provide protection from the environment. Although we cannot entirely avoid, for example, sun exposure, it is likely that exposure to other environmental factors could affect cutaneous function. A number of studies have identified smoking as one such factor that leads to both facial wrinkle formation and a decline in skin function. In addition to the direct physical effects of tobacco smoke on skin, its inhalation has additional profound systemic effects for the smoker. The adverse effects on the respiratory and cardiovascular systems from smoking are well known. Central to the pathological changes associated with smoking is the elastic fibre, a key component of the extracellular matrices of lungs. In this study we examined the systemic effect of chronic smoking (>40 cigarettes/day; >5 years) on the histology of the cutaneous elastic fibre system, the nanostructure and mechanics of one of its key components, the fibrillin-rich microfibril, and the micromechanical stiffness of the dermis and epidermis. We show that photoprotected skin of chronic smokers exhibits significant remodelling of the elastic fibre network (both elastin and fibrillin-rich microfibrils) as compared to the skin of age- and sex-matched non-smokers. This remodelling is not associated with increased gelatinase activity (as identified by in situ zymography). Histological remodelling is accompanied by significant ultrastructural changes to extracted fibrillin-rich microfibrils. Finally, using scanning acoustic microscopy, we demonstrated that chronic smoking significantly increases the stiffness of both the dermis and the epidermis. Taken together, these data suggest an unappreciated systemic effect of chronic inhalation of tobacco smoke on the cutaneous elastic fibre network. Such changes may in part underlie the skin wrinkling and loss of skin elasticity associated with smoking. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Evridiki Tsoureli-Nikita
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Holly Merrick
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Xuegen Zhao
- School of Materials, The University of Manchester, Manchester, UK
| | - Christina Antoniou
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Alexander Stratigos
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Brian Derby
- School of Materials, The University of Manchester, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rachel Eb Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher Em Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
20
|
Langton AK, Hann M, Costello P, Halai P, Sisto Alessi César S, Lien-Lun Chien A, Kang S, Griffiths CEM, Sherratt MJ, Watson REB. Heterogeneity of fibrillin-rich microfibrils extracted from human skin of diverse ethnicity. J Anat 2020; 237:478-486. [PMID: 32452018 DOI: 10.1111/joa.13217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The dermal elastic fibre network is the primary effector of skin elasticity, enabling it to extend and recoil many times over the lifetime of the individual. Fibrillin-rich microfibrils (FRMs) constitute integral components of the elastic fibre network, with their distribution showing differential deposition in the papillary dermis across individuals of diverse skin ethnicity. Despite these differential findings in histological presentation, it is not known if skin ethnicity influences FRM ultrastructure. FRMs are evolutionarily highly conserved from jellyfish to man and, regardless of tissue type or species, isolated FRMs have a characteristic 'beads-on-a-string' ultrastructural appearance, with an average inter-bead distance (or periodicity) of 56 nm. Here, skin biopsies were obtained from the photoprotected buttock of healthy volunteers (18-27 years; African: n = 5; European: n = 5), and FRMs were isolated from the superficial papillary dermis and deeper reticular dermis and imaged by atomic force microscopy. In the reticular dermis, there was no significant difference in FRM ultrastructure between European and African participants. In contrast, in the more superficial papillary dermis, inter-bead periodicity was significantly larger for FRMs extracted from European participants than from African participants by 2.20 nm (p < .001). We next assessed whether these differences in FRM ultrastructure were present during early postnatal development by characterizing FRMs from full-thickness neonatal foreskin. Analysis of FRM periodicity identified no significant difference between neonatal cohorts (p = .865). These data suggest that at birth, FRMs are developmentally invariant. However, in adults of diverse skin ethnicity, there is a deviation in ultrastructure for the papillary dermal FRMs that may be acquired during the passage of time from child to adulthood. Understanding the mechanism by which this difference in papillary dermal FRMs arises warrants further study.
