1
|
Perez-Montero B, Fermin-Rodriguez ML, Portero-Fuentes M, Sarquis J, Caceres S, Portal JCID, Juan LD, Miro G, Cruz-Lopez F. Malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in canine serum: establishing reference intervals and influencing factors. BMC Vet Res 2025; 21:161. [PMID: 40069799 PMCID: PMC11900598 DOI: 10.1186/s12917-025-04614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Mounting evidence suggests that malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) are valuable biomarkers of lipid and nucleic acid oxidation in numerous canine diseases. However, their application in clinical settings is limited due to the absence of reference intervals (RI) and the analytical inconsistencies. Therefore, this study aimed to characterize serum MDA and 8-OHdG concentrations in dogs, to establish assay-specific RI, and to identify biological, haematological and biochemical factors influencing these markers. METHODS A total of 190 clinically healthy dogs were recruited, including pet dogs, working dogs and shelter dogs. Serum MDA concentration was measured by the Thiobarbituric Acid Reactive Substances (TBARS) assay, while 8-OHdG levels were determined by using a competitive ELISA. RI were established by non-parametric methods. Potential associations between oxidative stress (OS) biomarkers and multiple biological, haematological and biochemical factors were assessed using multivariate regression models. RESULTS RI for serum MDA (1.85-14.51 µM) and 8-OHdG (0.06-0.75 ng/mL) were established in the reference population (144 and 143 dogs, respectively). The multivariate regression model for MDA revealed a positive association with total cholesterol concentration, and a negative association with monocyte count. 8-OHdG level was positively associated with urea concentration. Notably, both models also revealed a significant association between MDA and 8-OHdG. Biological factors, including the age and size of the animals, did not exert a significant influence on the results. CONCLUSIONS This is the first study to establish serum RI for MDA and 8-OHdG in a large and diverse canine population. Additionally, the multivariate regression models identified relevant haematological and biochemical, but not biological factors that should be considered when interpreting the results. These findings could significantly enhance the application of MDA and 8-OHdG as biomarkers in clinical settings, and promote further exploration of their value in canine diseases.
Collapse
Affiliation(s)
- B Perez-Montero
- Clinical Pathology Service, Veterinary Teaching Hospital, Complutense University, Madrid, Spain.
| | - M L Fermin-Rodriguez
- Clinical Pathology Service, Veterinary Teaching Hospital, Complutense University, Madrid, Spain
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - M Portero-Fuentes
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - J Sarquis
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - S Caceres
- Animal Physiology Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - J C Illera Del Portal
- Animal Physiology Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - L de Juan
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| | - G Miro
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - F Cruz-Lopez
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| |
Collapse
|
2
|
Tang Z, Wang T, Liu C. Mass Spectrometry-Based Platforms for Protein Lipoxidation Profiling. Chemistry 2024; 30:e202402062. [PMID: 39520376 DOI: 10.1002/chem.202402062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 11/16/2024]
Abstract
Lipid peroxidation, occurring through enzymatic or non-enzymatic processes, generates lipid-derived electrophiles (LDEs), which can covalently modify nucleophilic amino acid residues in proteins, a process known as protein lipoxidation. This modification can alter protein structure and function, either causing damage or regulating signalling pathways. Identifying the protein targets and specific lipoxidation sites provide important clues for unveiling the oxidative stress-related protein interaction network and molecular mechanisms of related diseases. In this review, we present a detailed overview of recent advances in protein LDE modification profiling, with a focus on mass spectrometry (MS)-based chemoproteomic platforms for global protein lipoxidation profiling.
Collapse
Affiliation(s)
- Ziming Tang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Tianyang Wang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chunrong Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
3
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Zhao L, Gao F. Effects of chronic heat stress on Ca 2+ homeostasis, apoptosis, and protein carbonylation profiles in the breast muscle of broilers. Poult Sci 2024; 103:104342. [PMID: 39369492 PMCID: PMC11491962 DOI: 10.1016/j.psj.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Heat stress (HS) largely impairs the quality of broiler breast meat through protein oxidative modification. This study aimed to investigate the carbonylation pattern of Ca2+ channels and apoptotic proteins in the breast muscle of heat-stressed broilers. A total of 144 twenty-eight-day-old male Arbor Acres broilers were randomly divided into three treatment groups. The normal control (NC) group was kept at 22°C and provided with unlimited feed. The HS group was exposed to 32°C and provided with unlimited feed. The pair-fed (PF) group was kept at 22°C and given an amount of feed equivalent to that consumed by the HS group on the previous day. Results showed that broilers under HS conditions had a higher respiratory rate than those in NC and PF groups (P < 0.05). HS disrupted the morphology and structure of breast muscle fibers by decreasing the average diameters and average density of myofibers compared to the NC group (P < 0.05). HS increased the mean fluorescence intensity of the positive carbonyl signal in breast muscle compared with the NC group (P < 0.05). Besides, the pectoral Ca2+ concentration in the sarcoplasmic reticulum, cytoplasm, and mitochondria was elevated by HS when compared with the NC group (P < 0.05). In comparison to the NC and PF groups, HS increased the apoptosis rate and caspase-3 activity in the breast muscle (P < 0.05). Furthermore, HS elevated the relative protein expressions of plasma membrane Ca2+-ATPase, Na+/Ca2+ exchanger 1, and sarco/endoplasmic reticulum calcium transport ATPase 1 compared to the NC group (P < 0.05). Higher relative protein expression of μ-calpain and lower relative protein expression of cytosolic cytochrome complex were found in the HS group than the NC group (P < 0.05). HS decreased the carbonylation levels of transient receptor potential canonical 1 and inositol 1,4,5-trisphosphate receptor compared to the NC group (P < 0.05). Additionally, the carbonylation levels of cleaved caspase-3 and precursor caspase-9 were increased and decreased, respectively, by HS treatment compared to the NC group (P < 0.05). In conclusion, HS damages the myofiber based on Ca2+ dyshomeostasis and apoptosis, which are potentially associated with protein carbonylation. These results shed new light on the possible mechanism behind the development of poor meat quality in broilers due to HS.