1
|
Liu C, Su W, Jiang X, Lv Y, Kong F, Chen Q, Zhang Q, Zhang H, Liu Y, Li X, Xu X, Chen Y, Qu D. A Sustainable Retinal Drug Co-Delivery for Boosting Therapeutic Efficacy in wAMD: Unveiling Multifaceted Evidence and Synergistic Mechanisms. Adv Healthc Mater 2024; 13:e2303659. [PMID: 38386849 DOI: 10.1002/adhm.202303659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Sustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days. A single intravitreal injection of Bor/PT-M@TRG yields substantial reductions in choroidal neovascularization (CNV, a hallmark feature of wAMD) progression and mitigates oxidative stress-induced damage in vivo. Combinational PF&TMP regulates the "reactive oxygen species/nuclear factor erythroid-2-related factor 2/heme oxygenase-1" pathway and blocks the "hypoxia inducible factor-1α/vascular endothelial growth factor" signaling in retina, synergistically cutting off the loop of CNV formation. Utilizing fluorescence resonance energy transfer and liquid chromatography-mass spectrometry techniques, they present compelling multifaceted evidence of sustainable retinal codelivery spanning formulations, ARPE-19 cells, in vivo eye balls, and ex vivo section/retina-choroid complex cell levels. Such codelivery approach is elucidated as the key driving force behind the exceptional therapeutic outcomes of Bor/PT-M@TRG. These findings highlight the significance of sustainable retinal drug codelivery and rational combination for effective treatment of wAMD.
Collapse
Affiliation(s)
- Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Qin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, P. R. China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xinrong Xu
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, P. R. China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| |
Collapse
|
2
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
3
|
Xue B, Wang P, Yu W, Feng J, Li J, Zhao R, Yang Z, Yan X, Duan H. CD146 as a promising therapeutic target for retinal and choroidal neovascularization diseases. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1157-1170. [PMID: 34729700 DOI: 10.1007/s11427-021-2020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Blood vessel dysfunction causes several retinal diseases, including diabetic retinopathy, familial exudative vitreoretinopathy, macular degeneration and choroidal neovascularization in pathological myopia. Vascular endothelial growth factor (VEGF)-neutralizing proteins provide benefits in most of those diseases, yet unsolved haemorrhage and frequent intraocular injections still bothered patients. Here, we identified endothelial CD146 as a new target for retinal diseases. CD146 expression was activated in two ocular pathological angiogenesis models, a laser-induced choroid neovascularization model and an oxygen-induced retinopathy model. The absence of CD146 impaired hypoxia-induced cell migration and angiogenesis both in cell lines and animal model. Preventive or therapeutic treatment with anti-CD146 antibody AA98 significantly inhibited hypoxia-induced aberrant retinal angiogenesis in two retinal disease models. Mechanistically, under hypoxia condition, CD146 was involved in the activation of NFκB, Erk and Akt signalling pathways, which are partially independent of VEGF. Consistently, anti-CD146 therapy combined with anti-VEGF therapy showed enhanced impairment effect of hypoxia-induced angiogenesis in vitro and in vivo. Given the critical role of abnormal angiogenesis in retinal and choroidal diseases, our results provide novel insights into combinatorial therapy for neovascular fundus diseases.
