1
|
Bueloni B, Garcia Fernandez de Barrena M, Avila MA, Bayo J, Mazzolini G. Epigenetic mechanisms involved in hepatocellular carcinoma development and progression. EGASTROENTEROLOGY 2025; 3:e100186. [PMID: 40432834 PMCID: PMC12107448 DOI: 10.1136/egastro-2025-100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 05/29/2025]
Abstract
Hepatocellular carcinoma (HCC) typically develops in the context of chronic liver disease, where prolonged hepatocyte exposure to inflammation drives the synergistic accumulation of genetic and epigenetic alterations. Epigenetic regulation encompasses multiple mechanisms that govern the transcription machinery accessibility to DNA. This process is regulated by the addition and removal of covalent marks on chromatin, which can either affect DNA-histone interactions or serve as scaffolds for other proteins, among other mechanisms. Recent research has revealed that epigenetic alterations can disrupt chromatin homeostasis, redirecting transcriptional regulation to favour cancer-promoting states. Consequently, these alterations play a pivotal role in the acquisition of cancer hallmarks and provide insights into several biological processes involved in hepatocarcinogenesis. This review highlights the key epigenetic mechanisms underlying the development, progression and dissemination of HCC, with a particular focus on DNA methylation and histone post-translational modifications. This knowledge is relevant for guiding the development of innovative therapeutic approaches based on epigenetic modulators.
Collapse
Affiliation(s)
- Barbara Bueloni
- Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- HZ4 Liver Inc./Spectrum, Dover, Delaware, USA
| | - Maite Garcia Fernandez de Barrena
- Solid Tumor Program, Hepatology Laboratory, Applied Medical Research Center (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Matias Antonio Avila
- Solid Tumor Program, Hepatology Laboratory, Applied Medical Research Center (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan Bayo
- Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Solid Tumor Program, Hepatology Laboratory, Applied Medical Research Center (CIMA), University of Navarra, Pamplona, Spain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Liver Unit, Hospital Universitario Austral, Pilar, Buenos Aires Province, Argentina
| |
Collapse
|
2
|
Li Y, Bai L, Liang H, Yan P, Chen H, Cao Z, Shen Y, Wang Z, Huang M, He B, Hao Q, Mei Y, Wei H, Ding C, Jin J, Wang Y. A BPTF-specific PROTAC degrader enhances NK cell-based cancer immunotherapy. Mol Ther 2025; 33:1566-1583. [PMID: 39935175 PMCID: PMC11997503 DOI: 10.1016/j.ymthe.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Natural killer (NK) cell-based immunotherapy shows promise in cancer treatment, but its efficacy remains limited, necessitating the development of novel strategies. In this study, we demonstrate that the epigenetic factor bromodomain PHD-finger containing transcription factor (BPTF) hinders hepatocellular carcinoma (HCC) recognition by NK cells through its PHD finger's interpretation of H3K4me3. We have generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degrades human and murine BPTF. The degradation of BPTF using PROTACs directly enhances the abundance of natural cytotoxicity receptor ligands on HCC cells, facilitating their recognition by NK cells and thereby augmenting NK cell cytotoxicity against HCC both in vitro and in vivo. Through multidisciplinary techniques, our findings establish targeting BPTF with PROTACs as a promising approach to overcome immune evasion of HCC from NK cells and provide a new strategy to enhance NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Hao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peidong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhuoxian Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yiqing Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongyv Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yide Mei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Su H, Zhou X, Lin G, Luo C, Meng W, Lv C, Chen Y, Wen Z, Li X, Wu Y, Xiao C, Yang J, Lu J, Luo X, Chen Y, Tam PKH, Li C, Sun H, Pan X. Deciphering the Oncogenic Landscape of Hepatocytes Through Integrated Single-Nucleus and Bulk RNA-Seq of Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412944. [PMID: 39960344 PMCID: PMC11984907 DOI: 10.1002/advs.202412944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/01/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality, while the hepatocyte mechanisms driving oncogenesis remains poorly understood. In this study, single-nucleus RNA sequencing of samples from 22 HCC patients revealed 10 distinct hepatocyte subtypes, including beneficial Hep0, predominantly malignant Hep2, and immunosuppressive Hep9. These subtypes were strongly associated with patient prognosis, confirmed in TCGA-LIHC and Fudan HCC cohorts through hepatocyte composition deconvolution. A quantile-based scoring method is developed to integrate data from 29 public HCC datasets, creating a Quantile Distribution Model (QDM) with excellent diagnostic accuracy (Area Under the Curve, AUC = 0.968-0.982). QDM was employed to screen potential biomarkers, revealing that PDE7B functions as a key gene whose suppression promotes HCC progression. Guided by the genes specific to Hep0/2/9 subtypes, HCC is categorized into metabolic, inflammatory, and matrix classes, which are distinguishable in gene mutation frequencies, survival times, enriched pathways, and immune infiltration. Meanwhile, the sensitive drugs of the three HCC classes are identified, namely ouabain, teniposide, and TG-101348. This study presents the largest single-cell hepatocyte dataset to date, offering transformative insights into hepatocarcinogenesis and a comprehensive framework for advancing HCC diagnostics, prognostics, and personalized treatment strategies.
Collapse
Affiliation(s)
- Huanhou Su
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Xuewen Zhou
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Chaochao Luo
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- College of Life SciencesShihezi UniversityShiheziXinjiang832003China
| | - Wei Meng
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Cui Lv
- Clinical Biobank CenterMicrobiome Medicine CenterDepartment of Laboratory MedicineGuangdong Provincial Clinical Research Center for Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yuting Chen
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Zebin Wen
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Xu Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Yongzhang Wu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Changtai Xiao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
| | - Jian Yang
- Department of Hepatobiliary Surgery IGeneral Surgery Center and Guangdong Provincial Clinical and Engineering Center of Digital MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Jiameng Lu
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Xingguang Luo
- Department of PsychiatryYale University School of MedicineNew HavenCT06510USA
| | - Yan Chen
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Paul KH Tam
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic SurgeryDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Haitao Sun
- Clinical Biobank CenterMicrobiome Medicine CenterDepartment of Laboratory MedicineGuangdong Provincial Clinical Research Center for Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xinghua Pan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationGuangzhou510515China
- Precision Regenerative Medicine Research CentreMedical Science Divisionand State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao999078China
- Key Laboratory of Infectious Diseases Research in South China (China Ministry Education)Southern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
4
|
Pan Y, Yuan F, Lin Z, Li Y. BPTF promotes glioma development through USP34-mediated de-ubiquitination of FOXC1. Histol Histopathol 2025; 40:205-214. [PMID: 38686761 DOI: 10.14670/hh-18-748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Glioma is the most prevalent malignant tumor of the brain, and the study of the molecular mechanisms associated with its development has important clinical significance. Our previous study found that BPTF promotes the malignant phenotype of glioma and is significantly associated with poor prognosis; the downstream regulatory mechanisms are explored in this study. Western blot and immunohistochemical staining were used to detect protein expression in cells or tissues. BPTF knockdown as well as FOXC1-overexpressing lentiviruses were used in combination for the construction of the U251 cell model, leading to functional rescue experiments. CCK8 assay, flow cytometry, scratch assay, and Transwell assay were used to detect cell proliferation, apoptosis, and migration, respectively. Finally, immunoprecipitation assays, combined with western blot (WB), were used to detect the interaction between proteins as well as the level of ubiquitination modification. The obtained results suggested that BPTF knockdown may inhibit the malignant behavior of glioma cells by downregulating FOXC1 expression. Moreover, FOXC1 expression was significantly higher in glioma tissues than in normal brain tissues and was significantly associated with higher tumor stage and worse patient prognosis. Finally, the mechanism of FOXC1 regulation by BPTF was found to result from the affected protein stability of FOXC1 through USP34-mediated de-ubiquitylation. In conclusion, the BPTF/FOXC1 axis was identified as a key promotor in glioma development and may be a potential target in the inhibition of glioma development.
Collapse
Affiliation(s)
- Yanling Pan
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Feng Yuan
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Zhiren Lin
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Yijie Li
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China.
| |
Collapse
|
5
|
Sinanian MM, Rahman A, Elshazly AM, Neely V, Nagarajan B, Kellogg GE, Risinger AL, Gewirtz DA. A BPTF Inhibitor That Interferes with the Multidrug Resistance Pump to Sensitize Murine Triple-Negative Breast Cancer Cells to Chemotherapy. Int J Mol Sci 2024; 25:11346. [PMID: 39518898 PMCID: PMC11545213 DOI: 10.3390/ijms252111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a generally poor prognosis due to its highly aggressive and metastatic nature, lack of targetable receptors, as well as the frequent development of resistance to chemotherapy. We previously reported that AU1, a small molecule developed as an inhibitor of BPTF (bromodomain PHD finger-containing transcription factor), was capable of sensitizing preclinical models of TNBC to chemotherapy in part via the promotion of autophagy. In studies reported here, we identify an additional property of this compound, specifically that sensitization is associated with the inhibition of the P-glycoprotein (P-gp) efflux pump. In silico molecular docking studies indicate that AU1 binds to active regions of the efflux pump in a manner consistent with the inhibition of the pump function. This work identifies a novel chemical structure that can influence multidrug efflux, an established mechanism of drug resistance in TNBC, that has not yet been successfully addressed by clinical efforts.
Collapse
Affiliation(s)
- Melanie M. Sinanian
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| | - Afshan Rahman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.N.); (G.E.K.)
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.N.); (G.E.K.)