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaolong Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Valeanu A, Margina D, Weber D, Stuetz W, Moreno-Villanueva M, Dollé MET, Jansen EH, Gonos ES, Bernhardt J, Grubeck-Loebenstein B, Weinberger B, Fiegl S, Sikora E, Mosieniak G, Toussaint O, Debacq-Chainiaux F, Capri M, Garagnani P, Pirazzini C, Bacalini MG, Hervonen A, Slagboom PE, Talbot D, Breusing N, Frank J, Bürkle A, Franceschi C, Grune T, Gradinaru D. Development and validation of cardiometabolic risk predictive models based on LDL oxidation and candidate geromarkers from the MARK-AGE data. Mech Ageing Dev 2024; 222:111987. [PMID: 39284459 DOI: 10.1016/j.mad.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and cardiometabolic risk factors from MARK-AGE data. A cross-sectional observational study was carried out on 1089 subjects (528 men and 561 women), aged 40-75 years old, randomly recruited age- and sex-stratified individuals from the general population. A correlation analysis exploring the relationships between LDLox and relevant biomarkers was undertaken, as well as the development and validation of several machine learning algorithms, for estimating the risk of the combined status of high blood pressure and obesity for the MARK-AGE subjects. The machine learning models yielded Area Under the Receiver Operating Characteristic Curve Score ranging 0.783-0.839 for the internal validation, while the external validation resulted in an Under the Receiver Operating Characteristic Curve Score between 0.648 and 0.787, with the variables based on LDLox reaching significant importance within the obtained predictions. The current study offers novel insights regarding the combined effects of LDL oxidation and other ageing markers on cardiometabolic risk. Future studies might be extended on larger patient cohorts, in order to obtain reproducible clinical assessment models.
Collapse
Affiliation(s)
- Andrei Valeanu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
| | - Denisa Margina
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany.
| | - Wolfgang Stuetz
- Department of Food Biofunctionality, Institute of Nutritional Sciences (140), University of Hohenheim, Stuttgart 70599, Germany.
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz 78457, Germany; Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz 78457, Germany.
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Eugène Hjm Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece.
| | | | - Beatrix Grubeck-Loebenstein
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, Innsbruck 6020, Austria.
| | - Birgit Weinberger
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, Innsbruck 6020, Austria.
| | - Simone Fiegl
- UMIT TIROL - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol 6060, Austria.
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, Warsaw 02-093, Poland.
| | - Grazyna Mosieniak
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, Warsaw 02-093, Poland.
| | - Olivier Toussaint
- URBC-NARILIS, University of Namur, Rue de Bruxelles, 61, Namur, Belgium
| | | | - Miriam Capri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy.
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy.
| | | | - Antti Hervonen
- Medical School, University of Tampere, Tampere 33014, Finland.
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Duncan Talbot
- Department of Unilever Science and Technology, Beauty and Personal Care, Sharnbrook, UK.
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany.
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences (140), University of Hohenheim, Stuttgart 70599, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz 78457, Germany.
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod 603005, Russia.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin 13347, Germany; University of Potsdam, Institute of Nutritional Science, Nuthetal 14458, Germany; University of Vienna, Department of Physiological Chemistry, Faculty of Chemistry, Vienna 1090, Austria.
| | - Daniela Gradinaru
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania; Ana Aslan National Institute of Gerontology and Geriatrics, Bucharest, Romania.
| |
Collapse
|
5
|
Lei MH, Hsu PW, Tsai YT, Chang CC, Tsai IJ, Hsu H, Cheng MH, Huang YL, Lin HT, Hsu YC, Lin CY. Low Levels of IgM Recognizing 4-Hydroxy-2-Nonenal-Modified Apolipoprotein A-I Peptide and Its Association with the Severity of Coronary Artery Disease in Taiwanese Patients. Curr Issues Mol Biol 2024; 46:6267-6283. [PMID: 38921045 PMCID: PMC11202877 DOI: 10.3390/cimb46060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Autoantibodies against apolipoprotein A-I (ApoA-I) are associated with cardiovascular disease risks. We aimed to examine the 4-hydroxy-2-nonenal (HNE) modification of ApoA-I in coronary artery disease (CAD) and evaluate the potential risk of autoantibodies against their unmodified and HNE-modified peptides. We assessed plasma levels of ApoA-I, HNE-protein adducts, and autoantibodies against unmodified and HNE-peptide adducts, and significant correlations and odds ratios (ORs) were examined. Two novel CAD-specific HNE-peptide adducts, ApoA-I251-262 and ApoA-I70-83, were identified. Notably, immunoglobulin G (IgG) anti-ApoA-I251-262 HNE, IgM anti-ApoA-I70-83 HNE, IgG anti-ApoA-I251-262, IgG anti-ApoA-I70-83, and HNE-protein adducts were significantly correlated with triglycerides, creatinine, or high-density lipoprotein in CAD with various degrees of stenosis (<30% or >70%). The HNE-protein adduct (OR = 2.208-fold, p = 0.020) and IgM anti-ApoA-I251-262 HNE (2.046-fold, p = 0.035) showed an increased risk of progression from >30% stenosis in CAD. HNE-protein adducts and IgM anti-ApoA-I251-262 HNE may increase the severity of CAD at high and low levels, respectively.
