1
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. J Lipid Res 2025; 66:100716. [PMID: 39608569 PMCID: PMC11745954 DOI: 10.1016/j.jlr.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024] Open
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR/Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with an abnormal eye phenotype and demonstrate that even morphologically normal siblings exhibit dysregulated vision and stress response gene pathways. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities, and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Traber MG. Deciphering the enigma of the function of alpha-tocopherol as a vitamin. Free Radic Biol Med 2024; 221:64-74. [PMID: 38754744 PMCID: PMC11908772 DOI: 10.1016/j.freeradbiomed.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
α-Tocopherol (α-T) is a vitamin, but the reasons for the α-T requirement are controversial. Given that α-T deficiency was first identified in embryos, we studied to the premier model of vertebrate embryo development, the zebrafish embryo. We developed an α-T-deficient diet for zebrafish and used fish consuming this diet to produce α-T deficient (E-) embryos. We showed that α-T deficiency causes increased lipid peroxidation, leading to metabolic dysregulation that impacts both biochemical and morphological changes at very early stages in development. These changes occur at an early developmental window, which takes place prior to an analogous time to when a human knows she is pregnant. We found that α-T limits the chain reaction of lipid peroxidation and protects metabolic pathways and integrated gene expression networks that control embryonic development. Importantly, not only is α-T critical during early development, but the neurodevelopmental process is highly dependent on α-T trafficking by the α-T transfer protein (TTPa). Data from both gene expression and evaluation of the metabolome in E- embryos suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is dysregulated-mTOR is a master regulatory mechanism, which controls both metabolism and neurodevelopment. Our findings suggest that TTPa is needed not only for regulation of plasma α-T in adults but is a key regulator during embryogenesis.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, 97330, OR, USA.
| |
Collapse
|
3
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605803. [PMID: 39131270 PMCID: PMC11312534 DOI: 10.1101/2024.07.30.605803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Ning J, Gu X, Zhou J, Zhang H, Sun J, Zhao L. Palmitoleic acid as a coordinating molecule between the invasive pinewood nematode and its newly associated fungi. THE ISME JOURNAL 2023; 17:1862-1871. [PMID: 37604917 PMCID: PMC10579226 DOI: 10.1038/s41396-023-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
Symbiotic microorganisms are ubiquitous on the body surface or internal tissues of invertebrates, providing them with benefits. Developing symbiotic relationships requires synchronization of developmental stages and physical proximity of partners. Therefore, the identification of metabolites that coordinate the reproduction of symbiotic partners is essential. This study demonstrates that palmitoleic acid (C16: 1) coordinates bilateral propagation by regulating the synchronization of reproduction between the invasive pinewood nematode (PWN) and its newly associated blue-stain fungus, Sporothrix sp.1. When the PWN fed on Sporothrix sp.1, there was a significant increase in lipid metabolism gene expression and metabolite abundance. Through further investigations, it highlighted a significant enhancement in the reproduction of the PWN through direct acquisition of C16: 1, which was abundantly present in Sporothrix sp.1. Furthermore, the PWN biosynthesized C16: 1 through the involvement of the stearoyl-CoA 9-desaturase gene fat-5 and its hormone nuclear receptor nhr-80, which was clarified to promote the egg-laying capacity of females. Moreover, it is worth noting that the production of C16: 1 was significantly higher by the associated fungus Sporothrix sp.1 to enhance sporulation during the spore formation phase compared to the hypha growth phase. Thus, by coordinating the fecundity and spore production, the key lipid metabolite C16: 1 facilitates the rapid and successful colonization of a mutually beneficial symbiotic relationship between the invasive PWN and the native Sporothrix sp.1 within the host. This finding emphasizes the significant role of metabolite sharing and its function in promoting partner synchronization within symbiotic relationships.