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| |
Collapse
|
6
|
Khan I, Kashani-Sabet M. Bromodomain inhibition targeting BPTF in the treatment of melanoma and other solid tumors. Clin Exp Metastasis 2024; 41:509-515. [PMID: 38683257 DOI: 10.1007/s10585-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/06/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic mechanisms have been shown to play an important role in the development of cancer. These include the activation of chromatin remodeling factors in various malignancies, including bromodomain plant homeodomain (PHD) finger transcription factor (BPTF), the largest component of the human nucleosome remodeling factor (NURF). In the last few years, BPTF has been identified as a pro-tumorigenic factor in melanoma, stimulated by research into the molecular mechanisms underlying BPTF function. Developing therapy targeting the BPTF bromodomain would represent a significant advance. Melanoma therapy has been revolutionized by the efficacy of immunotherapeutic and targeted strategies, but the development of drug resistance calls for alternative therapeutic approaches. Recent work has shown both a biomarker as well as functional role for BPTF in melanoma progression and as a possible target for its therapy. BPTF was shown to stimulate the mitogen-activated protein kinase pathway, which is targeted by selective BRAF inhibitors. The advent of small molecule inhibitors that target bromodomain motifs has shown that bromodomains are druggable. By combining the bromodomain inhibitor bromosporine with existing treatments that target mutant BRAF, BPTF targeting has emerged as a novel and promising therapeutic approach for metastatic melanoma. This article summarizes the functional role of BPTF in tumor progression, reviews the clinical experience to date with bromodomain inhibitors, and discusses the promise of BPTF targeting in melanoma and other solid tumors.
Collapse
Affiliation(s)
- Imran Khan
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA.
| |
Collapse
|
7
|
Hua C, Guo Z, Dai M, Zhou J, Ge H, Xue G, Xu F, Ru L, Lv K, Zhang G, Zheng L, Wang M, Teng Y, Yu W, Guo W. Lumbrokinase Extracted from Earthworms Synergizes with Bevacizumab and Chemotherapeutics in Treating Non-Small Cell Lung Cancer by Targeted Inactivation of BPTF/VEGF and NF-κB/COX-2 Signaling. Biomolecules 2024; 14:741. [PMID: 39062456 PMCID: PMC11274885 DOI: 10.3390/biom14070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
As a kind of proteolytic enzyme extracted from earthworms, lumbrokinase has been used as an antithrombotic drug clinically. Nevertheless, its potential in anti-cancer, especially in anti-non-small cell lung cancer (NSCLC), as a single form of treatment or in combination with other therapies, is still poorly understood. In this study, we explored the anti-tumor role and the responsive molecular mechanisms of lumbrokinase in suppressing tumor angiogenesis and chemoresistance development in NSCLC and its clinical potential in combination with bevacizumab and chemotherapeutics. Lumbrokinase was found to inhibit cell proliferation in a concentration-dependent manner and caused metastasis suppression and apoptosis induction to varying degrees in NSCLC cells. Lumbrokinase enhanced the anti-angiogenesis efficiency of bevacizumab by down-regulating BPTF expression, decreasing its anchoring at the VEGF promoter region and subsequent VEGF expression and secretion. Furthermore, lumbrokinase treatment reduced IC50 values of chemotherapeutics and improved their cytotoxicity in parental and chemo-resistant NSCLC cells via inactivating the NF-κB pathway, inhibiting the expression of COX-2 and subsequent secretion of PGE2. LPS-induced NF-κB activation reversed its inhibition on NSCLC cell proliferation and its synergy with chemotherapeutic cytotoxicity, while COX-2 inhibitor celecoxib treatment boosted such effects. Lumbrokinase combined with bevacizumab, paclitaxel, or vincristine inhibited the xenograft growth of NSCLC cells in mice more significantly than a single treatment. In conclusion, lumbrokinase inhibited NSCLC survival and sensitized NSCLC cells to bevacizumab or chemotherapeutics treatment by targeted down-regulation of BPTF/VEGF signaling and inactivation of NF-κB/COX-2 signaling, respectively. The combinational applications of lumbrokinase with bevacizumab or chemotherapeutics are expected to be developed as promising candidate therapeutic strategies to improve the efficacy of the original monotherapy in anti-NSCLC.
Collapse
Affiliation(s)
- Chunyu Hua
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Ziyue Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Meng Dai
- Dalian Municipal Central Hospital, Dalian University of Technology, Dalian 116044, China;
| | - Jie Zhou
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Hanxiao Ge
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Guoqing Xue
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Fahui Xu
- The Second Clinical College, Dalian Medical University, Dalian 116044, China;
| | - Liyuan Ru
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Kuan Lv
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Guohui Zhang
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Lina Zheng
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Meiyi Wang
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Yun Teng
- The Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China;
| | - Wendan Yu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| | - Wei Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China; (C.H.); (Z.G.); (J.Z.); (H.G.); (G.X.); (L.R.); (K.L.); (G.Z.); (L.Z.); (M.W.)
| |
Collapse
|
8
|
Chen F, Chen J, Yuan Y, Fang S, Xie J, Xu X, Yang Z, Jiang J. Circ_100549 promotes tumor progression in lung adenocarcinoma through upregulation of BIRC6. Histochem Cell Biol 2024; 161:493-506. [PMID: 38613646 DOI: 10.1007/s00418-024-02275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 04/15/2024]
Abstract
Lung adenocarcinoma (LUAD) is a subtype of lung cancer with high incidence and mortality globally. Emerging evidence suggests that circular RNAs (circRNAs) exert critical functions in human cancers, including LUAD. CircRNA_100549 (circ_100549) has been reported to be significantly upregulated in non-small cell lung cancer (NSCLC) samples, while its role in modulating LUAD progression remains to be explored. The current study aims at investigating the functional roles of circ_100549 in LUAD and its downstream molecular mechanism. First, we found that the expression of circ_100549 was higher in LUAD cell lines. Loss-of-function assays verified that depletion of circ_100549 repressed LUAD cell proliferation but accelerated cell apoptosis. Furthermore, in vivo experiments demonstrated that silencing of circ_100549 suppressed tumor growth. Subsequently, based on database analysis, we carried out a series of experiments to explore the mechanisms and effects of circ_100549 underlying LUAD progression, including RNA-binding protein immunoprecipitation (RIP), RNA/DNA pull-down, luciferase reporter, and chromatin immunoprecipitation (ChIP) assays. The results indicated that circ_100549 serves as a ceRNA by sponging miR-95-5p to upregulate BPTF expression, thus upregulating BIRC6 expression at a transcriptional level in LUAD. In summary, our study demonstrated that circ_100549 facilitates LUAD progression by upregulating BIRC6 expression.
Collapse
Affiliation(s)
- Feifei Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Xuzhou No.1 People's Hospital; Affiliated Hospital of China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
| | - Yuan Yuan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Xie
- Geriatrics Department, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Xiaojuan Xu
- Geriatrics Department, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Zhenhua Yang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jianzhong Jiang
- Geriatrics Department, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China.
| |
Collapse
|
9
|
Sukowati CH, El-Khobar K, Jasirwan COM, Kurniawan J, Gani RA. Stemness markers in hepatocellular carcinoma of Eastern vs. Western population: Etiology matters? Ann Hepatol 2024; 29:101153. [PMID: 37734662 DOI: 10.1016/j.aohep.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. HCC development is associated with its underlying etiologies, mostly caused by infection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, non-alcoholic fatty liver disease, and exposure to aflatoxins. These variables, together with human genetic susceptibility, contribute to HCC molecular heterogeneity, including at the cellular level. HCC initiation, tumor recurrence, and drug resistance rates have been attributed to the presence of liver cancer stem cells (CSC). This review summarizes available data regarding whether various HCC etiologies may be associated to the appearance of CSC biomarkers. It also described the genetic variations of tumoral tissues obtained from Western and Eastern populations, in particular to the oncogenic effect of HBV in the human genome.
Collapse
Affiliation(s)
- Caecilia Hc Sukowati
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park campus Basovizza, SS14 km 163.5, Trieste 34149, Italy; Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia.
| | - Korri El-Khobar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Chyntia Olivia Maurine Jasirwan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Juferdy Kurniawan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Rino Alvani Gani
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| |
Collapse
|
10
|
Chen Z, Cheng H, Zhang J, Jiang D, Chen G, Yan S, Chen W, Zhan W. Hsa_circRNA_102051 regulates colorectal cancer proliferation and metastasis by mediating Notch pathway. Cancer Cell Int 2023; 23:230. [PMID: 37794386 PMCID: PMC10552285 DOI: 10.1186/s12935-023-03026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the role of hsa_circRNA_102051 in colorectal cancer (CRC) and its effect on the stemness of tumor cells. METHODS CircRNA microarray was under analysis to screen differentially expressed novel circRNAs in the pathology of CRC. Quantitative real-time PCR was used to detect the relative RNA expression in CRC cells and samples. The effects of hsa_circRNA_102051 on biological functions in CRC cells were accessed both in vitro and in vivo. FISH, RIP and luciferase reporter assay were conducted to confirm the regulatory correlations between hsa_circRNA_102051 and miR-203a, as well as miR-203a and BPTF. Xenograft models were applied to further verify the impacts and fluctuations of hsa_circRNA_102051/miR-203a/BPTF. Moreover, the mechanism how hsa_circRNA_102051 affected the Notch signals was also elucidated. RESULTS Hsa_circRNA_102051 was up-regulated in CRC tissues and cell lines, capable to promote the growth and invasion of CRC. In addition, hsa_circRNA_102051 could enhance stemness of CRC cells. BPTF was identified as downstream factors of hsa_circRNA_102051, and miR-203a was determined directly targeting both hsa_circRNA_102051 and BPTF as an intermediate regulator. Hsa_circRNA_102051 in CRC could block miR-203a expression, and subsequently activated BPTF. Hsa_circRNA_102051/miR-203a/BPTF axis modulated stemness of CRC cells by affecting Notch pathway. CONCLUSIONS Our findings provided new clues that hsa_circRNA_102051 might be a potential predictive or prognostic factor in CRC, which induced the fluctuation of downstream miR-203a/BPTF, and subsequently influenced tumor growth, activities and stemness. Thereinto, the Notch signals were also involved. Hence, the hsa_circRNA_102051/miR-203a/BPTF axis could be further explored as a therapeutic target for anti-metastatic therapy in CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Gang Chen
- Guizhou Medical University, Guiyang, China
| | | | - Wen Chen
- Guizhou Medical University, Guiyang, China
| | - Wei Zhan
- Department of colorectal surgery, The Affiliated Hospital of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang City, 550004, Guizhou, China.
| |
Collapse
|
11
|
Dong WZ, Ni HL, Cai C. Establishment of a nomogram model for prediction of postoperative heterochronous liver metastasis in young and middle-aged patients with rectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:589-597. [DOI: 10.11569/wcjd.v31.i14.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The incidence of rectal cancer is increasing year by year. Radical surgery is often used for the treatment of rectal cancer in clinical practice, but postoperative liver metastasis has become an important reason for the increase in mortality. Therefore, establishing a model to predict the trend of metachronous liver metastasis has become a research focus. Nomogram model has been widely used in the medical field, but there has been no widely accepted nomogram model available for prediction of metachronous liver metastasis after rectal cancer surgery.