Collapse
Affiliation(s)
- Meng-Huan Lei
- Cardiovascular Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Po-Wen Hsu
- Preventive Medical Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Yin-Tai Tsai
- Department of Medicine Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Chen-Chi Chang
- Department of Laboratory Medicine, Taipei City Hospital Heping-Fuyou Branch, Taipei 10027, Taiwan;
| | - I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (I.-J.T.); (M.-H.C.)
| | - Hung Hsu
- Medical Quality Department, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Ming-Hui Cheng
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (I.-J.T.); (M.-H.C.)
- Department of Laboratory Medicine, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan
| | - Ying-Li Huang
- Section of Laboratory, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Hung-Tse Lin
- Department of Laboratory Medicine, LinKou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Cheng Hsu
- Cardiovascular Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (I.-J.T.); (M.-H.C.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Nègre-Salvayre A, Salvayre R. Reactive Carbonyl Species and Protein Lipoxidation in Atherogenesis. Antioxidants (Basel) 2024; 13:232. [PMID: 38397830 PMCID: PMC10886358 DOI: 10.3390/antiox13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a multifactorial disease of medium and large arteries, characterized by the presence of lipid-rich plaques lining the intima over time. It is the main cause of cardiovascular diseases and death worldwide. Redox imbalance and lipid peroxidation could play key roles in atherosclerosis by promoting a bundle of responses, including endothelial activation, inflammation, and foam cell formation. The oxidation of polyunsaturated fatty acids generates various lipid oxidation products such as reactive carbonyl species (RCS), including 4-hydroxy alkenals, malondialdehyde, and acrolein. RCS covalently bind to nucleophilic groups of nucleic acids, phospholipids, and proteins, modifying their structure and activity and leading to their progressive dysfunction. Protein lipoxidation is the non-enzymatic post-translational modification of proteins by RCS. Low-density lipoprotein (LDL) oxidation and apolipoprotein B (apoB) modification by RCS play a major role in foam cell formation. Moreover, oxidized LDLs are a source of RCS, which form adducts on a huge number of proteins, depending on oxidative stress intensity, the nature of targets, and the availability of detoxifying systems. Many systems are affected by lipoxidation, including extracellular matrix components, membranes, cytoplasmic and cytoskeletal proteins, transcription factors, and other components. The mechanisms involved in lipoxidation-induced vascular dysfunction are not fully elucidated. In this review, we focus on protein lipoxidation during atherogenesis.
Collapse
Affiliation(s)
- Anne Nègre-Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| | - Robert Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| |
Collapse
|
7
|
Rakateli L, Huchzermeier R, van der Vorst EPC. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023; 12:2752. [PMID: 38067179 PMCID: PMC10705969 DOI: 10.3390/cells12232752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Traditionally, xenobiotic receptors are known for their role in chemical sensing and detoxification, as receptor activation regulates the expression of various key enzymes and receptors. However, recent studies have highlighted that xenobiotic receptors also play a key role in the regulation of lipid metabolism and therefore function also as metabolic sensors. Since dyslipidemia is a major risk factor for various cardiometabolic diseases, like atherosclerosis and non-alcoholic fatty liver disease, it is of major importance to understand the molecular mechanisms that are regulated by xenobiotic receptors. In this review, three major xenobiotic receptors will be discussed, being the aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Specifically, this review will focus on recent insights into the metabolic functions of these receptors, especially in the field of lipid metabolism and the associated dyslipidemia.
Collapse
Affiliation(s)
- Leonida Rakateli
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Takeda S, Hamamuki A, Ushirogata K, Takasuka TE. Binding properties of recombinant LDL receptor and LOX-1 receptor to LDL measured using bio-layer interferometry and atomic force microscopy. Biophys Chem 2023; 300:107069. [PMID: 37385179 DOI: 10.1016/j.bpc.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Oxidation of low-density lipoproteins (LDLs) triggers a recognition by scavenger receptors such as lectin-like oxidized LDL receptor-1 (LOX-1) and is related to inflammation and cardiovascular diseases. Although LDLs that are recognized by LOX-1 can be risk-related LDLs, conventional LDL detection methods using commercially available recombinant receptors remain undeveloped. Using a bio-layer interferometry (BLI), we investigated the binding of recombinant LOX-1 (reLOX-1) and LDL receptors to the oxidized LDLs. The recombinant LDL receptor preferably bound minimally modified LDLs, while the reLOX-1 recognized extensively oxidized LDLs. An inversed response of the BLI was observed during the binding in the case of reLOX-1. AFM study showed that the extensively oxidized LDLs and aggregates of LDLs were observed on the surface, supporting the results. Altogether, a combined use of these recombinant receptors and the BLI method is useful in detecting high-risk LDLs such as oxidized LDLs and modified LDLs.