Collapse
Affiliation(s)
- Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark Hann
- Centre for Biostatistics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Patrick Costello
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Poonam Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Anna Lien-Lun Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
21
|
Iozzo RV, Theocharis AD, Neill T, Karamanos NK. Complexity of matrix phenotypes. Matrix Biol Plus 2020; 6-7:100038. [PMID: 33543032 PMCID: PMC7852209 DOI: 10.1016/j.mbplus.2020.100038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix is engaged in an ever-evolving and elegant ballet of dynamic reciprocity that directly and bi-directionally regulates cell behavior. Homeostatic and pathophysiological changes in cell-matrix signaling cascades manifest as complex matrix phenotypes. Indeed, the extracellular matrix can be implicated in virtually every known human disease, thus, making it the most critical and dynamic "organ" in the human body. The overall goal of this Special Issue is to provide an accurate and inclusive functional definition that addresses the inherent complexity of matrix phenotypes. This goal is summarily achieved via a corpus of expertly written articles, reviews and original research, focused at answering this question empirically and fundamentally via state-of-the-art methods and research strategies.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinases
- AGE, advanced glycation end products
- Angiogenesis
- Cancer
- Collagen
- DDR1, discoidin domain receptor 1
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMILIN1, elastin microfibril interfacer 1
- EMILIN2, elastin microfibril interfacer 2
- EMT, epithelial-mesenchymal transition
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- GBM, glioblastoma
- HA, hyaluronan
- HAS2, hyaluronan synthase 2
- HAS2-AS1, HAS2 antisense 1
- HB-EGF, heparin binding EGF
- HMGA2, high-mobility group AT-Hook 2
- IBC, inflammatory breast cancer
- IGF-IR, insulin growth factor I receptor
- IR-A, insulin receptor A
- LEKTI, lympho-epithelial Kazal-type inhibitor
- LOX, lysyl oxidases
- LTBP, latent TGFβ-binding proteins
- MAGP, microfibril-associated glycoproteins
- MET, mesenchymal-epithelial transition
- MMP, matrix metalloproteinases
- Methodologies
- OB, osteoblast
- OI, osteogenesis imperfecta
- PARs, protease activated receptors
- PG, proteoglycans
- PLL, poly-l-lysine
- Proteoglycans
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinase
- SLRP, small leucine rich proteoglycans
- SSR, solar-simulated radiation
- TGFβ, transforming growth factor β
- TNT, tunneling nanotubes
- UVR, ultraviolet radiation
- VEGF, vascular endothelial growth factor
- miR, microRNA
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
22
|
Eckersley A, Ozols M, O'Cualain R, Keevill EJ, Foster A, Pilkington S, Knight D, Griffiths CEM, Watson REB, Sherratt MJ. Proteomic fingerprints of damage in extracellular matrix assemblies. Matrix Biol Plus 2020; 5:100027. [PMID: 33543016 PMCID: PMC7852314 DOI: 10.1016/j.mbplus.2020.100027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to the dynamic intracellular environment, structural extracellular matrix (ECM) proteins with half-lives measured in decades, are susceptible to accumulating damage. Whilst conventional approaches such as histology, immunohistochemistry and mass spectrometry are able to identify age- and disease-related changes in protein abundance or distribution, these techniques are poorly suited to characterising molecular damage. We have previously shown that mass spectrometry can detect tissue-specific differences in the proteolytic susceptibility of protein regions within fibrillin-1 and collagen VI alpha-3. Here, we present a novel proteomic approach to detect damage-induced “peptide fingerprints” within complex multi-component ECM assemblies (fibrillin and collagen VI microfibrils) following their exposure to ultraviolet radiation (UVR) by broadband UVB or solar simulated radiation (SSR). These assemblies were chosen because, in chronically photoaged skin, fibrillin and collagen VI microfibril architectures are differentially susceptible to UVR. In this study, atomic force microscopy revealed that fibrillin microfibril ultrastructure was significantly altered by UVR exposure whereas the ultrastructure of collagen VI microfibrils was resistant. UVR-induced molecular damage was further characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Peptide mapping revealed that UVR exposure increased regional proteolytic susceptibility within the protein structures of fibrillin-1 and collagen VI alpha-3. This allowed the identification of UVR-induced molecular changes within these two key ECM assemblies. Additionally, similar changes were observed within protein regions of co-purifying, microfibril-associated receptors integrins αv and β1. This study demonstrates that LC-MS/MS mapping of peptides enables the characterisation of molecular post-translational damage (via direct irradiation and radiation-induced oxidative mechanisms) within a complex in vitro model system. This peptide fingerprinting approach reliably allows both the identification of UVR-induced molecular damage in and between proteins and the identification of specific protein domains with increased proteolytic susceptibility as a result of photo-denaturation. This has the potential to serve as a sensitive method of identifying accumulated molecular damage in vivo using conventional mass spectrometry data-sets. Mass spectrometry “peptide fingerprinting” can detect post-translational damage within extracellular matrix proteins. UVR-induced FBN1 and COL6A3 peptide fingerprints are reproducibly identified from purified microfibrils. Peptide mapping reveals increased regional susceptibilities to proteolysis in FBN1 and COL6A3 proteins. Regional changes are also observed in protein structures of microfibril-associated receptor integrins αv and β1. This “peptide fingerprinting” approach is applicable to conventional LC-MS/MS datasets.