AIM To constuct a nomogram model based on the risk factors for postoperative metachronous liver metastasis in young and middle-aged patients with rectal cancer, and to evaluate the performance of the model for predicting the risk of postoperative metachronous liver metastasis, so as to provide some guidance for clinical prevention and treatment.
METHODS A total of 120 young and middle-aged patients with rectal cancer admitted to our hospital from March 2019 to February 2022 were selected as research subjects to observe the incidence of postoperative heterochronous liver metastasis. Univariate and multivariate Logistic regression analyses were performed to identify the risk factors for postoperative heterochronous liver metastasis and to construct a nomogram model. ROC curve, decision curve, and correction curve analyses were used to verify the value of nomogram model for the prediction of postoperative heterochronous liver metastasis.
RESULTS The incidence of anomalous liver metastasis 1 year after surgery was 23.33% in 120 young and middle-aged patients with rectal cancer. Low differentiation, lymph node metastasis, depth of invasion (T3/T4), margin width of primary cancer < 2 cm, high expression of peripheral blood telomerase reverse transcriptase (hTERT), and elevated serum levels of carcinoembryonic antigen (CEA), vascular endothelial growth factor (VEGF), lemur tyrosine kinase-3 (LMTK3), squamous cell carcinoma-associated antigen (SCC-Ag), and axon-guided factor-1 (Netrin-1) were identified to be risk factor for postoperative hetero-chronic liver metastasis (P < 0.05). The C-index and area under the curve of the nomogram model were 0.860 and 0.957, respectively, and the net benefit value was high (P < 0.05).
CONCLUSION Low differentiation, lymph node metastasis, depth of invasion (T3/T4), margin width of primary cancer < 2 cm, high expression of hTERT in peripheral blood, and elevated levels of serum CEA, VEGF, LMTK3, SC-AG and Netrin-1 are risk factors for postoperative xenotemporal liver metastasis in young and middle-aged patients with rectal cancer. Based on the above risk factors, a nomogram model has been established to predict postoperative heterochronous liver metastasis in such patients.
Collapse
Affiliation(s)
- Wu-Zhen Dong
- Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| | - Hao-Liang Ni
- Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| | - Cheng Cai
- Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
12
|
Jiang C, Yang Y, He S, Yue Z, Xing T, Chu P, Yang W, Chen H, Zhao X, Yu Y, Zhang X, Su Y, Guo Y, Ma X. BPTF in bone marrow provides a potential progression biomarker regulated by TFAP4 through the PI3K/AKT pathway in neuroblastoma. Biol Proced Online 2023; 25:11. [PMID: 37170211 PMCID: PMC10176855 DOI: 10.1186/s12575-023-00200-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children, which is highly prone to bone marrow (BM) metastasis. BM can monitor early signs of mild disease and metastasis. Existing biomarkers are insufficient for the diagnosis and treatment of NB. Bromodomain PHD finger transcription factor (BPTF) is an important subunit of the chromatin-remodeling complex that is closely associated with tumors. Here, we evaluated whether BPTF in BM plays an important role in predicting NB progression, and explore the molecular mechanism of BPTF in NB. METHODS The clinical relevance of the BPTF was predicted in the GEO (GSE62564) and TARGET database. The biological function of BPTF in NB was investigated by constructing cell lines and employing BPTF inhibitor AU1. Western blot was used to determine the changes of BPTF, TFAP4, PI3K/AKT signaling and Epithelial-mesenchymal transition (EMT) related markers. A total of 109 children with newly diagnosed NB in Beijing Children's Hospital from January 2018 to March 2021 were included in this study. RT-PCR was used to measure the BPTF and TFAP4 expression in BM. The cut-off level was set at the median value of BPTF expression levels. RESULTS Databases suggested that BPTF expression was higher in NB and was significantly associated with stage and grade. Proliferation and migration of NB cells were slowed down when BPTF was silenced. Mechanistically, TFAP4 could positively regulate BPTF and promotes EMT process through activating the PI3K/AKT signaling pathway. Moreover, detection of the newly diagnosed BM specimens showed that BPTF expression was significantly higher in high-risk group, stage IV group and BM metastasis group. Children with high BPTF at initial diagnosis were considered to have high risk for disease progression and recurrence. BPTF is an independent risk factor for predicting NB progression. CONCLUSIONS A novel and convenient BPTF-targeted humoral detection that can prompt minimal residual and predict NB progression in the early stages of the disease were identified. BPTF inhibitor AU1 is expected to become a new targeted drug for NB therapy. It's also reveal previously unknown mechanisms of BPTF in NB cell proliferation and metastasis through TFAP4 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Chiyi Jiang
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Sidou He
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Zhixia Yue
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Tianyu Xing
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Wenfa Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Hui Chen
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Xiaoxi Zhao
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Xuan Zhang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Yan Su
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China.
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China.
| | - Xiaoli Ma
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China.
| |
Collapse
|
13
|
ALKBH5 Inhibits Cancer Cell Proliferation in Prostate Cancer through KLF4/TERT Signaling. Andrologia 2023. [DOI: 10.1155/2023/8754940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
N6-methyladenosine (m6A), as a reversible chemical modification of RNA, is a new type of posttranscriptional gene regulation, which plays an important role in cell differentiation and tumorigenesis, and is also a research hotspot in epigenetic transcriptomics in recent years. The purpose of this study was to discuss the action mechanism of m6A demethylase ALKBH5 in the occurrence of prostate cancer (PCa). We found that ALKBH5 was lowly expressed in PCa, and the decreased expression of ALKBH5 was responsible for the poor prognosis of prostate carcinomas. Moreover, ALKBH5 downregulated the expression of Krüppel-like factor 4 (KLF4) by reducing its mRNA stability, which reduced the transcriptional activity of KLF4 on the downstream target telomerase reverse transcriptase (TERT) and decreased TERT expression and telomerase activity, eventually inhibiting PCa cell growth. The findings of this study reveal the action mechanism of ALKBH5 in PCa from the perspective of epitranscriptomics, which would provide new ideas for the prevention of PCa.
Collapse
|
14
|
da Mota THA, Camargo R, Biojone ER, Guimarães AFR, Pittella-Silva F, de Oliveira DM. The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14030691. [PMID: 36980962 PMCID: PMC10048576 DOI: 10.3390/genes14030691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
- Correspondence:
| | - Ricardo Camargo
- Brasília Children’s Hospital José Alencar, Brasilia 70684-831, Brazil
| | | | - Ana Flávia Reis Guimarães
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
| | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
15
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
16
|
Liu ZC, Li LH, Li DY, Gao ZQ, Chen D, Song B, Jiang BH, Dang XW. KIAA1429 regulates alternative splicing events of cancer-related genes in hepatocellular carcinoma. Front Oncol 2022; 12:1060574. [PMID: 36505780 PMCID: PMC9732450 DOI: 10.3389/fonc.2022.1060574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most fatal malignancies with high morbidity and mortality rates in the world, whose molecular pathogenesis is incompletely understood. As an RNA-binding protein participating in the processing and modification of RNA, KIAA1429 has been proved to be implicated in the pathogenesis of multiple cancers. However, how KIAA1429 functions in alternative splicing is not fully reported. In the current study, multi-omics sequencing data were used to analyze and decipher the molecular functions and the underlying mechanisms of KIAA1429 in HCC samples. RNA sequencing data (RNA-seq) analysis demonstrated that in HCCLM3 cells, alternative splicing (AS) profiles were mediated by KIAA1429. Regulated AS genes (RASGs) by KIAA1429 were enriched in cell cycle and apoptosis-associated pathways. Furthermore, by integrating the RNA immunoprecipitation and sequencing data (RIP-seq) of KIAA1429, we found that KIAA1429-bound transcripts were highly overlapping with RASGs, indicating that KIAA1429 could globally regulate the alternative splicing perhaps by binding to their transcripts in HCCLM3 cells. The overlapping RASGs were also clustered in cell cycle and apoptosis-associated pathways. In particular, we validated the regulated AS events of three genes using clinical specimens from HCC patients, including the exon 6 of BPTF gene and a marker gene of HCC. In summary, our results shed light on the regulatory functions of KIAA1429 in the splicing process of pre-mRNA and provide theoretical basis for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-chen Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu-Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding-Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bin Song
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bing-Hua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-wei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Xiao-wei Dang,
| |
Collapse
|
17
|
Guo P, Zu S, Han S, Yu W, Xue G, Lu X, Lin H, Zhao X, Lu H, Hua C, Wan X, Ru L, Guo Z, Ge H, Lv K, Zhang G, Deng W, Luo C, Guo W. BPTF inhibition antagonizes colorectal cancer progression by transcriptionally inactivating Cdc25A. Redox Biol 2022; 55:102418. [PMID: 35932692 PMCID: PMC9356279 DOI: 10.1016/j.redox.2022.102418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
As the largest subunit of the nuclear remodeling factor complex, Bromodomain PHD Finger Transcription Factor (BPTF) has been reported to be involved in tumorigenesis and development in several cancers. However, to date, its functions and related molecular mechanisms in colorectal cancer (CRC) are still poorly defined and deserve to be revealed. In this study, we uncovered that, under the expression regulation of c-Myc, BPTF promoted CRC progression by targeting Cdc25A. BPTF was found to be highly expressed in CRC and promoted the proliferation and metastasis of CRC cells through BPTF specific siRNAs, shRNAs or inhibitors. Based on RNA-seq, combined with DNA-pulldown, ChIP and luciferase reporter assay, we proved that, by binding to -178/+107 region within Cdc25A promoter, BPTF transcriptionally activated Cdc25A, thus accelerating the cell cycle process of CRC cells. Meanwhile, BPTF itself was found to be transcriptionally regulated by c-Myc. Moreover, BPTF knockdown or inactivation was verified to sensitize CRC cells to chemotherapeutics, 5-Fluorouracil (5FU) and Oxaliplatin (Oxa), c-Myc inhibitor and cell cycle inhibitor not just at the cellular level in vitro, but in subcutaneous xenografts or AOM/DSS-induced in situ models of CRC in mice, while Cdc25A overexpression partially reversed BPTF silencing-caused tumor growth inhibition. Clinically, BPTF, c-Myc and Cdc25A were highly expressed in CRC tissues simultaneously, the expression of any two of the three was positively correlated, and their expressions were highly relevant to tumor differentiation, TNM staging and poor prognosis of CRC patients. Thus, our study indicated that the targeted inhibition of BPTF alone, or together with chemotherapy and/or cell cycle-targeted therapy, might act as a promising new strategy for CRC treatment, while c-Myc/BPTF/Cdc25A signaling axis is expected to be developed as an associated set of candidate biomarkers for CRC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Ping Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilong Han