Collapse
Affiliation(s)
- Jing Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoting Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Henderson TD, Choi J, Leonard SW, Head B, Tanguay RL, Barton CL, Traber MG. Chronic Vitamin E Deficiency Dysregulates Purine, Phospholipid, and Amino Acid Metabolism in Aging Zebrafish Skeletal Muscle. Antioxidants (Basel) 2023; 12:1160. [PMID: 37371890 PMCID: PMC10294951 DOI: 10.3390/antiox12061160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Muscle wasting occurs with aging and may be a result of oxidative stress damage and potentially inadequate protection by lipophilic antioxidants, such as vitamin E. Previous studies have shown muscular abnormalities and behavioral defects in vitamin E-deficient adult zebrafish. To test the hypothesis that there is an interaction between muscle degeneration caused by aging and oxidative damage caused by vitamin E deficiency, we evaluated long-term vitamin E deficiency in the skeletal muscle of aging zebrafish using metabolomics. Zebrafish (55 days old) were fed E+ and E- diets for 12 or 18 months. Then, skeletal muscle samples were analyzed using UPLC-MS/MS. Data were analyzed to highlight metabolite and pathway changes seen with either aging or vitamin E status or both. We found that aging altered purines, various amino acids, and DHA-containing phospholipids. Vitamin E deficiency at 18 months was associated with changes in amino acid metabolism, specifically tryptophan pathways, systemic changes in the regulation of purine metabolism, and DHA-containing phospholipids. In sum, while both aging and induced vitamin E deficiency did have some overlap in altered and potentially dysregulated metabolic pathways, each factor also presented unique alterations, which require further study with more confirmatory approaches.
Collapse
Affiliation(s)
- Trent D. Henderson
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Scott W. Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; (R.L.T.)
| | - Carrie L. Barton
- Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; (R.L.T.)
| | - Maret G. Traber
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
6
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
Affiliation(s)
- Brian Head
- Linus Pauling Institute, Corvallis, OR, USA; Molecular and Cell Biology Program, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Watt AT, Head B, Leonard SW, Tanguay RL, Traber MG. Gene Expression of CRAL_TRIO Family Proteins modulated by Vitamin E Deficiency in Zebrafish (Danio Rerio). J Nutr Biochem 2021; 97:108801. [PMID: 34119630 PMCID: PMC10129037 DOI: 10.1016/j.jnutbio.2021.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
An evaluation of the impact of vitamin E deficiency on expression of the alpha-tocopherol transfer protein (α-TTP) and related CRAL_TRIO genes was undertaken using livers from adult zebrafish based on the hypothesis that increased lipid peroxidation would modulate gene expression. Zebrafish were fed either a vitamin E sufficient (E+) or deficient (E-) diet for 9 months, then fish were euthanized, and livers were harvested. Livers from the E+ relative to E- fish contained 40-times more α-tocopherol (P <0.0001) and one fourth the malondialdehyde (P = 0.0153). RNA was extracted from E+ and E- livers, then subject to evaluation of gene expression of ttpa and other genes of the CRAL_TRIO family, genes of antioxidant markers, and genes related to lipid metabolism. Ttpa expression was not altered by vitamin E status. However, one member of the CRAL_TRIO family, tyrosine-protein phosphatase non-receptor type 9 gene (ptpn9a), showed a 2.4-fold increase (P = 0.029) in E- relative to E+ livers. Further, we identified that the gene for choline kinase alpha (chka) showed a 3.0-fold increase (P = 0.010) in E- livers. These outcomes are consistent with our previous findings that show vitamin E deficiency increased lipid peroxidation causing increases in phospholipid turnover.