Collapse
Key Words
- AFM, atomic force microscopy
- COL6A3, collagen VI alpha 3 chain
- Collagen VI microfibril
- ECM, extracellular matrix
- EGF, epidermal growth factor domain
- Fibrillin microfibril
- HDF, human dermal fibroblast
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- Mass spectrometry
- PSM, peptide spectrum match
- Photodamage
- ROS, reactive oxygen species
- SSR, solar simulated radiation
- TGFβ, transforming growth factor beta
- UVR, ultraviolet radiation
- Ultraviolet radiation
- vWA, von Willebrand factor type A domain
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ronan O'Cualain
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emma-Jayne Keevill
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - April Foster
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Suzanne Pilkington
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Langton AK, Hann M, Costello P, Halai P, Griffiths CEM, Sherratt MJ, Watson REB. Remodelling of fibrillin-rich microfibrils by solar-simulated radiation: impact of skin ethnicity. Photochem Photobiol Sci 2020; 19:1160-1167. [DOI: 10.1039/d0pp00188k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cutaneous fibrillin-rich microfibrils (FRMs) should be considered as two distinct populations that differentially accrue damage in response to SSR. Furthermore, FRMs derived from black African skin show greater change following UVR challenge.
Collapse
Affiliation(s)
- Abigail K. Langton
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
- NIHR Manchester Biomedical Research Centre
| | - Mark Hann
- Centre for Biostatistics
- The University of Manchester
- Manchester Academic Health Science Centre
- UK
| | - Patrick Costello
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
| | - Poonam Halai
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
- NIHR Manchester Biomedical Research Centre
| | - Michael J. Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine
- The University of Manchester
- UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
- NIHR Manchester Biomedical Research Centre
| |
Collapse
|
24
|
Torzilli PA, Azimulla A. Ultraviolet light (365 nm) transmission properties of articular cartilage as a function of depth, extracellular matrix, and swelling. J Biomed Mater Res A 2019; 108:327-339. [PMID: 31622534 DOI: 10.1002/jbm.a.36819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/22/2019] [Accepted: 09/10/2019] [Indexed: 11/06/2022]
Abstract
Current tissue engineering approaches for treatment of injured or diseased articular cartilage use ultraviolet light (UV) for in situ photopolymerization of biomaterials to fill chondral and osteochondral defects as well as resurfacing, stiffening and bonding the extracellular matrix and tissue interfaces. The most commonly used UV light wavelength is UVA 365 nm, the least cytotoxic and deepest penetrating. However, little information is available on the transmission of UVA 365 nm light through the cartilage matrix. In the present study, 365 nm UV light transmission was measured as a function of depth through 100 μm thick slices of healthy articular cartilage removed from mature bovine knees. Transmission properties were measured in normal (Native) cartilage and after swelling equilibration in phosphate-buffered saline (Swollen). Single-factor and multiple linear regression analyses were performed to determine depth-dependencies between the effective attenuation coefficients and proteoglycan, collagen and water contents. For both cartilages, a significant depth-dependency was found for the effective attenuation coefficients, being highest at the articular surface (superficial zone) and decreasing with depth. The effective attenuation coefficients for full-thickness cartilages were approximately a third lower than the total attenuation coefficients calculated from the individual slices. Analysis of absorption and scattering effects due to the ECM and chondrocytes found that UV light scatter coefficients were ∼10 times greater than absorption coefficients. The greater transmittance of UV light through the thicker cartilage was attributed to the collagen within the ECM causing significant backscatter forward reflectance.