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Wendan Yu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Guoqing Xue
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Xiaona Lu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Hua Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinrui Zhao
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Haibo Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Chunyu Hua
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Xinyu Wan
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Liyuan Ru
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Ziyue Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Hanxiao Ge
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Kuan Lv
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Guohui Zhang
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; China University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Wei Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
18
|
Zeng C, Long J, Deng C, Xie L, Ma H, Guo Y, Liu S, Deng M. Genetic Alterations in Papillary Thyroid Carcinoma With Hashimoto 's Thyroiditis: ANK3, an Indolent Maintainer of Papillary Thyroid Carcinoma. Front Oncol 2022; 12:894786. [PMID: 35646694 PMCID: PMC9133634 DOI: 10.3389/fonc.2022.894786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Hashimoto’s thyroiditis (TH) is a risk factor for the occurrence of papillary thyroid carcinoma (PTC), which is considered to be the most common type of thyroid cancer. In recent years, the prevalence of PTC with TH has been increasing, but little is known about the genetic alteration in PTC with TH. This study analyzed the mutation spectrum and mutation signature of somatic single nucleotide variants (SNV) for 10 non-tumor and tumor pair tissues of PTC with TH using whole-exome sequencing. The ANK3 protein expression was evaluated by immunohistochemistry in PTC with TH and PTC samples. Moreover, the functional role of ANK3 in PTC cells was determined by CCK-8 proliferation assay, colony formation assays, cell cycle analysis, cell invasion and migration and in vivo study through overexpression assay. Our results showed three distinct mutational signatures and the C>T/G>A substitution was the most common type of SNV. Gene-set enrichment analysis showed that most of the significantly mutated genes were enriched in the regulation of actin cytoskeleton signaling. Moreover, NCOR2, BPTF, ANK3, and PCSK5 were identified as the significantly mutated genes in PTC with TH, most of which have not been previously characterized. Unexpectedly, it was found that ANK3 was overexpressed in cytoplasm close to the membrane of PTC cells with TH and in almost all PTC cases, suggesting its role as a diagnostic marker of PTC. Ectopic expression of ANK3 suppressed invasion and migration, increased apoptosis of B-CPAP and TPC-1 cells. Moreover, our findings revealed that enhanced ANK3 expression inhibits growth of PTC cells both in vitro and in vivo. Ectopic expression of ANK3 significantly enhanced E-cadherin protein expression and inhibited PTC progression, at least in part, by suppression of epithelial-mesenchymal transition (EMT). Our study shows that ANK3 exerts an anti-oncogenic role in the development of PTC and might be an indolent maintainer of PTC.
Collapse
Affiliation(s)
- Chao Zeng
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiali Long
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunmiao Deng
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linying Xie
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongmei Ma
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yimin Guo
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Min Deng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Bai D, Zhou Y, Shen F, Gao D, Suo W, Zhang H, Li H. BPTF activates the MAPK pathway through coexpression with Raf1 to promote proliferation of T‑cell lymphoma. Oncol Lett 2022; 24:223. [PMID: 35720479 PMCID: PMC9185150 DOI: 10.3892/ol.2022.13344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to explore the role and biological function of bromodomain PHD finger transcription factor (BPTF) in T-cell lymphoma. Reverse transcription-quantitative PCR (RT-qPCR), western blotting, immunohistochemistry and bioinformatics analysis were used to determine the expression levels of BPTF and Raf1 in T-cell lymphoma tissues and matched adjacent normal tissues. RT-qPCR and western blot analyses were used to examine the role of BPTF in the activation of MAPK signaling. The function of BPTF and Raf1 in T-cell lymphoma was investigated through in vitro and in vivo assays (MTT assay, colony formation assay, flow cytometry, western blotting, tumor xenograft model and TUNEL assay) following silencing and overexpression experiments in Hut-102 cells. The results demonstrated that BPTF and Raf1 were overexpressed in T-cell lymphoma tissues compared with normal tissues, and high expression of BPTF or Raf1 was associated with advanced clinical stage. BPTF promoted the activation of the MAPK pathway and was coexpressed with Raf1 in T-cell lymphoma tissues. Functional assays demonstrated that silencing of BPTF or Raf1 in Hut-102 cells suppressed cell proliferation and induced apoptosis. Furthermore, the carcinogenic effect of BPTF was confirmed by xenograft experiments in nude mice. The present findings suggested that BPTF may function as a crucial oncogenic factor and may serve as a novel therapeutic target in T-cell lymphoma.
Collapse
Affiliation(s)
- Dongyu Bai
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Fayan Shen
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Dehong Gao
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Wenhao Suo
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Haiping Zhang
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Heng Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
20
|
MicroRNA-181a-5p Promotes Osteosarcoma Progression via PTEN/AKT Pathway. Anal Cell Pathol 2022; 2022:3421600. [PMID: 35310933 PMCID: PMC8924609 DOI: 10.1155/2022/3421600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents with poor prognosis. MicroRNA-181a-5p (miR-181a-5p) is involved in the progression of various tumors; however, its role and underlying mechanism in osteosarcoma remains unclear. In this study, we found that miR-181a-5p was upregulated in human osteosarcoma cells and tissues. miR-181a-5p mimic significantly promoted, while miR-181a-5p inhibitor blocked the proliferation, colony formation, migration, invasion, and cell cycle progression of osteosarcoma cells. Mechanistically, miR-181a-5p bound to the 3′-untranslational region of phosphatase and tensin homolog (PTEN) and reduced its protein expression, thereby activating protein kinase B (PKB/AKT) pathway. Either PTEN overexpression or AKT inhibition notably blocked the tumor-promoting effects of miR-181a-5p. Moreover, we observed that miR-181a-5p mimic further inhibited growth of human osteosarcoma cells in the presence of adriamycin or cisplatin. Overall, miR-181a-5p promotes osteosarcoma progression via PTEN/AKT pathway and it is a promising therapeutic target to treat osteosarcoma.
Collapse
|
21
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
22
|
Zahid H, Buchholz CR, Singh M, Ciccone MF, Chan A, Nithianantham S, Shi K, Aihara H, Fischer M, Schönbrunn E, Dos Santos CO, Landry JW, Pomerantz WCK. New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition. J Med Chem 2021; 64:13902-13917. [PMID: 34515477 DOI: 10.1021/acs.jmedchem.1c01294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nucleosome remodeling factor (NURF) alters chromatin accessibility through interactions with its largest subunit,the bromodomain PHD finger transcription factor BPTF. BPTF is overexpressed in several cancers and is an emerging anticancer target. Targeting the BPTF bromodomain presents a potential strategy for its inhibition and the evaluation of its functional significance; however, inhibitor development for BPTF has lagged behind those of other bromodomains. Here we describe the development of pyridazinone-based BPTF inhibitors. The lead compound, BZ1, possesses a high potency (Kd = 6.3 nM) and >350-fold selectivity over BET bromodomains. We identify an acidic triad in the binding pocket to guide future designs. We show that our inhibitors sensitize 4T1 breast cancer cells to doxorubicin but not BPTF knockdown cells, suggesting a specificity to BPTF. Given the high potency and good physicochemical properties of these inhibitors, we anticipate that they will be useful starting points for chemical tool development to explore the biological roles of BPTF.
Collapse
Affiliation(s)
- Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Manjulata Singh
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Michael F Ciccone
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Stanley Nithianantham
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Joseph W Landry
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res 2021; 55:853-864. [PMID: 34323631 DOI: 10.1080/10715762.2021.1962009] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma is one of the most frequent malignant tumors derived from the brain in adults with very poor prognosis. Ferroptosis is implicated in the initiation and progression of various tumors, including the glioblastoma. The present study aims to investigate the function of microRNA (miR)-670-3p in glioblastoma, and tries to demonstrate whether ferroptosis is involved in this process. Human glioblastoma cell lines, U87MG and A172, were transfected with the inhibitor, mimic and matched negative controls of miR-670-3p to manipulate intracellular miR-670-3p level. To validate the involvement of ferroptosis in miR-670-3p inhibitor-mediated tumor suppressive effects, ferrostain-1 and liproxstatin-1 were used to inhibit ferroptosis in the presence of miR-670-3p inhibitor. In addition, the small interfering RNA against acyl-CoA synthase long chain family member 4 (ACSL4) was used to knock down endogenous ACSL4 expression. To validate the combined effects between miR-670-3p inhibitor and temozolomide (TMZ), cells were pretreated with TMZ and then transfected with or without miR-670-3p inhibitor. miR-670-3p level was elevated in human glioblastoma, but decreased upon ferroptotic stimulation. miR-670-3p inhibitor suppressed, while miR-670-3p mimic promoted glioblastoma cell growth through modulating ferroptosis. Mechanistically, ACSL4 was required for the regulation on ferroptosis and growth of glioblastoma cells by miR-670-3p. Moreover, U87MG and A172 cells treated with miR-670-3p inhibitor showed an increased chemosensitivity to TMZ. We prove that miR-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4, and that inhibiting miR-670-3p can be an alternative, at least adjuvant strategy to treat glioblastoma.