Collapse
Affiliation(s)
- Alexander T Watt
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; Integrative Biology Program, Oregon State University, Corvallis, Oregon
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; Molecular and Cell Biology Program
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
8
|
Abstract
Vitamin A, acting through its metabolite, all-trans-retinoic acid, is a potent transcriptional regulator affecting expression levels of hundreds of genes through retinoic acid response elements present within these genes. However, the literature is replete with claims that consider vitamin A to be an antioxidant vitamin, like vitamins C and E. This apparent contradiction in the understanding of how vitamin A acts mechanistically within the body is a major focus of this review. Vitamin E, which is generally understood to act as a lipophilic antioxidant protecting polyunsaturated fatty acids present in membranes, is often proposed to be a transcriptional regulator. The evaluation of this claim is another focus of the review. We conclude that vitamin A is an indirect antioxidant, whose indirect function is to transcriptionally regulate a number of genes involved in mediating the body's canonical antioxidant responses. Vitamin E, in addition to being a direct antioxidant, prevents the increase of peroxidized lipids that alter both metabolic pathways and gene expression profiles within tissues and cells. However, there is little compelling evidence that vitamin E has a direct transcriptional mechanism like that of vitamin A. Thus, we propose that the term antioxidant not be applied to vitamin A, and we discourage the use of the term transcriptional mediator when discussing vitamin E.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA;
| | - Igor O Shmarakov
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
9
|
Anitha A, Viswambharan V, Thanseem I, Iype M, Parakkal R, Surendran SP, Mundalil MV. Vitamins and Cognition: A Nutrigenomics Perspective. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200901180443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rise in the prevalence of neurodegenerative and neurodevelopmental cognitive disorders
combined with a lack of efficient therapeutic strategies has necessitated the need to develop alternate
approaches. Dietary supplements are now being considered as a complementary and alternative
medicine for cognitive impairments. Considerable evidence suggests the role of vitamins in
modulating the genetic and epigenetic factors implicated in neuropsychiatric, neurodevelopmental
and neurodegenerative disorders. In this review, we provide an overview of the implications of nutrigenomics
with reference to vitamins that are suggested to boost cognitive functions (nootropic vitamins).
Several vitamins have been found to possess antioxidant and anti-inflammatory properties
which make them potential candidates in preventing or delaying age-related neurodegeneration and
cognitive decline. Well-designed longitudinal studies are essential to examine the association between
vitamins and cognitive functions. Future studies linking nutrition with advances in neuroscience,
genomics and epigenomics would provide novel approaches to managing cognitive disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Government Medical College, Thiruvananthapuram 695 011, Kerala, India
| | - Rahna Parakkal
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Sumitha P. Surendran
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh V. Mundalil
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
10
|
Matsumoto S, Fang X, Traber MG, Jones KD, Langelier C, Hayakawa Serpa P, Calfee CS, Matthay MA, Gotts JE. Dose-Dependent Pulmonary Toxicity of Aerosolized Vitamin E Acetate. Am J Respir Cell Mol Biol 2021; 63:748-757. [PMID: 32822237 DOI: 10.1165/rcmb.2020-0209oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Electronic-cigarette, or vaping, product use-associated lung injury (EVALI) is a syndrome of acute respiratory failure characterized by monocytic and neutrophilic alveolar inflammation. Epidemiological and clinical evidence suggests a role of vitamin E acetate (VEA) in the development of EVALI, yet it remains unclear whether VEA has direct pulmonary toxicity. To test the hypotheses that aerosolized VEA causes lung injury in mice and directly injures human alveolar epithelial cells, we exposed adult mice and primary human alveolar epithelial type II (AT II) cells to an aerosol of VEA generated by a device designed for vaping oils. Outcome measures in mice included lung edema, BAL analysis, histology, and inflammatory cytokines; in vitro outcomes included cell death, cytokine release, cellular uptake of VEA, and gene-expression analysis. Comparison exposures in both models included the popular nicotine-containing JUUL aerosol. We discovered that VEA caused dose-dependent increases in lung water and BAL protein compared with control and JUUL-exposed mice in association with increased BAL neutrophils, oil-laden macrophages, multinucleated giant cells, and inflammatory cytokines. VEA aerosol was also toxic to AT II cells, causing increased cell death and the release of monocyte and neutrophil chemokines. VEA was directly absorbed by AT II cells, resulting in the differential gene expression of several inflammatory biological pathways. Given the epidemiological and clinical characteristics of the EVALI outbreak, these results suggest that VEA plays an important causal role.