Collapse
Affiliation(s)
- Seiji Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-Jo, Teine-ku, Sapporo, Hokkaido 006-8585, Japan.
| | - Ao Hamamuki
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-Jo, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Kanako Ushirogata
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan; Global Station for Food, Land and Water Resources, Hokkaido University, Sapporo, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan
| |
Collapse
|
9
|
Vavlukis A, Mladenovska K, Davalieva K, Vavlukis M, Dimovski A. Rosuvastatin effects on the HDL proteome in hyperlipidemic patients. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:363-384. [PMID: 37708957 DOI: 10.2478/acph-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
The advancements in proteomics have provided a better understanding of the functionality of apolipoproteins and lipoprotein-associated proteins, with the HDL lipoprotein fraction being the most studied. The focus of this study was to evaluate the HDL proteome in dyslipidemic subjects without an established cardiovascular disease, as well as to test whether rosuvastatin treatment alters the HDL proteome. Patients with primary hypercholesterolemia or mixed dyslipidemia were assigned to 20 mg/day rosuvastatin and blood samples were drawn at study entry and after 12 weeks of treatment. A label-free LC-MS/MS protein profiling was conducted, coupled with bioinformatics analysis. Sixty-nine HDL proteins were identified, belonging to four main biological function clusters: lipid transport and metabolism; platelet activation, degranulation, and aggregation, wound response and wound healing; immune response; inflammatory and acute phase response. Five HDL proteins showed statistically significant differences in the abundance (Anova ≤ 0.05), before and after rosuvastatin treatment. Platelet factor 4 variant (PF4V1), Pregnancy-specific beta-1-glycoprotein 2 (PSG2), Profilin-1 (PFN1) and Keratin type II cytoskeletal 2 epidermal (KRT2) showed decreased expressions, while Integrin alpha-IIb (ITGA2B) showed an increased expression after treatment with rosuvastatin. The ELISA validation of PFN1 segregated the subjects into responders and non-responders, as PFN1 levels after rosuvastatin were shown to mostly depend on the subjects' inflammatory phenotype. Findings from this study introduce novel insights into the HDL proteome and statin pleiotropism.
Collapse
Affiliation(s)
- Ana Vavlukis
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
| | | | - Katarina Davalieva
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| | - Marija Vavlukis
- University Ss Cyril and Methodius Faculty of Medicine, 1000 Skopje RN Macedonia
| | - Aleksandar Dimovski
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| |
Collapse
|
10
|
Kumar A, Prasad A, Sedlářová M, Pospíšil P. Malondialdehyde enhances PsbP protein release during heat stress in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107984. [PMID: 37669610 DOI: 10.1016/j.plaphy.2023.107984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
Under environmental conditions, plants are exposed to various abiotic and biotic stress factors, which commonly cause the oxidation of lipids and proteins. Lipid peroxidation constantly produces malondialdehyde (MDA), a secondary product of lipid peroxidation, which is covalently bound to proteins forming MDA-protein adducts. The spatial distribution of MDA-protein adducts in Arabidopsis leaves shows that MDA-protein adducts are located in the chloroplasts, uniformly spread out over the thylakoid membrane. At the lumenal side of thylakoid membrane, MDA interacts with PsbP, an extrinsic subunit of the photosystem II (PSII), which is in electrostatic interaction with the PSII core proteins. Under heat stress, when MDA is moderately enhanced, the electrostatic interaction between PsbP and PSII core proteins is weakened, and PsbP with bound MDA is released in the lumen. It is proposed here that the electrophilic MDA is bound to the nucleophilic lysine residues of PsbP, which are involved in electrostatic interactions with the negatively charged glutamate of the PSII core protein. Our data provide crucial information about the MDA binding topology in the higher plant PSII complex, which is necessary to understand better the physiological functions of MDA for plant survival under stress.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
11
|
Li MH, Kulkarni R, Koizumi N, Andalibi A. The Association of the Levels of High-Density Lipoprotein and Apolipoprotein A1 with SARS-CoV-2 Infection and COVID-19 Severity: An Analysis of the N3C Database. BIOLOGY 2023; 12:852. [PMID: 37372137 DOI: 10.3390/biology12060852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
This study analyzed data from the National COVID Cohort Collaborative (N3C) database to investigate whether high-density lipoprotein (HDL) and its major protein component, apolipoprotein A1 (apoA1), are associated with severe COVID-19 sequelae, specifically acute kidney injury (AKI) and severe COVID-19 disease as defined by the infection resulting in hospitalization, extracorporeal membrane oxygenation (ECMO), invasive ventilation, or death. Our study included a total of 1,415,302 subjects with HDL values and 3589 subjects with apoA1 values. Higher levels of both HDL and apoA1 were associated with a lower incidence of infection as well as a lower incidence of severe disease. Higher HDL levels were also associated with a lower incidence of developing AKI. Most comorbidities were negatively correlated with SARS-CoV-2 infection, presumably due to the behavioral changes that occurred as a result of the precautions taken by individuals with underlying comorbidities. The presence of comorbidities, however, was associated with developing severe COVID-19 disease and AKI. African American and Hispanic populations experienced worse outcomes, including a higher incidence of infection and the development of severe disease, as well as AKI. Smoking and being male were associated with a lower incidence of infection, while they were risk factors for the development of severe disease and AKI. The results on cholesterol and diabetes drugs warrant further research, given that the database included multiple drugs in each category impeding for analysis of specific medications. Despite the current limitations in the N3C data, this study is the first to investigate the roles of HDL and apoA1 on the outcomes of COVID-19 using the US population data.