Collapse
Affiliation(s)
- Chong Bao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu-Yue Xian
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Gao Y, Chang X, Xia J, Sun S, Mu Z, Liu X. Identification of HCC-Related Genes Based on Differential Partial Correlation Network. Front Genet 2021; 12:672117. [PMID: 34335688 PMCID: PMC8320536 DOI: 10.3389/fgene.2021.672117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death, but its pathogenesis is still unclear. As the disease is involved in multiple biological processes, systematic identification of disease genes and module biomarkers can provide a better understanding of disease mechanisms. In this study, we provided a network-based approach to integrate multi-omics data and discover disease-related genes. We applied our method to HCC data from The Cancer Genome Atlas (TCGA) database and obtained a functional module with 15 disease-related genes as network biomarkers. The results of classification and hierarchical clustering demonstrate that the identified functional module can effectively distinguish between the disease and the control group in both supervised and unsupervised methods. In brief, this computational method to identify potential functional disease modules could be useful to disease diagnosis and further mechanism study of complex diseases.
Collapse
Affiliation(s)
- Yuyao Gao
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, China
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, China
| | - Jie Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoyan Sun
- School of Mathematics and Statistics, Ludong University, Yantai, China
| | - Zengchao Mu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiaoping Liu
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, China
- School of Mathematics and Statistics, Shandong University, Weihai, China
| |
Collapse
|
25
|
Mélin L, Calosing C, Kharenko OA, Hansen HC, Gagnon A. Synthesis of NVS-BPTF-1 and evaluation of its biological activity. Bioorg Med Chem Lett 2021; 47:128208. [PMID: 34146702 DOI: 10.1016/j.bmcl.2021.128208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
BPTF (bromodomain and PHD finger containing transcription factor) is a multidomain protein that plays essential roles in transcriptional regulation, T-cell homeostasis and stem cell pluripotency. As part of the chromatin remodeling complex hNURF (nucleosome remodeling factor), BPTF epigenetic reader subunits are particularly important for BPTF cellular function. Here we report the synthesis of NVS-BPTF-1, a previously reported highly potent and selective BPTF-bromodomain inhibitor. Evaluation of the impact of the inhibition of BPTF-bromodomain using NVS-BPTF-1 on selected proteins involved in the antigen processing pathway revealed that exclusively targeting BPTF-bromodomain is insufficient to observe an increase of PSMB8, PSMB9, TAP1 and TAP2 proteins.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Cyrus Calosing
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Olesya A Kharenko
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Henrik C Hansen
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
26
|
Zhang Q, Cheng M, Fan Z, Jin Q, Cao P, Zhou G. Identification of Cancer Cell Stemness-Associated Long Noncoding RNAs for Predicting Prognosis of Patients with Hepatocellular Carcinoma. DNA Cell Biol 2021; 40:1087-1100. [PMID: 34096799 DOI: 10.1089/dna.2021.0282] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as crucial contributors to the development of hepatocellular carcinoma (HCC) and are involved in the stemness regulation of liver cancer stem cells (LCSCs). However, cancer cell stemness-associated lncRNAs and their relevance in prediction of clinical prognosis remain largely unexplored. In this study, through the transcriptome-wide screen, we identified a total of 136 LCSC-associated lncRNAs. We evaluated the prognostic value of these lncRNAs and optimally established an 11-lncRNA (including AC008622.2, AC015908.3, AC020915.2, AC025176.1, AC026356.2, AC099850.3, CYTOR, DDX11-AS1, HTR2A-AS1, LINC02870, and SNHG3) prognostic risk model. Multivariate analysis revealed that the risk score is an independent prognostic predictor for HCC patients, which outperforms the traditional clinical pathological factors. Gene set enrichment analysis suggested that the high-risk score reflects the alteration of pathways involved in cell cycle, oxidative phosphorylation, and metabolism. Furthermore, functional studies on SNHG12, the leading candidate of the risk lncRNAs, revealed that knockdown of SNHG12 reduces the abilities of HCC cells stemness, proliferation, migration, and invasion. In summary, we constructed a prognostic risk model based on 11 LCSC-associated lncRNAs, which might be a promising prognostic predictor for HCC patients and highlight the involvement of lncRNAs in LCSC-associated treatment strategy in clinical practice.
Collapse
Affiliation(s)
- Qian Zhang
- Medical College of Guizhou University, Guiyang City, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Min Cheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Zhijuan Fan
- Clinical Lab of Tianjin Third Central Hospital, Tianjin, China
| | - Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- Medical College of Guizhou University, Guiyang City, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| |
Collapse
|
27
|
Chen D, Li C, Zhao Y, Zhou J, Wang Q, Xie Y. Bioinformatics analysis for the identification of differentially expressed genes and related signaling pathways in H. pylori-CagA transfected gastric cancer cells. PeerJ 2021; 9:e11203. [PMID: 33954041 PMCID: PMC8053379 DOI: 10.7717/peerj.11203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aim Helicobacter pylori cytotoxin-associated protein A (CagA) is an important virulence factor known to induce gastric cancer development. However, the cause and the underlying molecular events of CagA induction remain unclear. Here, we applied integrated bioinformatics to identify the key genes involved in the process of CagA-induced gastric epithelial cell inflammation and can ceration to comprehend the potential molecular mechanisms involved. Materials and Methods AGS cells were transected with pcDNA3.1 and pcDNA3.1::CagA for 24 h. The transfected cells were subjected to transcriptome sequencing to obtain the expressed genes. Differentially expressed genes (DEG) with adjusted P value < 0.05, — logFC —> 2 were screened, and the R package was applied for gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The differential gene protein–protein interaction (PPI) network was constructed using the STRING Cytoscape application, which conducted visual analysis to create the key function networks and identify the key genes. Next, the Kaplan–Meier plotter survival analysis tool was employed to analyze the survival of the key genes derived from the PPI network. Further analysis of the key gene expressions in gastric cancer and normal tissues were performed based on The Cancer Genome Atlas (TCGA) database and RT-qPCR verification. Results After transfection of AGS cells, the cell morphology changes in a hummingbird shape and causes the level of CagA phosphorylation to increase. Transcriptomics identified 6882 DEG, of which 4052 were upregulated and 2830 were downregulated, among which q-value < 0.05, FC > 2, and FC under the condition of ≤2. Accordingly, 1062 DEG were screened, of which 594 were upregulated and 468 were downregulated. The DEG participated in a total of 151 biological processes, 56 cell components, and 40 molecular functions. The KEGG pathway analysis revealed that the DEG were involved in 21 pathways. The PPI network analysis revealed three highly interconnected clusters. In addition, 30 DEG with the highest degree were analyzed in the TCGA database. As a result, 12 DEG were found to be highly expressed in gastric cancer, while seven DEG were related to the poor prognosis of gastric cancer. RT-qPCR verification results showed that Helicobacter pylori CagA caused up-regulation of BPTF, caspase3, CDH1, CTNNB1, and POLR2A expression. Conclusion The current comprehensive analysis provides new insights for exploring the effect of CagA in human gastric cancer, which could help us understand the molecular mechanism underlying the occurrence and development of gastric cancer caused by Helicobacter pylori.
Collapse
Affiliation(s)
- Dingyu Chen
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
28
|
Tyutyunyk-Massey L, Sun Y, Dao N, Ngo H, Dammalapati M, Vaidyanathan A, Singh M, Haqqani S, Haueis J, Finnegan R, Deng X, Kirberger SE, Bos PD, Bandyopadhyay D, Pomerantz WCK, Pommier Y, Gewirtz DA, Landry JW. Autophagy-Dependent Sensitization of Triple-Negative Breast Cancer Models to Topoisomerase II Poisons by Inhibition of the Nucleosome Remodeling Factor. Mol Cancer Res 2021; 19:1338-1349. [PMID: 33811160 DOI: 10.1158/1541-7786.mcr-20-0743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic regulators can modulate the effects of cancer therapeutics. To further these observations, we discovered that the bromodomain PHD finger transcription factor subunit (BPTF) of the nucleosome remodeling factor (NURF) promotes resistance to doxorubicin, etoposide, and paclitaxel in the 4T1 breast tumor cell line. BPTF functions in promoting resistance to doxorubicin and etoposide, but not paclitaxel, and may be selective to cancer cells, as a similar effect was not observed in embryonic stem cells. Sensitization to doxorubicin and etoposide with BPTF knockdown (KD) was associated with increased DNA damage, topoisomerase II (TOP2) crosslinking and autophagy; however, there was only a modest increase in apoptosis and no increase in senescence. Sensitization to doxorubicin was confirmed in vivo with the syngeneic 4T1 breast tumor model using both genetic and pharmacologic inhibition of BPTF. The effects of BPTF inhibition in vivo are autophagy dependent, based on genetic autophagy inhibition. Finally, treatment of 4T1, 66cl4, 4T07, MDA-MB-231, but not ER-positive 67NR and MCF7 breast cancer cells with the selective BPTF bromodomain inhibitor, AU1, recapitulates genetic BPTF inhibition, including in vitro sensitization to doxorubicin, increased TOP2-DNA crosslinks and DNA damage. Taken together, these studies demonstrate that BPTF provides resistance to the antitumor activity of TOP2 poisons, preventing the resolution of TOP2 crosslinking and associated autophagy. These studies suggest that BPTF can be targeted with small-molecule inhibitors to enhance the effectiveness of TOP2-targeted cancer chemotherapeutic drugs. IMPLICATIONS: These studies suggest NURF can be inhibited pharmacologically as a viable strategy to improve chemotherapy effectiveness.