Collapse
Affiliation(s)
- Shotaro Matsumoto
- Department of Medicine and.,Department of Anesthesia, Cardiovascular Research Institute
| | - Xiaohui Fang
- Department of Medicine and.,Department of Anesthesia, Cardiovascular Research Institute
| | | | - Kirk D Jones
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Charles Langelier
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon; and.,Chan Zuckerberg Biohub, San Francisco, California
| | - Paula Hayakawa Serpa
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon; and
| | - Carolyn S Calfee
- Department of Medicine and.,Department of Anesthesia, Cardiovascular Research Institute
| | - Michael A Matthay
- Department of Medicine and.,Department of Anesthesia, Cardiovascular Research Institute
| | - Jeffrey E Gotts
- Department of Medicine and.,Department of Anesthesia, Cardiovascular Research Institute
| |
Collapse
|
11
|
Zhang J, Head B, Leonard SW, Choi J, Tanguay RL, Traber MG. Vitamin E deficiency dysregulates thiols, amino acids and related molecules during zebrafish embryogenesis. Redox Biol 2020; 38:101784. [PMID: 33186843 PMCID: PMC7658488 DOI: 10.1016/j.redox.2020.101784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin E (α-tocopherol, VitE) was discovered as a nutrient essential to protect fetuses, but its molecular role in embryogenesis remains undefined. We hypothesize that the increased lipid peroxidation due to VitE deficiency drives a complex mechanism of overlapping biochemical pathways needed to maintain glutathione (GSH) homeostasis that is dependent on betaine and its methyl group donation. We assess amino acids and thiol changes that occur during embryogenesis [12, 24 and 48 h post fertilization (hpf)] in VitE-sufficient (E+) and deficient (E-) embryos using two separate, novel protocols to quantitate changes using UPLC-MS/MS. Using partial least squares discriminant analysis, we found that betaine is a critical feature separating embryos by VitE status and is higher in E- embryos at all time points. Other important features include: glutamic acid, increased in E- embryos at 12 hpf; choline, decreased in E- embryos at 24 hpf; GSH, decreased in E- embryos at 48 hpf. By 48 hpf, GSH was significantly lower in E- embryos (P < 0.01), as were both S-adenosylmethionine (SAM, P < 0.05) and S-adenosylhomocysteine (SAH, P < 0.05), while glutamic acid was increased (P < 0.01). Since GSH synthesis requires cysteine (which was unchanged), these data suggest that both the conversion of homocysteine and the uptake of cystine via the Xc- exchanger are dysregulated. Our data clearly demonstrates the highly inter-related dependence of methyl donors (choline, betaine, SAM) and the methionine cycle for maintenance of thiol homeostasis. Additional quantitative flux studies are needed to clarify the quantitative importance of these routes.
Collapse
Affiliation(s)
- Jie Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; College of Science, China Agriculture University, Beijing, China
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
12
|
Vitamin E is necessary for zebrafish nervous system development. Sci Rep 2020; 10:15028. [PMID: 32958954 PMCID: PMC7506018 DOI: 10.1038/s41598-020-71760-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E+) or deficient (E-) diets, were spawned to obtain E+ and E- embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E- embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E- embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E- embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E- embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.
Collapse
|
13
|
Dreier DA, Bowden JA, Aristizabal-Henao JJ, Denslow ND, Martyniuk CJ. Ecotoxico-lipidomics: An emerging concept to understand chemical-metabolic relationships in comparative fish models. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100742. [PMID: 32956922 DOI: 10.1016/j.cbd.2020.100742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/16/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Lipids play an essential role in development, homeostatic functions, immune signaling, reproduction, and growth. Although it is evident that changes in lipid biosynthesis and metabolism can affect organismal physiology, few studies have determined how environmental stressors affect lipid pathways, let alone alter global lipid profiles in fish. This is a significant research gap, as a number of environmental contaminants interact with lipid signaling and metabolic pathways. In this review, we highlight the utility of lipidomics as a tool in environmental toxicology, discussing the current state of knowledge regarding chemical-lipidomic perturbations. As with most oviparous animals, the processing and storage of lipids during oocyte development is also particularly important for embryogenesis in fish. Using largemouth bass (Micropterus salmoides) as an example, transcriptomics data suggest that various chemicals alter lipid metabolism and regulation, highlighting the need for more sophisticated investigations into how toxicants impact lipid responses. We also point out the challenges ahead; these include a lack of understanding about lipid processing and signaling in fish, tissue and species-specific lipid composition, and extraneous factors (e.g., nutrition, temperature) that confound interpretation. For example, toxicant exposure can lead to oxidative stress and lipid peroxidation, resulting in complex lipid byproducts that are challenging to measure. With the emergence of lipidomics in systems toxicology, multi-omics approaches are expected to more clearly define effects on physiology, creating stronger linkages between multiple molecular entities (gene-protein-lipid/metabolite). The development and implementation of novel technologies such as ion mobility-mass spectrometry and ozone-induced dissociation support the complete structural elucidation of lipid molecules. This has implications in the adverse outcome pathway framework, which will enhance the application of lipidomics in toxicology by linking these molecular changes to effects at higher levels of biological organization.