Collapse
Affiliation(s)
- Meng-Hao Li
- Schar School of Policy and Government, George Mason University, Arlington, VA 22201, USA
| | - Rajendra Kulkarni
- Schar School of Policy and Government, George Mason University, Arlington, VA 22201, USA
| | - Naoru Koizumi
- Schar School of Policy and Government, George Mason University, Arlington, VA 22201, USA
| | - Ali Andalibi
- College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
12
|
Duan H, Song P, Li R, Su H, He L. Attenuating lipid metabolism in atherosclerosis: The potential role of Anti-oxidative effects on low-density lipoprotein of herbal medicines. Front Pharmacol 2023; 14:1161657. [PMID: 37063287 PMCID: PMC10102431 DOI: 10.3389/fphar.2023.1161657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Atherosclerosis (AS) is a multifactorial chronic disease with great harm to the health of human being, which is a basic pathogenesis of many cardiovascular diseases and ultimately threatens human life. Abnormal blood lipid level is one of the most common diagnostic indicators of AS in clinic, and lipid metabolism disorder is often observed in patients with AS. Cholesterol is an important lipid in the human body, which is of great significance for maintaining normal life activities. Generally, cholesterol is transported to peripheral tissues by low-density lipoprotein (LDL), and then transported to the liver by high-density lipoprotein (HDL) via its cholesterol reverse transport function, and finally discharged. Under oxidative stress condition, LDL is commonly oxidized to the form ox-LDL, which is ingested by macrophages in large quantities and further forms foam cells, disrupting the normal metabolic process of cholesterol. Importantly, the foam cells are involved in forming atherosclerotic plaques, whose rupture may lead to ischemic heart disease or stroke. Furthermore, ox-LDL could also promote the development of AS by damaging vascular endothelium, promoting the migration and proliferation of smooth muscle cells, and activating platelets. Therefore, inhibiting LDL oxidation may be an effective way to improve lipid metabolism and prevent AS. In recent years, increasing studies have shown that herbal medicines have great potentiality in inhibiting LDL oxidation and reducing ox-LDL induced foam cell formation. Accordingly, this paper summarized current research on the inhibitory effects of herbal medicines against LDL oxidation and foam cell formation, and made a brief description of the role of cholesterol and LDL in lipid metabolism disorder and AS pathogenesis. Importantly, it is suggested that herbal medicines could inhibit LDL oxidation and regulate cholesterol homeostasis via downregulation of CD36 and SR-A, whereas upregulation of ABCA1 and ABCG1.
Collapse
Affiliation(s)
- Huxinyue Duan
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Song
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Ruolan Li
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Su
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
- *Correspondence: Hong Su, ; Lisha He,
| | - Lisha He
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hong Su, ; Lisha He,
| |
Collapse
|
13
|
Poznyak AV, Sukhorukov VN, Surkova R, Orekhov NA, Orekhov AN. Glycation of LDL: AGEs, impact on lipoprotein function, and involvement in atherosclerosis. Front Cardiovasc Med 2023; 10:1094188. [PMID: 36760567 PMCID: PMC9904536 DOI: 10.3389/fcvm.2023.1094188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a complex disease, and there are many factors that influence its development and the course of the disease. A deep understanding of the pathological mechanisms underlying atherogenesis is needed to develop optimal therapeutic strategies and treatments. In this review, we have focused on low density lipoproteins. According to multiple studies, their atherogenic properties are associated with multiple modifications of lipid particles. One of these modifications is Glycation. We considered aspects related to the formation of modified particles, as well as the influence of modification on their functioning. We paid special attention to atherogenicity and the role of glycated low-density lipoprotein (LDL) in atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Moscow, Russia,*Correspondence: Anastasia V. Poznyak,
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Raisa Surkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Nikolay A. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Moscow, Russia,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
14
|
Damiani T, Bonciarelli S, Thallinger GG, Koehler N, Krettler CA, Salihoğlu AK, Korf A, Pauling JK, Pluskal T, Ni Z, Goracci L. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal Chem 2023; 95:287-303. [PMID: 36625108 PMCID: PMC9835057 DOI: 10.1021/acs.analchem.2c04406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tito Damiani
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Stefano Bonciarelli
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gerhard G. Thallinger
- Institute
of Biomedical Informatics, Graz University
of Technology, 8010 Graz, Austria,
| | - Nikolai Koehler
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | | | - Arif K. Salihoğlu
- Department
of Physiology, Faculty of Medicine and Institute of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ansgar Korf
- Bruker Daltonics
GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Josch K. Pauling
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Zhixu Ni
- Center of
Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| |
Collapse
|
15
|
Zocchi M, Della Porta M, Lombardoni F, Scrimieri R, Zuccotti GV, Maier JA, Cazzola R. A Potential Interplay between HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022; 10:1344. [PMID: 35740366 PMCID: PMC9220412 DOI: 10.3390/biomedicines10061344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity is an epidemic public health problem that has progressively worsened in recent decades and is associated with low-grade chronic inflammation (LGCI) in metabolic tissues and an increased risk of several diseases. In particular, LGCI alters metabolism and increases cardiovascular risk by impairing endothelial function and altering the functions of adiponectin and high-density lipoproteins (HDLs). Adiponectin is an adipokine involved in regulating energy metabolism and body composition. Serum adiponectin levels are reduced in obese individuals and negatively correlate with chronic sub-clinical inflammatory markers. HDLs are a heterogeneous and complex class of lipoproteins that can be dysfunctional in obesity. Adiponectin and HDLs are strictly interdependent, and the maintenance of their interplay is essential for vascular function. Since such a complex network of interactions is still overlooked in clinical settings, this review aims to highlight the mechanisms involved in the impairment of the HDLs/adiponectin axis in obese patients to predict the risk of cardiovascular diseases and activate preventive countermeasures. Here, we provide a narrative review of the role of LGCI in altering HDLs, adiponectin and endothelial functions in obesity to encourage new studies about their synergic effects on cardiovascular health and disease.