Collapse
Affiliation(s)
- Liliya Tyutyunyk-Massey
- VCU Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Nga Dao
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Hannah Ngo
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Mallika Dammalapati
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ashish Vaidyanathan
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Manjulata Singh
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Syed Haqqani
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joshua Haueis
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ryan Finnegan
- VCU Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xiaoyan Deng
- VCU Massey Cancer Center, Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Steve E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Paula D Bos
- VCU Massey Cancer Center, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Dipankar Bandyopadhyay
- VCU Massey Cancer Center, Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | | | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NIH, Bethesda, Maryland
| | - David A Gewirtz
- VCU Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph W Landry
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
29
|
Diao C, Guo P, Yang W, Sun Y, Liao Y, Yan Y, Zhao A, Cai X, Hao J, Hu S, Yu W, Chen M, Wang R, Li W, Zuo Y, Pan J, Hua C, Lu X, Fan W, Zheng Z, Deng W, Luo G, Guo W. SPT6 recruits SND1 to co-activate human telomerase reverse transcriptase to promote colon cancer progression. Mol Oncol 2021; 15:1180-1202. [PMID: 33305480 PMCID: PMC8024721 DOI: 10.1002/1878-0261.12878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays an extremely important role in cancer initiation and development, including colorectal cancer (CRC). However, the precise upstream regulatory mechanisms of hTERT in different cancer types remain poorly understood. Here, we uncovered the candidate transcriptional factor of hTERT in CRC and explored its role and the corresponding molecular mechanisms in regulating hTERT expression and CRC survival with an aim of developing mechanism-based combinational targeting therapy. The possible binding proteins at the hTERT promoter were uncovered using pull-down/mass spectrometry analysis. The regulation of SPT6 on hTERT expression and CRC survival was evaluated in human CRC cell lines and mouse models. Mechanistic studies focusing on the synergy between SPT6 and staphylococcal nuclease and Tudor domain containing 1 (SND1) in controlling hTERT expression and CRC progression were conducted also in the above two levels. The expression correlation and clinical significance of SPT6, SND1, and hTERT were investigated in tumor tissues from murine models and patients with CRC in situ. SPT6 was identified as a possible transcriptional factor to bind to the hTERT promoter. SPT6 knockdown decreased the activity of hTERT promoter, downregulated the protein expression level of hTERT, suppressed proliferation, invasion, and stem-like properties, promoted apoptosis induction, and enhanced chemotherapeutic drug sensitivity in vitro. SPT6 silencing also led to the delay of tumor growth and metastasis in mice carrying xenografts of human-derived colon cancer cells. Mechanistically, SND1 interacted with SPT6 to co-control hTERT expression and CRC cell proliferation, stemness, and growth in vitro and in vivo. SPT6, SND1, and hTERT were highly expressed simultaneously in CRC tissues, both from the murine model and patients with CRC in situ, and pairwise expression among these three factors showed a significant positive correlation. In brief, our research demonstrated that SPT6 synergized with SND1 to promote CRC development by targeting hTERT and put forward that inhibiting the SPT6-SND1-hTERT axis may create a therapeutic vulnerability in CRC.
Collapse
Affiliation(s)
- Chaoliang Diao
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Ping Guo
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wenjing Yang
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yao Sun
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yina Liao
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yue Yan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Anshi Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xin Cai
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Sheng Hu
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wendan Yu
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Manyu Chen
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Ruozhu Wang
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wenyang Li
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yan Zuo
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Jinjin Pan
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Chunyu Hua
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Xiaona Lu
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wenhua Fan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zongheng Zheng
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wuguo Deng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangyu Luo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei Guo
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| |
Collapse
|
30
|
Hu Y, Peng X, Wang F, Chen P, Zhao M, Shen S. Natural population re-sequencing detects the genetic basis of local adaptation to low temperature in a woody plant. PLANT MOLECULAR BIOLOGY 2021; 105:585-599. [PMID: 33651261 DOI: 10.1007/s11103-020-01111-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Total of 14 SNPs associated with overwintering-related traits and 75 selective regions were detected. Important candidate genes were identified and a possible network of cold-stress responses in woody plants was proposed. Local adaptation to low temperature is essential for woody plants to against changeable climate and safely survive the winter. To uncover the specific molecular mechanism of low temperature adaptation in woody plants, we sequenced 134 core individuals selected from 494 paper mulberry (Broussonetia papyrifera), which naturally distributed in different climate zones and latitudes. The population structure analysis, PCA analysis and neighbor-joining tree analysis indicated that the individuals were classified into three clusters, which showed forceful geographic distribution patterns because of the adaptation to local climate. Using two overwintering phenotypic data collected at high latitudes of 40°N and one bioclimatic variable, genome-phenotype and genome-environment associations, and genome-wide scans were performed. We detected 75 selective regions which possibly undergone temperature selection and identified 14 trait-associated SNPs that corresponded to 16 candidate genes (including LRR-RLK, PP2A, BCS1, etc.). Meanwhile, low temperature adaptation was also supported by other three trait-associated SNPs which exhibiting significant differences in overwintering traits between alleles within three geographic groups. To sum up, a possible network of cold signal perception and responses in woody plants were proposed, including important genes that have been confirmed in previous studies while others could be key potential candidates of woody plants. Overall, our results highlighted the specific and complex molecular mechanism of low temperature adaptation and overwintering of woody plants.
Collapse
Affiliation(s)
- Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
31
|
Cao LJ, Zhang YJ, Dong SQ, Li XZ, Tong XT, Chen D, Wu ZY, Zheng XH, Xue WQ, Jia WH, Zhang JB. ATAD2 interacts with C/EBPβ to promote esophageal squamous cell carcinoma metastasis via TGF-β1/Smad3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:109. [PMID: 33757572 PMCID: PMC7986551 DOI: 10.1186/s13046-021-01905-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Background Distant metastasis is the leading cause of death for esophageal squamous cell carcinoma (ESCC) with limited treatment options and unsatisfactory effectiveness. Bromodomain (BRD) containing proteins are emerging targets for cancer therapy with promising effects. As a unique member of BRD family, the function and molecular mechanism of ATAD2 in cancer development is seldomly investigated. Methods The clinical impact of ATAD2 was assessed both at RNA and protein level in 75 and 112 ESCC patients separately. The biological function of ATAD2 was investigated in vitro and in vivo. Signaling pathway and downstream effectors of ATAD2 were identified by RNA sequencing, luciferase reporter, co-immunoprecipitation, chromatin immunoprecipitation, immunofluorescence and western blot assay. Results We found that elevated ATAD2 expression was significantly associated with lymph node metastasis, advanced clinical stage as well as poor survival of ESCC patients. Silencing ATAD2 significantly suppressed ESCC cell migration and invasion in vitro, and inhibited tumor growth and lung metastasis in vivo. Mechanically, we identified a new cofactor, C/EBPβ. ATAD2 directly interacted with C/EBPβ and promoted its nuclear translocation, which directly bound to the promoter region of TGF-β1 and activated its expression. Further, we demonstrated that TGF-β1 activated its downstream effectors in a Smad3 dependent manner. In addition, we further found that ATAD2 promoted ESCC metastasis through TGF-β signaling induced Snail expression and the subsequent epithelial-mesenchymal transition. Conclusion Our findings demonstrated the pro-metastatic function of ATAD2 and uncovered the new molecular mechanism by regulating C/EBPβ/TGF-β1/Smad3/Snail signaling pathway, thus providing a potential target for the treatment of ESCC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01905-x.
Collapse
Affiliation(s)
- Lian-Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia-Ting Tong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
32
|
Glinton KE, Hurst ACE, Bowling KM, Cristian I, Haynes D, Adstamongkonkul D, Schnappauf O, Beck DB, Brewer C, Parikh AS, Shinde DN, Donaldson A, Brautbar A, Koene S, van Haeringen A, Piton A, Capri Y, Furlan M, Gardella E, Møller RS, van de Beek I, Zuurbier L, Lakeman P, Bayat A, Martinez J, Signer R, Torring PM, Engelund MB, Gripp KW, Amlie-Wolf L, Henderson LB, Midro AT, Tarasów E, Stasiewicz-Jarocka B, Moskal-Jasinska D, Vos P, Boschann F, Stoltenburg C, Puk O, Mero IL, Lossius K, Mignot C, Keren B, Acosta Guio JC, Briceño I, Gomez A, Yang Y, Stankiewicz P. Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies. Am J Med Genet A 2021; 185:1366-1378. [PMID: 33522091 PMCID: PMC8048530 DOI: 10.1002/ajmg.a.62102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage‐sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi‐faceted complications due to haploinsufficiency of BPTF.