Collapse
Affiliation(s)
- David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - John A Bowden
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Juan J Aristizabal-Henao
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Paraiso IL, Revel JS, Choi J, Miranda CL, Lak P, Kioussi C, Bobe G, Gombart AF, Raber J, Maier CS, Stevens JF. Targeting the Liver-Brain Axis with Hop-Derived Flavonoids Improves Lipid Metabolism and Cognitive Performance in Mice. Mol Nutr Food Res 2020; 64:e2000341. [PMID: 32627931 PMCID: PMC8693899 DOI: 10.1002/mnfr.202000341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Indexed: 08/18/2023]
Abstract
SCOPE Sphingolipids including ceramides are implicated in the pathogenesis of obesity and insulin resistance. Correspondingly, inhibition of pro-inflammatory and neurotoxic ceramide accumulation prevents obesity-mediated insulin resistance and cognitive impairment. Increasing evidence suggests the farnesoid X receptor (FXR) is involved in ceramide metabolism, as bile acid-FXR crosstalk controls ceramide levels along the gut-liver axis. The authors previously reported that FXR agonist xanthohumol (XN), the principal prenylated flavonoid in hops (Humulus lupulus), and its hydrogenated derivatives, α,β-dihydroxanthohumol (DXN), and tetrahydroxanthohumol (TXN), ameliorated obesity-mediated insulin resistance, and cognitive impairment in mice fed a high-fat diet. METHODS AND RESULTS To better understand how the flavonoids improve both, lipid and bile acid profiles in the liver are analyzed, sphingolipid relative abundance in the hippocampus is measured, and linked them to metabolic and neurocognitive performance. XN, DXN, and TXN (30 mg kg-1 BW per day) decrease ceramide content in liver and hippocampus; the latter is linked to improvements in spatial learning and memory. In addition, XN, DXN, and TXN decrease hepatic cholesterol content by enhancing de novo synthesis of bile acids. CONCLUSION These observations suggest that XN, DXN, and TXN may alleviate obesity-induced metabolic and neurocognitive impairments by targeting the liver-brain axis.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Johana S Revel
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Parnian Lak
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
15
|
Mottola F, Scudiero N, Iovine C, Santonastaso M, Rocco L. Protective activity of ellagic acid in counteract oxidative stress damage in zebrafish embryonic development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110642. [PMID: 32311610 DOI: 10.1016/j.ecoenv.2020.110642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
During its development, embryo is easily susceptible to reactive oxygen species (ROS). Evidence demonstrate protective role of the antioxidants, improving both cellular growth and embryonic development. Among these, ellagic acid (EA) is a natural antioxidant with anti-inflammatory and anti-carcinogen properties. The aim of this work was to assess in vitro the protective and anti-genotoxic role of EA during Danio rerio (zebrafish) embryonic development. For the study, zebrafish embryos were treated with H2O2 (15 μM, 30 μM and 45 μM) to simulate an oxidative damage, and with EA (2.5 mM, 5 mM and 10 mM) for 8, 20, 24, 48, 96 hpf (hours post fertilization). Vitality rate, alterations in the morphology and behavior of the larvae and the genomic stability were analyzed. The exposure to H2O2 caused genotoxicity for all exposure times. The incubation in 45 μM H2O2 and 30 μM H2O2 resulted in increased mortality rate of the larvae, as well as 10 mM EA. The co-exposure was performed using to 15 μM H2O2 and 2.5 mM and 5 mM EA and it demonstrated the EA capacity to protect the embryo DNA and development from the oxidative insult. Particularly, the co-exposure to 15 mM H2O2 and 5 mM EA showed an increase in the embryo survival rate and absence of alterations in morphology and behavior at 96 hpf. Interestingly, we observed a higher genomic stability at 8h and 20h co-exposure (15 mM H2O2 and 5 mM EA) time. The decline observed in ROS concentration for both exposure times confirmed the observation. In conclusion, EA protects the zebrafish embryonic development from DNA oxidative damage increasing the embryo survival rate and improving morphological parameters of the larvae.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nunzia Scudiero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