Collapse
Affiliation(s)
- Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Matteo Della Porta
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Federico Lombardoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
- Department of Pediatrics, Ospedale dei Bambini, 20154 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| |
Collapse
|
16
|
Vendruscolo M. Lipid Homeostasis and Its Links With Protein Misfolding Diseases. Front Mol Neurosci 2022; 15:829291. [PMID: 35401104 PMCID: PMC8990168 DOI: 10.3389/fnmol.2022.829291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
The maintenance of lipid homeostasis is essential for the normal functioning of living organisms. Alterations of the lipid homeostasis system remodel the composition of the lipidome, potentially leading to the formation of toxic lipid species. In turn, lipidome changes can affect the protein homeostasis system by causing perturbations that elicit protein condensation phenomena such as protein liquid-liquid phase separation and protein aggregation. Lipids can also be more directly involved the formation of aberrant condensed states of proteins by facilitating the early events that initiate these processes and by stabilizing the condensed states themselves. These observations suggest that lipid-induced toxicity can contribute to protein misfolding diseases, including Alzheimer’s and Parkinson’s diseases. According to this view, an impairment of the lipid homeostasis system generates toxic states of lipids that disturb the protein homeostasis system and promote the formation of toxic states of proteins.
Collapse
|
17
|
Luna-Castillo KP, Olivares-Ochoa XC, Hernández-Ruiz RG, Llamas-Covarrubias IM, Rodríguez-Reyes SC, Betancourt-Núñez A, Vizmanos B, Martínez-López E, Muñoz-Valle JF, Márquez-Sandoval F, López-Quintero A. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022; 14:nu14051104. [PMID: 35268076 PMCID: PMC8912493 DOI: 10.3390/nu14051104] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Approximately 25–50% of the population worldwide exhibits serum triglycerides (TG) (≥150 mg/dL) which are associated with an increased level of highly atherogenic remnant-like particles, non-alcoholic fatty liver disease, and pancreatitis risk. High serum TG levels could be related to cardiovascular disease, which is the most prevalent cause of mortality in Western countries. The etiology of hypertriglyceridemia (HTG) is multifactorial and can be classified as primary and secondary causes. Among the primary causes are genetic disorders. On the other hand, secondary causes of HTG comprise lifestyle factors, medical conditions, and drugs. Among lifestyle changes, adequate diets and nutrition are the initial steps to treat and prevent serum lipid alterations. Dietary intervention for HTG is recommended in order to modify the amount of macronutrients. Macronutrient distribution changes such as fat or protein, low-carbohydrate diets, and caloric restriction seem to be effective strategies in reducing TG levels. Particularly, the Mediterranean diet is the dietary pattern with the most consistent evidence for efficacy in HTG while the use of omega-3 supplements consumption is the dietary component with the highest number of randomized clinical trials (RCT) carried out with effective results on reducing TG. The aim of this review was to provide a better comprehension between human nutrition and lipid metabolism.
Collapse
Affiliation(s)
- Karla Paulina Luna-Castillo
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Xochitl Citlalli Olivares-Ochoa
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Rocío Guadalupe Hernández-Ruiz
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Iris Monserrat Llamas-Covarrubias
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Saraí Citlalic Rodríguez-Reyes
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Alejandra Betancourt-Núñez
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Barbara Vizmanos
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Erika Martínez-López
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Investigación en Ciencias Biomédicas, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Fabiola Márquez-Sandoval
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (F.M.-S.); (A.L.-Q.); Tel.: +52-(33)1058-5200 (ext. 33644 or 33704) (F.M.-S.)
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (F.M.-S.); (A.L.-Q.); Tel.: +52-(33)1058-5200 (ext. 33644 or 33704) (F.M.-S.)
| |
Collapse
|
18
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Mehri H, Aslanabadi N, Nourazarian A, Shademan B, Khaki-Khatibi F. Evaluation of the serum levels of Mannose binding lectin-2, tenascin-C, and total antioxidant capacity in patients with coronary artery disease. J Clin Lab Anal 2021; 35:e23967. [PMID: 34492130 PMCID: PMC8529135 DOI: 10.1002/jcla.23967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Coronary artery disease (CAD) develops as a result of atherosclerosis. Atherosclerosis is a condition that leads to clogged arteries and can be caused by a variety of factors. Several studies have shown that various factors contribute to the development and progression of CAD. The aim of this study was to investigate the serum levels of MBL‐2, TNC and TAC in patients with CAD and the relationship between these biochemical parameters and the progression of CAD. Methods In this study, 60 serum samples were obtained from CAD patients as the case group and 20 healthy serum samples as the control group. Serum levels of MBL‐2 and TNC were measured by the ELISA method. Serum TAC level was determined by calorimetry (spectrophotometry). In addition, MDA serum level was measured by reaction with thiobarbituric acid (TBA). Results The mean age in the case and control groups was 58.4 ± 9.5 years and 85 ± 9.8 years, respectively. There was no significant difference in age, sex and family history in patients with CAD (p > 0.05), but there was a significant difference in blood pressure and smoking history (p > 0.05). Serum cholesterol, triglyceride, and LDL levels were significantly increased in the case group compared to the control group, while serum HDL‐C levels were significantly decreased in the case group. Serum levels of MBL‐2, TNC, and MDA were significantly increased in the case group compared to the control group. The serum level of TAC was significantly lower in the case group than in the control group. Conclusion This study suggests that it is possible to diagnose patients with coronary artery disease (CAD) in the early stages of their disease and take preventive measures by measuring these parameters in serum. However, more research is needed before these serum parameters can be considered diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Hamed Mehri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Department of Heart and Artery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Elmougy R. Gene polymorphism of 3'APO-VNTR in Egyptians with coronary artery disease. J Med Biochem 2021; 40:390-394. [PMID: 34616229 PMCID: PMC8451227 DOI: 10.5937/jomb0-30616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/08/2022] Open
Abstract
Background Coronary artery diseases (CAD) are big health problem in both developed and developing countries. It is considered one of the main causes of death in the world. Dyslipidemia increases the risk of CAD incidences. It is aimed in this worktop study the impact of 3'APOBVNTRgene on CAD incidences. Methods Eighty CAD patients and ninety-three healthy volunteers are enrolled in this study. Lipid parameters were estimated in both groups and PCR technique has been performed to analyze 3'APOB-VNTR gene polymorphism. Results The genotypes 31/31, 31/37, 37/37 and 31/44 are more predominant in both groups. The frequency of 24/31 in CAD patients is (0.137) while it is completely absent in the control group. Our results show that there is an increase in the frequency of various genotypes (e.g., 17/31 and 21/34 genotypes) in the control group compared to theca patients group. Conclusions 3'APOB-VNTR gene could probably be considered a risk factor for CAD incidences and may help to early diagnose them.