Collapse
Affiliation(s)
- Kevin E Glinton
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Ingrid Cristian
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, Florida, USA
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, Florida, USA
| | - Dusit Adstamongkonkul
- CoxHealth, CoxHealth Pediatric Specialties, Springfield, Missouri, USA.,University of Missouri School of Medicine, Springfield Clinical Campus, Springfield, Missouri, USA
| | - Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carole Brewer
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Aditi Shah Parikh
- Center for Human Genetics, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Deepali N Shinde
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Alan Donaldson
- Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Ariel Brautbar
- Medical Genetics Department, Cook Children's Hospital, Fort Worth, Texas, USA
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amélie Piton
- Unité de Génétique Moléculaire Strasbourg University Hospital, 1 place de l'Hôpital, Strasbourg Cedex, France
| | - Yline Capri
- Service de Génétique Clinique, CHU Robert Debré, Paris Cedex, France
| | | | - Elena Gardella
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark
| | | | - Irma van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Allan Bayat
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark.,Department of Pediatrics, University Hospital of Hvidovre, Copenhagen, Denmark
| | - Julian Martinez
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Rebecca Signer
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Pernille M Torring
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Karen W Gripp
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | - Alina T Midro
- Department of Clinical Genetics, Medical University, Białystok, 15-089, Białystok, Poland
| | | | | | - Diana Moskal-Jasinska
- Department of Clinical Phonoaudiology and Speech Therapy, Medical University, Białystok, Białystok, Poland
| | - Paul Vos
- Department of Pediatrics, Haga Teaching Hospital, Juliana Children's Hospital, The Hague, The Netherlands
| | - Felix Boschann
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Neuropaediatrics, Charité - Berlin University of Medicine, Berlin, Germany
| | - Oliver Puk
- Praxis für Humangenetik Tuebingen, Department of Genetic Diagnostics, Tuebingen, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kristine Lossius
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Norway
| | - Cyril Mignot
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Johanna C Acosta Guio
- Especialista en Genética Médica, Instituto de Ortopedia Infantil Roosevelt, Bogotá, Cundinamarca, Colombia
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Alberto Gomez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Yaping Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.,AiLife Diagnostics, Country Place Pkwy Suite 100, Pearland, Texas, USA
| | - Pawel Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
33
|
Yang Y, Wang C, Wei N, Hong T, Sun Z, Xiao J, Yao J, Li Z, Liu T. Identification of prognostic chromatin-remodeling genes in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:25614-25642. [PMID: 33232269 PMCID: PMC7803503 DOI: 10.18632/aging.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of chromatin-remodeling genes on the prognosis of patients with clear cell renal cell carcinoma (ccRCC). In TCGA-KIRC patients, two subgroups based on 86 chromatin-remodeling genes were established. The random forest algorithm was used for feature selection to identify BPTF, SIN3A and CNOT1 as characterized chromatin remodelers in ccRCC with good prognostic value. YY1 was indicated to be a transcription factor of genes highly related to BPTF, SIN3A and CNOT1. Functional annotations indicated that BPTF, SIN3A, CNOT1 and YY1 are all involved in the ubiquitin-mediated proteolysis process and that high expression of any of the five associated E3 ubiquitin ligases found in the pathway suggests a good prognosis. Protein network analysis indicated that BPTF has a targeted regulatory effect on YY1. Another independent dataset from International Cancer Genome Consortium (ICGC) showed a strong consistency with results in TCGA. In conclusion, we demonstrate that BPTF, SIN3A and CNOT1 are novel prognostic factors that predict good survival in ccRCC. We predicted that the good prognostic value of chromatin-remodeling genes BPTF and SIN3A is related to the regulation of YY1 and that YY1 regulates E3 ubiquitin ligases for further degradation of oncoproteins in ccRCC.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Tiexi District, Shenyang 110001, P.R. China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
34
|
Li Z, Zhang Y, Sui S, Hua Y, Zhao A, Tian X, Wang R, Guo W, Yu W, Zou K, Deng W, He L, Zou L. Targeting HMGB3/hTERT axis for radioresistance in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:243. [PMID: 33187536 PMCID: PMC7664109 DOI: 10.1186/s13046-020-01737-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Radiotherapy is regarded as a milestone for the cure of cervical cancer. However, clinical outcome heavily be hindered by radioresistance. So, exploring the underlying mechanism of radioresistance, and find potential target, well deserve fully emphasis. METHODS In this study, we developed two novel radiation resistance cervical cancer cell lines, which could mimic clinical radioresistance. In order to find new potential targets, RNA-Seq, database analysis, streptavidin-agarose and LC/MS were used. Pull-down, luciferase and rescue assays were conducted to explore the regulatory mechanisms. To further evaluate the correlation between therapeutic responses and HMGB3/hTERT expression, 172 cervical cancer patients were recruited. RESULTS Knockdown of HMGB3 significantly inhibit the DNA damage repair and induced more γH2AX foci, leading to enhanced chemo- and radio-sensitivity in vitro and in vivo, whereas HMGB3 overexpression has the opposite effects. HMGB3 promotes cell growth and radioresistance by transcriptionally up-regulating hTERT via the specifical binding of HMGB3 at the hTERT promoter region from - 902 to - 321. HMGB3 knockdown-mediated radiosensitization could be reversed by the overexpressed hTERT in both cervical cancer cell lines and xenograft tumor mouse model. Furthermore, clinical data from 172 cervical cancer patients proved that there was a positive correlation between HMGB3 and hTERT expression, and high expression of HMGB3/hTERT predicted poor response to radiotherapy, worse TNM stages and shorter survival time. CONCLUSION Here, we have identified HMGB3/hTERT signaling axis as a new target for cervical cancer radioresistance. Our results provide new insights into the mechanism of cervical cancer radioresistance and indicate that targeting the HMGB3/hTERT signaling axis may benefit cervical cancer patients.
Collapse
Affiliation(s)
- Zongjuan Li
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Silei Sui
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yijun Hua
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Anshi Zhao
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoyuan Tian
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruonan Wang
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Liru He
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Lijuan Zou
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
35
|
Zohud BA, Guo P, Zohud BA, Li F, Hao JJ, Shan X, Yu W, Guo W, Qin Y, Cai X. Importin 13 promotes NSCLC progression by mediating RFPL3 nuclear translocation and hTERT expression upregulation. Cell Death Dis 2020; 11:879. [PMID: 33082305 PMCID: PMC7575581 DOI: 10.1038/s41419-020-03101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Our previous studies have reported that RFPL3 protein exerts its unique function as a transcriptional factor of hTERT promoter after being transported into the lung cancer cell nucleus. However, the detailed mechanism by which RFPL3 undergoes nuclear transport has not been reported yet. Here, we identified RFPL3 as a potential import cargo for IPO13, which was found to be overexpressed in NSCLC cells and tissues. IPO13 interacted with RFPL3 in lung cancer cells, and the knockdown of IPO13 led to the cytoplasmic accumulation of RFPL3, the decreased anchoring of RFPL3 at hTERT promoter, and the downregulation of hTERT expression. Moreover, IPO13 silencing suppressed tumor growth in vitro and in vivo. IHC analysis confirmed the positive correlation between the expression levels of IPO13 and hTERT in the tumor tissues from patients with lung cancer. Furthermore, the mechanistic study revealed that IPO13 recognized RFPL3 via a functional nuclear localization signal (NLS), which is located in the B30.2 domain at the C-terminal region of RFPL3. Of note, the presence of EGFR mutations was significantly related to the increased IPO13 expression. The EGFR-TKI Osimertinib downregulated IPO13 expression level in NSCLC cell lines with EGFR mutations, but not in EGFR wild-type ones. In summary, our data suggest that inhibition of IPO13 transport activity itself might be an alternative and potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | - Ping Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | | | - Fengzhou Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jiao J Hao
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Xiu Shan
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Yu Qin
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Xin Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
36
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol 2020; 180:114200. [DOI: 10.1016/j.bcp.2020.114200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
38
|
Sansone V, Le Grazie M, Roselli J, Polvani S, Galli A, Tovoli F, Tarocchi M. Telomerase reactivation is associated with hepatobiliary and pancreatic cancers. Hepatobiliary Pancreat Dis Int 2020; 19:420-428. [PMID: 32386990 DOI: 10.1016/j.hbpd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) and its components play a significant role in cancer progression, but recent data demonstrated that telomeres and telomerase alterations could be found in other diseases; increasing evidence suggests a key role of this enzyme in the fields of hepatobiliary and pancreatic diseases. DATA SOURCES We performed a PubMed search with the following keywords: telomerase, hepatocellular carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma by December 2019. We reviewed the relevant publications that analyzed the correlation between telomerase activity and hepatobiliary and pancreatic diseases. RESULTS Telomerase reactivation plays a significant role in the development and progression of hepatobiliary and pancreatic tumors and could be used as a diagnostic biomarker for hepatobiliary and pancreatic cancers, as a predictor for prognosis and a promising therapeutic target. CONCLUSIONS Our review summarized the evidence about the critical role of hTERT in cancerous and precancerous lesions of the alteration and its activity in hepatobiliary and pancreatic diseases.
Collapse
Affiliation(s)
- Vito Sansone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Marco Le Grazie
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Jenny Roselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| |
Collapse
|
39
|
Miao J, Zhang M, Huang X, Xu L, Tang R, Wang H, Han S. Upregulation of bromodomain PHD finger transcription factor in ovarian cancer and its critical role for cancer cell proliferation and survival. Biochem Cell Biol 2020; 99:304-312. [PMID: 32985220 DOI: 10.1139/bcb-2020-0227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bromodomain PHD finger transcription factor (BPTF) is a core subunit of the nucleosome-remodeling factor (NURF) complex, which plays an important role in the development of several cancers. However, it is unknown whether BPTF regulates the progression of ovarian cancer (OC). To investigate this, we measured the relative expression levels of BPTF in OC cell lines and tissues using Western blot and immunohistochemistry, respectively, and the results were analyzed using the χ2 test. We also examined the effects from BPTF knockdown on the proliferation, migration, invasiveness, and apoptosis of OC cell lines. Mechanistic studies revealed that these effects were achieved through simultaneous modulation of multiple signaling pathways. We found that BPTF was highly expressed in OC cell lines and tissues compared with a normal human ovarian epithelial cell line and non-cancerous tissues (P < 0.05). These results are also supported by the public RNA-seq data. BPTF overexpression was correlated with a poor prognosis for OC patient survival (P < 0.05). In vitro experiments revealed that the downregulation of BPTF inhibited OC cell proliferation, colony formation, migration, and invasiveness, and induced apoptosis. BPTF knockdown also affected the epithelial-mesenchymal transition (EMT) signaling pathways and induced the cleavage of apoptosis-related proteins. Consequently, BPTF plays a critical role in OC cell survival, and functions as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Juan Miao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xiaohao Huang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Xu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ranran Tang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Huan Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Suping Han
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
in der Stroth L, Tharehalli U, Günes C, Lechel A. Telomeres and Telomerase in the Development of Liver Cancer. Cancers (Basel) 2020; 12:E2048. [PMID: 32722302 PMCID: PMC7464754 DOI: 10.3390/cancers12082048] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common cancer types worldwide and the fourth leading cause of cancer-related death. Liver carcinoma is distinguished by a high heterogeneity in pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequent in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which represent the two most common types of liver tumors. Both tumor types are characterized by telomere shortening and reactivation of telomerase during carcinogenesis. Continuous cell proliferation, e.g., by oncogenic mutations, can cause extensive telomere shortening in the absence of sufficient telomerase activity, leading to dysfunctional telomeres and genome instability by breakage-fusion-bridge cycles, which induce senescence or apoptosis as a tumor suppressor mechanism. Telomerase reactivation is required to stabilize telomere functionality and for tumor cell survival, representing a genetic risk factor for the development of liver cirrhosis and liver carcinoma. Therefore, telomeres and telomerase could be useful targets in hepatocarcinogenesis. Here, we review similarities and differences between HCC and iCCA in telomere biology.