Collapse
Affiliation(s)
- Peter A Torzilli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Physiology, Biophysics and System Biology Program,Weill Medical College of Cornell University, New York, New York.,Department of Biomedical Engineering, City College of New York, New York, New York
| | - Abidally Azimulla
- Department of Biomedical Engineering, City College of New York, New York, New York
| |
Collapse
|
25
|
Sherratt MJ, Hopkinson L, Naven M, Hibbert SA, Ozols M, Eckersley A, Newton VL, Bell M, Meng QJ. Circadian rhythms in skin and other elastic tissues. Matrix Biol 2019; 84:97-110. [PMID: 31422155 DOI: 10.1016/j.matbio.2019.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are daily oscillations that, in mammals, are driven by both a master clock, located in the brain, and peripheral clocks in cells and tissues. Approximately 10% of the transcriptome, including extracellular matrix components, is estimated to be under circadian control. Whilst it has been established that certain collagens and extracellular matrix proteases are diurnally regulated (for example in tendon, cartilage and intervertebral disc) the role played by circadian rhythms in mediating elastic fiber homeostasis is poorly understood. Skin, arteries and lungs are dynamic, resilient, elastic fiber-rich organs and tissues. In skin, circadian rhythms influence cell migration and proliferation, wound healing and susceptibility of the tissues to damage (from protease activity, oxidative stress and ultraviolet radiation). In the cardiovascular system, blood pressure and heart rate also follow age-dependent circadian rhythms whilst the lungs exhibit diurnal variations in immune response. In order to better understand these processes it will be necessary to characterise diurnal changes in extracellular matrix biology. In particular, given the sensitivity of peripheral clocks to external factors, the timed delivery of interventions (chronotherapy) has the potential to significantly improve the efficacy of treatments designed to repair and regenerate damaged cutaneous, vascular and pulmonary tissues.
Collapse
Affiliation(s)
- Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK.
| | - Louise Hopkinson
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK; Centre for Doctoral Training in Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK; Wellcome Trust Centre for Cell-Matrix Research, UK
| | - Mark Naven
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK; Wellcome Trust Centre for Cell-Matrix Research, UK
| | - Sarah A Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK
| | | | - Mike Bell
- Walgreens Boots Alliance, Thane Rd, Nottingham, England, UK
| | - Qing-Jun Meng
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK; Wellcome Trust Centre for Cell-Matrix Research, UK
| |
Collapse
|
26
|
Hibbert SA, Watson REB, Griffiths CEM, Gibbs NK, Sherratt MJ. Selective proteolysis by matrix metalloproteinases of photo-oxidised dermal extracellular matrix proteins. Cell Signal 2018; 54:191-199. [PMID: 30521860 DOI: 10.1016/j.cellsig.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
Photodamage in chronically sun-exposed skin manifests clinically as deep wrinkles and histologically as extensive remodelling of the dermal extracellular matrix (ECM) and in particular, the elastic fibre system. We have shown previously that loss of fibrillin microfibrils, a key elastic fibre component, is a hallmark of early photodamage and that these ECM assemblies are susceptible in vitro to physiologically attainable doses of ultraviolet radiation (UVR). Here, we test the hypotheses that UVR-mediated photo-oxidation is the primary driver of fibrillin microfibril and fibronectin degradation and that prior UVR exposure will enhance the subsequent proteolytic activity of UVR-upregulated matrix metalloproteinases (MMPs). We confirmed that UVB (280-315 nm) irradiation in vitro induced structural changes to both fibrillin microfibrils and fibronectin and these changes were largely reactive oxygen species (ROS)-driven, with increased ROS lifetime (D2O) enhancing protein damage and depleted O2 conditions abrogating it. Furthermore, we show that although exposure to UVR alone increased microfibril structural heterogeneity, exposure to purified MMPs (1, -3, -7 and - 9) alone had minimal effect on microfibril bead-to-bead periodicity; however, microfibril suspensions exposed to UVR and then MMPs were more structurally homogenous. In contrast, the susceptibly of fibronectin to proteases was unaffected by prior UVR exposure. These observations suggest that both direct photon absorption and indirect production of ROS are important mediators of ECM remodelling in photodamage. We also show that fibrillin microfibrils are relatively resistant to proteolysis by MMPs -1, -3, -7 and - 9 but that these MMPs may selectively remove damaged microfibril assemblies. These latter observations have implications for predicting the mechanisms of tissue remodelling and targeted repair.