Collapse
Affiliation(s)
- Bai Xue
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenzhen Yu
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, 100044, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Xu L, Shi Q, Liao D, Yang Z, Yang X, Wang M. Mechanism of Hypoxia Inducible Factor-1 α (HIF-1 α) in Choroidal Neovascularization in Macular Lutea of High Myopia. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore the changes in the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in the process of choroidal neovascularization (CNV) in the macular area of cases with form deprivation myopia (FDM), in this study,
36 healthy mice were selected as research subjects for analysis. Specifically, they were randomly divided into test group (n = 18) and control group (n = 18). The right eye of the test group mice underwent form deprivation for 6 weeks to induce FDM, also known as FDM group. Five
mice were randomly selected from FDM group and control group at 6 time points (before photocoagulation, at 7 d, 14 d, 21 d, 28 d, and 35 d after photocoagulation), respectively, for fluorescein angiography and hematoxylin-eosin staining (HE) staining to observe differences in the retina. It
was found that the retina of Control group mice was well-structured with clear stratification, while that of the test group mice was severely damaged with a disordered structure, manifested as edema and swelling and damaged Bruch membrane and retinal pigment epithelium (RPE) layer. Furthermore,
macrophages and RPE cells were observed in the photocoagulation area, and there was a high-fluorescence area with a blurred margin in the fundus, indicating the formation of new blood vessels. The immunohistochemical experiment revealed that within three weeks after the surgery, HIF-1α
was highly expressed in the test group, and the expression level was obviously higher than the Control group. The real-time quantitative polymerase chain reaction (PCR) results showed that the expression level of VEGF and HIF-α in the test group was obviously higher than the Control
group within three weeks after the surgery. The Western blot experiment was performed 1 week after the surgery, and it was noted that the expression level of VEGF and HIF-1α were higher in the test group versus the Control group. In summary, HIF-1α is instrumental
in ocular CNV, which is also associated with VEGF.
Collapse
Affiliation(s)
- Lishuai Xu
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Qian Shi
- Department of Ophthalmology, Yixing Eye Hospital, Yixing 214200, Jiangsu, China
| | - Dan Liao
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhen Yang
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaoli Yang
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Minfeng Wang
- Department of Ophthalmology, Yixing Eye Hospital, Yixing 214200, Jiangsu, China
| |
Collapse
|
5
|
Xin S, Ye X. Oxalomalate regulates the apoptosis and insulin secretory capacity in streptozotocin-induced pancreatic β-cells. Drug Dev Res 2020; 81:437-443. [PMID: 31904108 DOI: 10.1002/ddr.21635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is a kind of metabolic disorder characterized by long-term hyperglycemia. Oxidative stress is involved in inducing the apoptosis of pancreatic β-cells and promoting the development of DM. Oxalomalate (OMA) is a competitive inhibitor of two classes of NADP+-dependent isocitrate dehydrogenase isoenzymes that are the main nicotinamide adenine dinucleotide phosphate (NADPH) producers to scavenge cellular reactive oxygen species (ROS). However, the role of OMA in DM remains unclear. The present study aimed to investigate the protective effects of OMA on streptozotocin (STZ)-induced β-cell damage and its underlying mechanisms. The viability of rat insulinoma cell line (INS-1) and the contents of ROS, nitric oxide and NAPDH were examined after cells being treated with STZ. After treatment with OMA in STZ-stimulated INS-1, the cell viability, apoptosis, and apoptosis-related proteins were measured. Meanwhile, the levels of oxidative stress-related factors and the changes of insulin secretion were determined. The results revealed that OMA significantly increased the cell viability (p < .05), reduced the apoptotic rate (p < .001), and altered the expression levels of Bcl-2, Bax, cleaved caspase3, and cleaved-caspase9 (p < .05 or p < .01) in STZ-induced INS-1 cells. Moreover, OMA enhanced the activities of superoxide dismutase, catalase, glutathione peroxidase (p < .01), whereas reduced the levels of ROS, malondialdehyde and lactic dehydrogenase (p < .001). Furthermore, OMA improved the ability of insulin secretion. These results indicated that OMA might have antioxidative stress and anti-apoptosis effects to protect INS-1 cells from STZ-induced cell damage.
Collapse
Affiliation(s)
- Suping Xin
- Department of Endocrinology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Xinhua Ye
- Department of Endocrinology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
6
|
IDH2 deficiency impairs cutaneous wound healing via ROS-dependent apoptosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165523. [PMID: 31376482 DOI: 10.1016/j.bbadis.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/21/2023]
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue that play a pivotal role in cutaneous wound healing by synthesizing fibronectin (a component of the extracellular matrix), secreting angiogenesis factors, and generating strong contractile forces. In wound healing, low concentrations of reactive oxygen species (ROS) are essential in combating invading microorganisms and in cell-survival signaling. However, excessive ROS production impairs fibroblasts. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates the mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. In the present study, the downregulation of IDH2 expression resulted in an increase in cell apoptosis in mouse skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also delayed cutaneous wound healing in mice and impaired dermal fibroblast function. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO alleviated the apoptosis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in cutaneous wound healing in association with mitochondrial ROS.