Collapse
Affiliation(s)
- Lena in der Stroth
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Cagatay Günes
- Department of Urology, University Hospital Ulm, 89081 Ulm, Germany;
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| |
Collapse
|
41
|
Luo C, Zhu X, Luo Q, Bu F, Huang C, Zhu J, Zhao J, Zhang W, Lin K, Hu C, Zong Z, Luo H, Huang J, Zhu Z. RBFOX3 Promotes Gastric Cancer Growth and Progression by Activating HTERT Signaling. Front Oncol 2020; 10:1044. [PMID: 32903312 PMCID: PMC7396657 DOI: 10.3389/fonc.2020.01044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor invasion, metastasis, and recrudescence remain a considerable challenge in the treatment of gastric cancer (GC). Herein we first identified that RNA binding protein fox-1 homolog 3 (RBFOX3) was markedly overexpressed in GC tissues and negatively linked to the survival rate of GC patients. RBFOX3 promoted cell division and cell cycle progression in vitro and in vivo. Furthermore, RBFOX3 increased the cell invasion and migration ability. The suppression of GC cell multiplication and invasion, caused by silencing of RBFOX3, was rescued by HTERT overexpression. Additionally, RBFOX3 augmented the resistance of GC cells to 5-fluorouracil by repressing RBFOX3. Mechanistically, the exogenous up-regulation of RBFOX3 triggered promoter activity and HTERT expression, thereby enhancing the division and the development of GC cells. Further co-immunoprecipitation tests revealed that RBFOX3 bound to AP-2β to modulate HTERT expression. In conclusion, our study indicates that a high expression of RBFOX3 promotes GC progression and development and predicts worse prognosis. Collectively, these results indicate that the RBFOX3/AP-2β/HTERT signaling pathway can be therapeutically targeted to prevent and treat GC recurrence and metastasis.
Collapse
Affiliation(s)
- Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Xiaojian Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Qilin Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanqin Bu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jingfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jiefeng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Wenjun Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Kang Lin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Cegui Hu
- Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Zeng Zong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Hongliang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jun Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Gong X, Dong T, Niu M, Liang X, Sun S, Zhang Y, Li Y, Li D. lncRNA LCPAT1 Upregulation Promotes Breast Cancer Progression via Enhancing MFAP2 Transcription. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:804-813. [PMID: 32791452 PMCID: PMC7424176 DOI: 10.1016/j.omtn.2020.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 07/07/2020] [Indexed: 01/25/2023]
Abstract
The importance of long noncoding RNA (lncRNA) in tumorigenesis has been supported by increasing evidence in recent years. However, the mechanism linking lncRNA function with cancer progression remains poorly understood. lncRNA LCPAT1 plays a role in lung cancer. However, how it works in breast cancer (BC) is largely unclear. In this study, we found that LCPAT1 was highly expressed in BC tissues and cell lines. High LCPAT1 expression predicted a low survival rate in BC patients. LCPAT1 promoted BC cell proliferation, migration, and invasion while inhibiting apoptosis in vitro. LCPAT1 knockdown suppressed BC growth in vivo and vice versa. LCPAT1 interacted with RBBP4 and recruited it to the MFAP2 (microfibril-associated protein 2) promoter and then activated MFAP2 transcription. Restoration of MFAP2 rescued the effects of LCPAT1 knockdown in BC cells. In sum, LCPAT1 promotes BC progression through recruiting RBBP4 to initiate MFAP2 transcription.
Collapse
Affiliation(s)
- Xue Gong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Tuozhou Dong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Ming Niu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Xiaoshuan Liang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Shanshan Sun
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Youxue Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Yue Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, China.
| | - Dalin Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China.
| |
Collapse
|
43
|
Lee TY, Huang KY, Chuang CH, Lee CY, Chang TH. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Comput Biol Chem 2020; 87:107277. [PMID: 32512487 DOI: 10.1016/j.compbiolchem.2020.107277] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most occurring cancer type, and its mortality rate is also the highest, among them lung adenocarcinoma (LUAD) accounts for about 40 % of lung cancer. There is an urgent need to develop a prognosis prediction model for lung adenocarcinoma. Previous LUAD prognosis studies only took single-omics data, such as mRNA or miRNA, into consideration. To this end, we proposed a deep learning-based autoencoding approach for combination of four-omics data, mRNA, miRNA, DNA methylation and copy number variations, to construct an autoencoder model, which learned representative features to differentiate the two optimal patient subgroups with a significant difference in survival (P = 4.08e-09) and good consistency index (C-index = 0.65). The multi-omics model was validated though four independent datasets, i.e. GSE81089 for mRNA (n = 198, P = 0.0083), GSE63805 for miRNA (n = 32, P = 0.018), GSE63384 for DNA methylation (n = 35, P = 0.009), and TCGA independent samples for copy number variations (n = 94, P = 0.0052). Finally, a functional analysis was performed on two survival subgroups to discover genes involved in biological processes and pathways. This is the first study incorporating deep autoencoding and four-omics data to construct a robust survival prediction model, and results show the approach is useful at predicting LUAD prognostication.
Collapse
Affiliation(s)
- Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Cheng-Hsiang Chuang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan.
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan.
| |
Collapse
|
44
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 681] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Wu J, Miao J, Ding Y, Zhang Y, Huang X, Zhou X, Tang R. MiR-4458 inhibits breast cancer cell growth, migration, and invasiveness by targeting CPSF4. Biochem Cell Biol 2019; 97:722-730. [PMID: 30970220 DOI: 10.1139/bcb-2019-0008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have reported that CPSF4 is over-expressed in a large percentage of human lung cancers, and CPSF4 has been identified as a potential oncogene of human lung tumor. Downregulation of CPSF4 inhibits the proliferation and promotes the apoptosis of lung adenocarcinoma cells. A previous study by our group also found overexpression of CPSF4 in breast cancer (BC), and was closely associated with a poor prognosis for the patient. This study investigates microRNAs (miRNAs) that target CPSF4 to modulate BC cell proliferation. We found that miR-4458 was noticeably reduced in BC tissues and cells. Using a miR-4458 mimic, we found that cell proliferation, migration, and invasiveness were suppressed by miR-4458 overexpression, and were enhanced by reducing the expression of miR-4458. Moreover, the results from bioinformatics analyses suggest a putative target site in the CPSF4 3'-UTR. Furthermore, using luciferase reporter assays and Western blotting, we verified that miR-4458 directly targets the 3'-UTR of CPSF4 and downregulates COX-2 and h-TERT, which are downstream target genes of CPSF4. Additionally, PI3K/AKT and ERK were shown to be inhibited by miR-4458 overexpression in BC cells. Moreover, miR-4458 suppresses BC cell growth in vivo. Consequently, these results suggest that the miR-4458-CPSF4-COX-2-hTERT axis might serve as a potential target for the treatment of BC patients.
Collapse
Affiliation(s)
- Jianrong Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China
| | - Juan Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yayun Zhang
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaohao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Zhou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ranran Tang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
46
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
47
|
Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, Li Z, Wei J, Liu M, Li G. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer 2019; 18:45. [PMID: 30922402 PMCID: PMC6437893 DOI: 10.1186/s12943-019-1006-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a novel type of noncoding RNAs and play important roles in tumorigenesis, including gastric cancer (GC). However, the functions of most circRNAs remain poorly understood. In our study, we aimed to investigate the functions of a new circRNA circ-DONSON in GC progression. Methods The expression of circ-DONSON in gastric cancer tissues and adjacent normal tissues was analyzed by bioinformatics method, qRT-PCR, Northern blotting and in situ hybridization (ISH). The effects of circ-DONSON on GC cell proliferation, apoptosis, migration and invasion were measured by using CCK8, colony formation, EdU, immunofluorescence (IF), FACS and Transwell assays. qRT-PCR and Western blotting were utilized to validate how circ-DONSON regulates SOX4 expression. ChIP, DNA fluorescence in situ hybridization (DNA-FISH) and DNA accessibility assays were used to investigate how circ-DONSON regulates SOX4 transcription. The interaction between circ-DONSON and NURF complex was evaluated by mass spectrum, RNA immunoprecipitation (RIP), pulldown and EMSA assays. Xenograft mouse model was used to analyze the effect of circ-DONSON on GC growth in vivo. Results Elevated expression of circ-DONSON was observed in GC tissues and positively associated with advanced TNM stage and unfavorable prognosis. Silencing of circ-DONSON significantly suppressed the proliferation, migration and invasion of GC cells while promoting apoptosis. circ-DONSON was localized in the nucleus, recruited the NURF complex to SOX4 promoter and initiated its transcription. Silencing of the NURF complex subunit SNF2L, BPTF or RBBP4 similarly attenuated GC cell growth and increased apoptosis. circ-DONSON knockdown inhibited GC growth in vivo. Conclusion circ-DONSON promotes GC progression through recruiting the NURF complex to initiate SOX4 expression. Electronic supplementary material The online version of this article (10.1186/s12943-019-1006-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lixian Ding
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yuying Zhao
- Department of Medical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shuwei Dang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, Fairborn, OH, 45435, USA
| | - Xinglong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaotong Yu
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Zhongsheng Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jiufeng Wei
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ming Liu
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Guodong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People's Republic of China. .,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|