16
|
Ranard KM, Kuchan MJ, Bruno RS, Juraska JM, Erdman JW. Synthetic α-Tocopherol, Compared with Natural α-Tocopherol, Downregulates Myelin Genes in Cerebella of Adolescent Ttpa-null Mice. J Nutr 2020; 150:1031-1040. [PMID: 31883016 DOI: 10.1093/jn/nxz330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vitamin E (α-tocopherol; α-T) deficiency causes spinocerebellar ataxia. α-T supplementation improves neurological symptoms, but little is known about the differential bioactivities of natural versus synthetic α-T during early life. OBJECTIVE We assessed the effects of dietary α-T dose and source on tissue α-T accumulation and gene expression in adolescent α-tocopherol transfer protein-null (Ttpa-/-) mice. METHODS Three-week-old male Ttpa-/- mice (n = 7/group) were fed 1 of 4 AIN-93G-based diets for 4 wk: vitamin E deficient (VED; below α-T limit of detection); natural α-T, 600 mg/kg diet (NAT); synthetic α-T, 816 mg/kg diet (SYN); or high synthetic α-T, 1200 mg/kg diet (HSYN). Male Ttpa+/+ littermates fed AIN-93G [75 mg synthetic α-T (CON)] served as controls (n = 7). At 7 wk of age, tissue α-T concentrations and stereoisomer profiles were measured for all groups. RNA-sequencing was performed on cerebella of Ttpa-/- groups. RESULTS Ttpa-/- mice fed VED had undetectable brain α-T concentrations. Cerebral cortex α-T concentrations were greater in Ttpa-/- mice fed NAT (9.1 ± 0.7 nmol/g), SYN (10.8 ± 1.0 nmol/g), and HSYN (13.9 ± 1.6 nmol/g) compared with the VED group but were significantly lower than in Ttpa+/+ mice fed CON (24.6 ± 1.2 nmol/g) (P < 0.001). RRR-α-T was the predominant stereoisomer in brains of Ttpa+/+ mice (∼40%) and Ttpa-/- mice fed NAT (∼94%). α-T stereoisomer composition was similar in brains of Ttpa-/- mice fed SYN and HSYN (2R: ∼53%; 2S: ∼47%). Very few of the 16,774 genes measured were differentially expressed. However, compared with the NAT diet, HSYN significantly downregulated 20 myelin genes, including 2 transcription factors: SRY-box transcription factor 10 (Sox10) and myelin regulatory factor (Myrf), and several downstream target genes (false discovery rate <0.05). CONCLUSIONS High-dose synthetic α-T compared with natural α-T alters myelin gene expression in the adolescent mouse cerebellum, which could lead to morphological and functional abnormalities later in life.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Janice M Juraska
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Barenys M, Molins A, Amorós-Galicia L, Flick B, Gómez-Catalán J. Implementation of a functional endpoint to the zebrafish embryotoxicity test to evaluate craniofacial abnormalities. Toxicol In Vitro 2019; 61:104638. [PMID: 31476374 DOI: 10.1016/j.tiv.2019.104638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023]
Abstract
The inclusion of a read-out to detect functional consequences of craniofacial alterations in the zebrafish embryotoxicity test will allow to evaluate these alterations which are difficult to assess morphologically, and to detect alterations in cranial nerves functions leading to impairment of jaw movements. In this study we have established an ingestion test in zebrafish larvae younger than 120 hpf. To overcome the challenge of evaluating larvae which still do not present independent feeding behaviour, we have tested the ability of 72, 96 or 102 hpf larvae to ingest food mixed with fluorescent microspheres under several conditions (dark/light, with/without shaking) to find the best experimental set-up for the test. We have included the investigation of two substances as potential positive controls: ketoconazole and tricaine. Ketoconazole 10 μM exposure during development produced significant embryotoxic effects including a characteristic craniofacial alteration pattern consisting in impaired development of brain, nasal cavity, mouth opening and jaw, as well as a significant decrease in food intake. Tricaine exposure at 380 μM during the food availability period significantly decreased the food intake. The method proposed will be a useful alternative tool to animal testing to detect compounds inducing adverse effects on craniofacial development.