Collapse
Affiliation(s)
- Sarah A Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, UK.
| | - Rachel E B Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Christopher E M Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Neil K Gibbs
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Charoenchon N, Rhodes LE, Pilkington SM, Farrar MD, Watson REB. Differential reorganisation of cutaneous elastic fibres: a comparison of the in vivo effects of broadband ultraviolet B versus solar simulated radiation. Photochem Photobiol Sci 2018; 17:889-895. [PMID: 29697102 PMCID: PMC6044188 DOI: 10.1039/c7pp00412e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/11/2018] [Indexed: 01/12/2023]
Abstract
Long-term exposure of human skin to ultraviolet radiation (UVR) in sunlight negatively impacts its appearance and function with photoaged skin having a characteristic leathery, rough appearance, with deep wrinkles. These clinical features of photodamage are thought to result from UVR-induced remodelling of the dermal extracellular matrix, particularly the elastic fibre system. There are few in vivo human data on the impact of acute UVR exposure on this fibre system and particularly solar-simulated radiation (SSR)-mediated effects. We examined the differential effect of broadband UVB and SSR on the human dermal elastic fibre system, and specifically the microfibrillar components fibrillin-1, fibulin-2 and fibulin-5. Healthy white Caucasian adults (skin type II-III) were recruited and irradiated with 3× their minimal erythema dose of broadband UVB (n = 6) or SSR (n = 6) on photoprotected buttock skin. Punch biopsies were taken 24 h after irradiation and from unirradiated control skin. Overall, histological assessment of elastic fibres revealed significantly less elastic fibre staining in broadband UVB (P = 0.004) or SSR (P = 0.04) irradiated skin compared to unirradiated control skin. Significantly less staining of fibrillin-1-positive microfibrils was also observed in the papillary dermis of UVB irradiated skin (P = 0.02) but not skin exposed to SSR. Conversely, immunohistochemistry for fibulin-5-positive microfibrils revealed significantly less expression in skin exposed to SSR (P = 0.04) but not to broadband UVB. There was no significant change in fibulin-2-positive microfibrils following either broadband UVB or SSR irradiation. Thus, broadband UVB and SSR mediate differential effects on individual components of the dermal elastic fibre network in human skin. Further human studies are required to explore the mechanisms underlying these findings and the impact of potential photoprotective agents.