Collapse
|
7
|
Kim SH, Kil IS, Kwon OS, Kang BS, Lee DS, Lee HS, Lee JH, Park JW. Oxalomalate reduces tumor progression in melanoma via ROS-dependent proapoptotic and antiangiogenic effects. Biochimie 2019; 158:165-171. [DOI: 10.1016/j.biochi.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
8
|
Sarkar S, Peng CC, Kuo CW, Chueh DY, Wu HM, Liu YH, Chen P, Tung YC. Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy. RSC Adv 2018; 8:30320-30329. [PMID: 35546825 PMCID: PMC9085395 DOI: 10.1039/c8ra05505j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional cell spheroid culture using microfluidic devices provides a convenient in vitro model for studying tumour spheroid structures and internal microenvironments. Recent studies suggest that oxygen deprived zones inside solid tumors are responsible for stimulating local cytokines and endothelial vasculature proliferation during angiogenesis. In this work, we develop an integrated approach combining microfluidic devices and multi-photon laser scanning microscopy (MPLSM) to study variations in oxygen tension within live spheroids of human osteosarcoma cells. Uniform shaped, size-controlled spheroids are grown and then harvested using a polydimethylsiloxane (PDMS) based microfluidic device. Fluorescence live imaging of the harvested spheroids is performed using MPLSM and a commercially available oxygen sensitive dye, Image-iT Red, to observe the oxygen tension variation within the spheroids and those co-cultured with monolayers of human umbilical vein endothelial cells (HUVECs). Oxygen tension variations are observed within the spheroids with diameters ranging from 90 ± 10 μm to 140 ± 10 μm. The fluorescence images show that the low-oxygenated cores diminish when spheroids are co-cultured with HUVEC monolayers for 6 hours to 8 hours. In the experiments, spheroids subjected to HUVEC conditioned medium treatment and with a cell adherent substrate are also measured and analyzed to study their significance on oxygen tension within the spheroids. The results show that the oxygenation within the spheroids is improved when the spheroids are cultured under those conditions. Our work presents an efficient method to study oxygen tension variation within live tumor spheroids under the influence of endothelial cells and conditioned medium. The method can be exploited for further investigation of tumor oxygen microenvironments during angiogenesis.
Collapse
Affiliation(s)
- Sreerupa Sarkar
- Department of Engineering and System Science, National Tsing Hua University Hsinchu 30013 Taiwan
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Hsiao-Mei Wu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yuan-Hsuan Liu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program Taiwan
- College of Engineering, Chang Gung University Taoyuan 33302 Taiwan
| |
Collapse
|
9
|
Taurine Attenuates Calpain-2 Induction and a Series of Cell Damage via Suppression of NOX-Derived ROS in ARPE-19 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4596746. [PMID: 30151070 PMCID: PMC6087582 DOI: 10.1155/2018/4596746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key transmembrane proteins leading to reactive oxygen species (ROS) overproduction. However, the detailed roles of NOXs in retinal pigment epithelial (RPE) cell metabolic stress induced by Earle's balanced salt solution (EBSS) through starvation remain unclear. In this study, we investigated what roles NOXs play in regard to calpain activity, endoplasmic stress (ER), autophagy, and apoptosis during metabolic stress in ARPE-19 cells. We first found that EBSS induced an increase in NOX2, NOX4, p22phox, and NOX5 compared to NOX1. Secondly, suppression of NOXs resulted in reduced ER stress and autophagy, decreased ROS generation, and alleviated cell apoptosis. Thirdly, silencing of NOX4, NOX5, and p22phox resulted in reduced levels of cell damage. However, silencing of NOX1 was unaffected. Finally, taurine critically mediated NOXs in response to EBSS stress. In conclusion, this study demonstrated for the first time that NOX oxidases are the upstream regulators of calpain-2, ER stress, autophagy, and apoptosis. Furthermore, the protective effect of taurine is mediated by the reduction of NOX-derived ROS, leading to sequential suppression of calpain induction, ER stress, autophagy, and apoptosis.