Collapse
Affiliation(s)
- Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| | - Anna Molins
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Lola Amorós-Galicia
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Jesús Gómez-Catalán
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
19
|
McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med 2017; 112:308-317. [PMID: 28790013 PMCID: PMC5629005 DOI: 10.1016/j.freeradbiomed.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
Zebrafish (Danio rerio) are a recognized model for studying the pathogenesis of cognitive deficits and the mechanisms underlying behavioral impairments, including the consequences of increased oxidative stress within the brain. The lipophilic antioxidant vitamin E (α-tocopherol; VitE) has an established role in neurological health and cognitive function, but the biological rationale for this action remains unknown. In the present study, we investigated behavioral perturbations due to chronic VitE deficiency in adult zebrafish fed from 45 days to 18-months of age diets that were either VitE-deficient (E-) or VitE-sufficient (E+). We hypothesized that E- zebrafish would display cognitive impairments associated with elevated lipid peroxidation and metabolic disruptions in the brain. Quantified VitE levels at 18-months in E- brains (5.7 ± 0.1 nmol/g tissue) were ~20-times lower than in E+ (122.8 ± 1.1; n = 10/group). Using assays of both associative (avoidance conditioning) and non-associative (habituation) learning, we found E- vs E+ fish were learning impaired. These functional deficits occurred concomitantly with the following observations in adult E- brains: decreased concentrations of and increased peroxidation of polyunsaturated fatty acids (especially docosahexaenoic acid, DHA), altered brain phospholipid and lysophospholipid composition, as well as perturbed energy (glucose/ketone), phosphatidylcholine and choline/methyl-donor metabolism. Collectively, these data suggest that chronic VitE deficiency leads to neurological dysfunction through multiple mechanisms that become dysregulated secondary to VitE deficiency. Apparently, the E- animals alter their metabolism to compensate for the VitE deficiency, but these compensatory mechanisms are insufficient to maintain cognitive function.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Kathy Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
20
|
McDougall M, Choi J, Truong L, Tanguay R, Traber MG. Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radic Biol Med 2017; 110. [PMID: 28645790 PMCID: PMC5548191 DOI: 10.1016/j.freeradbiomed.2017.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vitamin E (α-tocopherol; VitE) is a lipophilic antioxidant required for normal embryonic development in vertebrates, but the long-term effects of embryonic VitE deficiency, and whether they are ameliorated by feeding VitE-adequate diets, remain unknown. We addressed these questions using a zebrafish (Danio rerio) model of developmental VitE deficiency followed by dietary remediation. Adult zebrafish maintained on VitE-deficient (E-) or sufficient (E+) diets were spawned to obtained E- and E+ embryos, respectively, which we evaluated up to 12 days post-fertilization (dpf). The E- group suffered significantly increased morbidity and mortality as well as altered DNA methylation status through 5 dpf when compared to E+ larvae, but upon feeding with a VitE-adequate diet from 5 to 12 dpf both the E- and E+ groups survived and grew normally; the DNA methylation profile also was similar between groups by 12 dpf. However, 12 dpf E- larvae still had behavioral defects. These observations coincided with sustained VitE deficiency in the E- vs. E+ larvae (p < 0.0001), despite adequate dietary supplementation. We also found in E- vs. E+ larvae continued docosahexaenoic acid (DHA) depletion (p < 0.0001) and significantly increased lipid peroxidation. Further, targeted metabolomics analyses revealed persistent dysregulation of the cellular antioxidant network, the CDP-choline pathway, and glucose metabolism. While anaerobic processes were increased, aerobic metabolism was decreased in the E- vs. E+ larvae, indicating mitochondrial damage. Taken together, these outcomes suggest embryonic VitE deficiency causes lasting behavioral impairments due to persistent lipid peroxidation and metabolic perturbations that are not resolved via later dietary VitE supplementation.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
21
|