Collapse
Affiliation(s)
- Nisamanee Charoenchon
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Lesley E. Rhodes
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Suzanne M. Pilkington
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Mark D. Farrar
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Rachel E. B. Watson
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| |
Collapse
|
28
|
Cvekl A, Zhao Y, McGreal R, Xie Q, Gu X, Zheng D. Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 2018; 9:2075-2092. [PMID: 28903537 PMCID: PMC5737492 DOI: 10.1093/gbe/evx153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/19/2022] Open
Abstract
The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca McGreal
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Xun Gu
- Program in Bioinformatics and Computational Biology, Department of Genetics, Development, and Cell Biology, Iowa State University
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
29
|
Secondary Plant Metabolites for Sun Protective Cosmetics: From Pre-Selection to Product Formulation. COSMETICS 2018. [DOI: 10.3390/cosmetics5020032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
30
|
Eckersley A, Mellody KT, Pilkington S, Griffiths CEM, Watson REB, O'Cualain R, Baldock C, Knight D, Sherratt MJ. Structural and compositional diversity of fibrillin microfibrils in human tissues. J Biol Chem 2018; 293:5117-5133. [PMID: 29453284 PMCID: PMC5892578 DOI: 10.1074/jbc.ra117.001483] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Elastic fibers comprising fibrillin microfibrils and elastin are present in many tissues, including the skin, lungs, and arteries, where they confer elasticity and resilience. Although fibrillin microfibrils play distinct and tissue-specific functional roles, it is unclear whether their ultrastructure and composition differ between elastin-rich (skin) and elastin-poor (ciliary body and zonule) organs or after in vitro synthesis by cultured cells. Here, we used atomic force microscopy, which revealed that the bead morphology of fibrillin microfibrils isolated from the human eye differs from those isolated from the skin. Using newly developed pre-MS preparation methods and LC-MS/MS, we detected tissue-specific regions of the fibrillin-1 primary structure that were differentially susceptible to proteolytic extraction. Comparing tissue- and culture-derived microfibrils, we found that dermis- and dermal fibroblast–derived fibrillin microfibrils differ in both bead morphology and periodicity and also exhibit regional differences in fibrillin-1 proteolytic susceptibility. In contrast, collagen VI microfibrils from the same dermal or fibroblast samples were invariant in ultrastructure (periodicity) and protease susceptibility. Finally, we observed that skin- and eye-derived microfibril suspensions were enriched in elastic fiber– and basement membrane–associated proteins, respectively. LC-MS/MS also identified proteins (such as calreticulin and protein-disulfide isomerase) that are potentially fundamental to fibrillin microfibril biology, regardless of their tissue source. Fibrillin microfibrils synthesized in cell culture lacked some of these key proteins (MFAP2 and -4 and fibrillin-2). These results showcase the structural diversity of these key extracellular matrix assemblies, which may relate to their distinct roles in the tissues where they reside.
Collapse
Affiliation(s)
| | - Kieran T Mellody
- From the Division of Cell Matrix Biology and Regenerative Medicine
| | | | - Christopher E M Griffiths
- the Division of Musculoskeletal and Dermatological Sciences.,the NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Rachel E B Watson
- the Division of Musculoskeletal and Dermatological Sciences.,the NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | | | - Clair Baldock
- From the Division of Cell Matrix Biology and Regenerative Medicine.,the Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom and
| | | | | |
Collapse
|
31
|
Hibbert SA, Costello P, O'Connor C, Bell M, Griffiths CEM, Watson REB, Sherratt MJ. A new in vitro assay to test UVR protection of dermal extracellular matrix components by a flat spectrum sunscreen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:58-64. [PMID: 28846936 DOI: 10.1016/j.jphotobiol.2017.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023]
Abstract
The efficacy of topical sunscreens is currently assessed by crude, costly and time consuming in vivo assays. We have previously demonstrated that components of the dermal extracellular matrix (ECM), rich in UV-absorbing amino acids, are susceptible to damage by solar simulated radiation (SSR) in vitro. Here we developed an in vitro method to test the ability of sunscreens to protect fibrillin-rich microfibrils (FRM) and fibronectin, key components of the dermal ECM from UV-induced damage. Solutions of FRM or fibronectin were irradiated without protection, in the presence of a vehicle or a commercially-available flat-spectrum sunscreen. The effect of SSR on molecular structure was determined by atomic force microscopy (FRM) and SDS-PAGE (fibronectin). Following irradiation, FRM periodicity became bi-modally distributed (peaks: 40nm & 59nm) compared to the unimodal distribution in unexposed controls (peak: 50nm). Irradiation in the presence of flat-spectrum sunscreen protected against this change, maintaining the unimodal distribution. SSR induced significant aggregation of fibronectin (p=0.005), which was abrogated by sunscreen. These results demonstrate that this in vitro assay system is sufficiently sensitive to act as an initial/additional screen of sunscreen efficacy. We conclude that sunscreen can reduce UV-mediated damage of key dermal ECM in vitro and thereby prevent remodelling associated with photoageing.