Collapse
|
10
|
Zhou H, Wang J, Zhu P, Hu S, Ren J. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal 2018; 45:12-22. [PMID: 29413844 DOI: 10.1016/j.cellsig.2018.01.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/13/2018] [Accepted: 01/21/2018] [Indexed: 01/09/2023]
Abstract
Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| | - Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| |
Collapse
|
11
|
Zhao Q, Ji M, Wang X. IL-10 inhibits retinal pigment epithelium cell proliferation and migration through regulation of VEGF in rhegmatogenous retinal detachment. Mol Med Rep 2018; 17:7301-7306. [PMID: 29568872 DOI: 10.3892/mmr.2018.8787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a disorder of the eye that affects physical and mental health. Retinal pigment epithelium (RPE) is closely associated with RRD, and it is hypothesized that RPE-secreted inflammatory cytokines may induce early pathological changes of RRD and may participate in RPE proliferation and migration. The present study determined a role for interleukin (IL)‑10 as an RPE‑secreted immune regulatory factor that contributes to RRD. A rat RRD model was established and RPE cells were isolated and cultivated. RPE cells were randomly divided into four groups, three treated with different concentrations of IL‑10 (100, 50, and 20 mM) and one untreated. RPE cell proliferation was evaluated by MTT assay and the activity of caspase‑3 was also measured. RPE cell invasion was determined by Transwell assay. Vascular endothelial growth factor A (VEGF) expression was examined by reverse transcription‑quantitative polymerase chain reaction and western blotting; IL‑1 and IL‑6 levels were measured by ELISA. IL‑10 treatment suppressed RPE cell proliferation and migration, promoted caspase‑3 activity, inhibited VEGF mRNA and protein expression, and downregulated the secretion of inflammatory cytokines IL‑1 and IL‑6 in RRD group compared with the untreated Model group. The aforementioned effects of IL‑10 became more evident with increasing IL‑10 concentration. IL‑10 suppressed inflammation, facilitated RPE cell apoptosis and inhibited cell proliferation and migration through the regulation of VEGF expression.
Collapse
Affiliation(s)
- Quiqing Zhao
- Department of Ophthalmology, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Mingli Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710004, P.R. China
| | - Xuemei Wang
- Department of Ophthalmology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
12
|
Chen S, Zhou Y, Zhou L, Guan Y, Zhang Y, Han X. Anti-neovascularization effects of DMBT in age-related macular degeneration by inhibition of VEGF secretion through ROS-dependent signaling pathway. Mol Cell Biochem 2018; 448:225-235. [PMID: 29446046 DOI: 10.1007/s11010-018-3328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Abstract
Choroidal neovascularization (CNV) is the hallmark of late-staged wet age-related macular degeneration (AMD). Vascular endothelial growth factor (VEGF) is a key component in the development and progression of wet AMD. DMBT, 6,6'-bis(2,3-dimethoxybenzoyl)-α,α-D-trehalose, had been proved that it could suppress tumor angiogenesis and metastasis by inhibiting production of VEGF. But the effects of DMBT on CNV were not known. This study was to investigate effects and mechanisms of DMBT on CNV in vitro and in vivo. Results showed that DMBT could inhibit migration and tube formation of RF/6A cells under ARPE-19 hypoxia conditioned medium. DMBT could reduce lesion area in laser-induced CNV model mice. ELISA and Western blotting assay showed that DMBT markedly inhibited secretion of VEGF in vitro and in vivo. Furthermore, DMBT restrained ROS level under hypoxia via suppressing Nrf2/HO-1 pathway. DMBT effectively suppressed hypoxia-induced the up-regulation of p-Akt, p-NF-κB, and HIF-1α. These results suggest that DMBT can inhibit CNV by down-regulation of VEGF in retina through Akt/NF-κB/HIF-1α and ERK/Nrf2/HO-1/HIF-1α pathway. DMBT might be a promising lead molecule for anti-CNV and serve as a therapeutic agent to inhibit CNV.
Collapse
Affiliation(s)
- Shang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Minamikoguchi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Yue Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Lichun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yanhui Guan
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, Jinan, China.
| |
Collapse
|