Georgescu VP, de Souza Junior TP, Behrens C, Barros MP, Bueno CA, Utter AC, McAnulty LS, McAnulty SR. Effect of exercise-induced dehydration on circulatory markers of oxidative damage and antioxidant capacity. Appl Physiol Nutr Metab 2017; 42:694-699. [DOI: 10.1139/apnm-2016-0701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dehydration is a common event associated with exercise. However, few studies have examined the effects of dehydration on plasma redox status in humans. Eighty-two athletes were recruited and baseline anthropometrics and blood samples were obtained. Athletes then engaged in a dehydration protocol, training until 3% of preweight body mass was lost. Athletes returned to the lab and had postdehydration blood collected. Athletes then consumed an isotonic drink until pre-exercise body weight was reestablished. Blood was then recollected (1 h post full rehydration (PFR)). Samples were centrifuged and the plasma snap frozen in liquid nitrogen and stored at −80 °C. Lipid and protein oxidative stress was determined by measuring F2-isoprostanes and protein carbonyls (PC), respectively. Antioxidant capacity was determined by the ferric reducing ability of plasma (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays. Plasma osmolality was determined using an osmometer. Statistical analysis utilized a 1-way ANOVA with posthoc testing. Values are reported as mean ± SD. Plasma osmolality was significantly elevated immediately postdehydration (p ≤ 0.001) but decreased to baseline at PFR. Plasma TEAC increased immediately postdehydration and at PFR (p ≤ 0.001). FRAP increased immediately postdehydration (p ≤ 0.001) and decreased to below baseline at PFR (p ≤ 0.05). Conversely, F2-isoprostanes declined significantly from baseline to immediately postdehydration and then significantly rose at PFR (p ≤ 0.001), whereas PC declined at PFR (p ≤ 0.01). This study indicates that dehydration and exercise cause a significant increase in plasma osmolality and antioxidant potential immediately postexercise. We propose dehydration significantly elevates antioxidant concentration which suppresses F2-isoprostanes and PC.
Collapse
Affiliation(s)
- Vincent P. Georgescu
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
| | - Tacito P. de Souza Junior
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
- Universidade Federal do Parana, Research Group on Metabolism, Nutrition, and Strength Training, Rua Coração de Maria, 92 - BR 116, Curitiba, Brazil
| | - Christian Behrens
- Department of Nutrition and Health Care Management, Appalachian State University, 261 Locust Street, Boone, NC USA
| | - Marcelo P. Barros
- Postgraduate program in Human Movement Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, Rua Coração de Maria, 192 - BR 16 Sao Paulo, Brazil
| | - Carlos Alves Bueno
- Universidade Federal do Parana, Research Group on Metabolism, Nutrition, and Strength Training, Rua Coração de Maria, 92 - BR 116, Curitiba, Brazil
| | - Alan C. Utter
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
| | - Lisa S. McAnulty
- Department of Nutrition and Health Care Management, Appalachian State University, 261 Locust Street, Boone, NC USA
| | - Steven R. McAnulty
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
| |
Collapse
|
22
|
McDougall M, Choi J, Kim HK, Bobe G, Stevens JF, Cadenas E, Tanguay R, Traber MG. Lethal dysregulation of energy metabolism during embryonic vitamin E deficiency. Free Radic Biol Med 2017; 104:324-332. [PMID: 28095320 PMCID: PMC5344700 DOI: 10.1016/j.freeradbiomed.2017.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/18/2023]
Abstract
Vitamin E (α-tocopherol, VitE) was discovered in 1922 for its role in preventing embryonic mortality. We investigated the underlying mechanisms causing lethality using targeted metabolomics analyses of zebrafish VitE-deficient embryos over five days of development, which coincided with their increased morbidity and mortality. VitE deficiency resulted in peroxidation of docosahexaenoic acid (DHA), depleting DHA-containing phospholipids, especially phosphatidylcholine, which also caused choline depletion. This increased lipid peroxidation also increased NADPH oxidation, which depleted glucose by shunting it to the pentose phosphate pathway. VitE deficiency was associated with mitochondrial dysfunction with concomitant impairment of energy homeostasis. The observed morbidity and mortality outcomes could be attenuated, but not fully reversed, by glucose injection into VitE-deficient embryos at developmental day one. Thus, embryonic VitE deficiency in vertebrates leads to a metabolic reprogramming that adversely affects methyl donor status and cellular energy homeostasis with lethal outcomes.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Hye-Kyeong Kim
- The Catholic University of Korea, Seoul, Republic of Korea
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - J Frederik Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Enrique Cadenas
- University of Southern California, School of Pharmacy, Los Angeles, CA 90089, USA
| | - Robert Tanguay
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|