Collapse
Affiliation(s)
- S A Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - P Costello
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK; Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C O'Connor
- Walgreens Boots Alliance, Thane Road, Nottingham, UK
| | - M Bell
- Walgreens Boots Alliance, Thane Road, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK; Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R E B Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK; Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - M J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
32
|
Gritsenko DA, Orlova OA, Linkova NS, Khavinson VK. Transcription factor p53 and skin aging. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017020072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
34
|
Photoinduced formation of thiols in human hair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:43-48. [DOI: 10.1016/j.jphotobiol.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
|
35
|
Mora Huertas AC, Schmelzer CEH, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie 2016; 128-129:163-73. [PMID: 27569260 DOI: 10.1016/j.biochi.2016.08.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin.
Collapse
Affiliation(s)
- Angela C Mora Huertas
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | | | - Frank Heyroth
- Interdisciplinary Center of Material Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
36
|
Kim M, Park KY, Lee MK, Jin T, Seo SJ. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes. PLoS One 2016; 11:e0161247. [PMID: 27526049 PMCID: PMC4985158 DOI: 10.1371/journal.pone.0161247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 12/02/2022] Open
Abstract
Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin.
Collapse
Affiliation(s)
- MinJeong Kim
- Departments of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Kui Young Park
- Departments of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Taewon Jin
- Departments of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Seong Jun Seo
- Departments of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
37
|
Yeo GC, Santos M, Kondyurin A, Liskova J, Weiss AS, Bilek MMM. Plasma-Activated Tropoelastin Functionalization of Zirconium for Improved Bone Cell Response. ACS Biomater Sci Eng 2016; 2:662-676. [PMID: 33465866 DOI: 10.1021/acsbiomaterials.6b00049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanical strength, durability, corrosion resistance, and biocompatibility of metal alloys based on zirconium (Zr) and titanium (Ti) make them desirable materials for orthopedic implants. However, as bioinert metals, they do not actively promote bone formation and integration. Here we report a plasma coating process for improving integration of such metal implants with local bone tissue. The coating is a stable carbon-based plasma polymer layer that increased surface wettability by 28%, improved surface elasticity to the range exhibited by natural bone, and additionally covalently bound the extracellular matrix protein, tropoelastin, in an active conformation. The thus biofunctionalized material was significantly more resistant to medical-grade sterilization by steam, autoclaving or gamma-ray irradiation, retaining >60% of the adhered tropoelastin molecules and preserving full bioactivity. The interface of the coating and metal was robust so as to resist delamination during surgical insertion and in vivo deployment, and the plasma process employed was utilized to also coat the complex 3D geometries typical of orthopedic implants. Osteoblast-like osteosarcoma cells cultured on the biofunctionalized Zr surface exhibited a significant 30% increase in adhesion and up to 70% improvement in proliferation. Cells on these materials also showed significant early stage up-regulation of bone marker expression (alkaline phosphatase, 1.8 fold; osteocalcin, 1.4 fold), and sustained up-regulation of these genes (alkaline phosphatase, 1.3 fold; osteocalcin, 1.2 fold) in osteogenic conditions. In addition, alkaline phosphatase production significantly increased (2-fold) on the functionalized surfaces, whereas bone mineral deposition increased by 30% above background levels compared to bare Zr. These findings have the potential to be readily translated to the development of improved Zr and Ti-based implants for accelerated bone repair.
Collapse
Affiliation(s)
| | - Miguel Santos
- The Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2050, Australia
| | | | - Jana Liskova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Národní 1009/3, Prague 14220, Czech Republic
| | | | | |
Collapse
|
38
|
Korkina L. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2016; 12:377-88. [PMID: 26854731 DOI: 10.1517/17425255.2016.1149569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. AREAS COVERED Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) EXPERT OPINION Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.
Collapse
Affiliation(s)
- Liudmila Korkina
- a Scientific Direction, Centre for Innovative Biotechnological Investigations 'NANOLAB' , Moscow , Russia
| |
Collapse
|
39
|
Affiliation(s)
- Michael J Sherratt
- Centre for Tissue Injury and Repair, Manchester Academic Health Sciences Centre, Institute of Inflammation & Repair, The University of Manchester, Manchester, UK
| |
Collapse
|