Collapse
Affiliation(s)
- Rehab Elmougy
- Mansoura University, Faculty of Science, Chemistry Department, Division of Biochemistry, Mansoura, Egypt
| |
Collapse
|
21
|
The generation of volatiles in model systems containing varying casein to whey protein ratios as affected by low frequency ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Sobenin IA, Markin AM, Glanz VY, Markina YV, Wu WK, Myasoedova VA, Orekhov AN. Prospects for the Use of Sialidase Inhibitors in Anti-atherosclerotic Therapy. Curr Med Chem 2021; 28:2438-2450. [PMID: 32867633 DOI: 10.2174/0929867327666200831133912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
The most typical feature of atherogenesis in humans at its early stage is the formation of foam cells in subendothelial arterial intima, which occurs as the consequence of intracellular cholesterol deposition. The main source of lipids accumulating in the arterial wall is circulating low-density lipoprotein (LDL). However, LDL particles should undergo proatherogenic modification to acquire atherogenic properties. One of the known types of atherogenic modification of LDL is enzymatic deglycosilation, namely, desialylation, which is the earliest change in the cascade of following multiple LDL modifications. The accumulating data make sialidases an intriguing and plausible therapeutic target, since pharmacological modulation of activity of these enzymes may have beneficial effects in several pathologies, including atherosclerosis. The hypothesis exists that decreasing LDL enzymatic desialylation may result in the prevention of lipid accumulation in arterial wall, thus breaking down one of the key players in atherogenesis at the cellular level. Several drugs acting as glycomimetics and inhibiting sialidase enzymatic activity already exist, but the concept of sialidase inhibition as an anti-atherosclerosis strategy remains unexplored to date. This review is focused on the potential possibilities of the repurposing of sialidase inhibitors for pathogenetic anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Igor A Sobenin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Alexander M Markin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Victor Y Glanz
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Yuliya V Markina
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei- Hu Branch, Taipei, Taiwan
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
23
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Abstract
Carbonic anhydrases (CAs) catalyze the synthesis of HCO3- from H2O and CO2. The dysfunction of CAs leads to aqueous humor secretion and high intraocular pressure to cause glaucoma pathogenesis. Methazolamide (MTZ), a CA inhibitor, can effectively treat glaucoma by reducing aqueous humor secretion. We previously reported that carbonic anhydrase I (CA1), a CA family member, was highly expressed in atherosclerotic tissues of the aorta and stimulated atherosclerosis (AS) by promoting calcification. MTZ showed therapeutic and preventive effects on AS in a mouse model. The above findings suggest a relationship between AS and glaucoma. This study explored the possible association between AS prevalence and glaucoma prevalence and the therapeutic effect of MTZ on AS by analyzing medical records. Among 10,751 patients with a primary diagnosis of glaucoma, 699 (6.5%) were also diagnosed with AS. However, the incidences of AS in patients with keratitis and scleritis, which are also ophthalmic diseases, were 2.5% (206/8383 patients) and 3.5% (46/1308 patients), respectively. In the population without ophthalmic records, the AS prevalence was only 1.9% (99,416/5,168,481 patients) (all p values between each group were below 0.001). Among 152,425 patients with a primary diagnosis of AS, 1245 (0.82%) were also diagnosed with glaucoma. Among 199,782 patients with a primary diagnosis of hypertension (excluding AS), 1149 (0.57%) were diagnosed with glaucoma, and among 5,313,433 patients without AS or hypertension, 9513 (0.18%) were diagnosed with glaucoma (all p values between each group were below 0.001). Additionally, among 14 patients who suffered from both AS and glaucoma and were treated with MTZ to cure their glaucoma, 9 of them showed reduced low-density lipoprotein (LDL) levels, the main index of AS, within 3 months after medication use (2.81 ± 0.61 mmol/L vs. 2.38 ± 0.58 mmol/L, p = 0.039). The above findings demonstrated a strong relation between AS and glaucoma and suggested that AS patients with glaucoma were more likely to suffer from angle-closure glaucoma.
Collapse
|
25
|
Influence of Fat Concentration on the Volatile Production in Model Whey Protein Systems as Affected by Low Frequency Ultrasound. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02619-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Bui ATH, Cozzolino D, Zisu B, Chandrapala J. The production of volatile compounds in model casein systems with varying fat levels as affected by low‐frequency ultrasound. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anh Thi Hong Bui
- School of Sciences RMIT University Melbourne Victoria3083Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences The University of Queensland Brisbane Queensland4072Australia
| | - Bogdan Zisu
- Fluid Air Spraying Systems Co. Pty Ltd Melbourne Victoria3029Australia
| | | |
Collapse
|
27
|
Rojas Echeverri JC, Milkovska-Stamenova S, Hoffmann R. A Workflow towards the Reproducible Identification and Quantitation of Protein Carbonylation Sites in Human Plasma. Antioxidants (Basel) 2021; 10:antiox10030369. [PMID: 33804523 PMCID: PMC7999155 DOI: 10.3390/antiox10030369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/26/2023] Open
Abstract
Protein carbonylation, a marker of excessive oxidative stress, has been studied in the context of multiple human diseases related to oxidative stress. The variety of post-translational carbonyl modifications (carbonyl PTMs) and their low concentrations in plasma challenge their reproducible identification and quantitation. However, carbonyl-specific biotinylated derivatization tags (e.g., aldehyde reactive probe, ARP) allow for targeting carbonyl PTMs by enriching proteins and peptides carrying these modifications. In this study, an oxidized human serum albumin protein model (OxHSA) and plasma from a healthy donor were derivatized with ARP, digested with trypsin, and enriched using biotin-avidin affinity chromatography prior to nano reversed-phase chromatography coupled online to electrospray ionization tandem mass spectrometry with travelling wave ion mobility spectrometry (nRPC-ESI-MS/MS-TWIMS). The presented workflow addresses several analytical challenges by using ARP-specific fragment ions to reliably identify ARP peptides. Furthermore, the reproducible recovery and relative quantitation of ARP peptides were validated. Human serum albumin (HSA) in plasma was heavily modified by a variety of direct amino acid oxidation products and adducts from reactive carbonyl species (RCS), with most RCS modifications being detected in six hotspots, i.e., Lys10, Lys190, Lys199, Lys281, Lys432, and Lys525 of mature HSA.
Collapse
Affiliation(s)
- Juan Camilo Rojas Echeverri
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (J.C.R.E.); (S.M.-S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Sanja Milkovska-Stamenova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (J.C.R.E.); (S.M.-S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (J.C.R.E.); (S.M.-S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
28
|
Zhu H, Toan S, Mui D, Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf) 2021; 231:e13590. [PMID: 33270362 DOI: 10.1111/apha.13590] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. As mitochondrial dysfunction critically contributes to the pathogenesis of MI, intensive research is focused on the development of therapeutic strategies targeting mitochondrial homeostasis. Mitochondria possess a quality control system which maintains and restores their structure and function by regulating mitochondrial fission, fusion, biogenesis, degradation and death. In response to slight damage such as transient hypoxia or mild oxidative stress, mitochondrial metabolism shifts from oxidative phosphorylation to glycolysis, in order to reduce oxygen consumption and maintain ATP output. Mitochondrial dynamics are also activated to modify mitochondrial shape and structure, in order to meet cardiomyocyte energy requirements through augmenting or reducing mitochondrial mass. When damaged mitochondria cannot be repaired, poorly structured mitochondria will be degraded through mitophagy, a process which is often accompanied by mitochondrial biogenesis. Once the insult is severe enough to induce lethal damage in the mitochondria and the cell, mitochondrial death pathway activation is an inevitable consequence, and the cardiomyocyte apoptosis or necrosis program will be initiated to remove damaged cells. Mitochondrial quality surveillance is a hierarchical system preserving mitochondrial function and defending cardiomyocytes against stress. A failure of this system has been regarded as one of the potential pathologies underlying MI. In this review, we discuss the recent findings focusing on the role of mitochondrial quality surveillance in MI, and highlight the available therapeutic approaches targeting mitochondrial quality surveillance during MI.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| | - Sam Toan
- Department of Chemical Engineering University of Minnesota‐Duluth Duluth MN USA
| | - David Mui
- Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Hao Zhou
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| |
Collapse
|
29
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
30
|
Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol 2021; 42:101899. [PMID: 33642248 PMCID: PMC8113032 DOI: 10.1016/j.redox.2021.101899] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive carbonyl species (RCS) formed by lipidperoxidation as free forms or as enzymatic and non-enzymatic conjugates are widely used as an index of oxidative stress. Besides general measurements based on derivatizing reactions, more selective and sensitive MS based analyses have been proposed in the last decade. Untargeted and targeted methods for the measurement of free RCS and adducts have been described and their applications to in vitro and ex vivo samples have permitted the identification of many biological targets, reaction mechanisms and adducted moieties with a particular relevance to RCS protein adducts. The growing interest in protein carbonylation can be explained by considering that protein adducts are now recognized as being involved in the damaging action of oxidative stress so that their measurement is performed not only to obtain an index of lipid peroxidation but also to gain a deeper insight into the molecular mechanisms of oxidative stress. The aim of the review is to discuss the most novel analytical approaches and their application for profiling reactive carbonyl species and their enzymatic and non-enzymatic metabolites as an index of lipid-oxidation and oxidative stress. Limits and perspectives will be discussed.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
31
|
Viedma-Poyatos Á, González-Jiménez P, Langlois O, Company-Marín I, Spickett CM, Pérez-Sala D. Protein Lipoxidation: Basic Concepts and Emerging Roles. Antioxidants (Basel) 2021; 10:295. [PMID: 33669164 PMCID: PMC7919664 DOI: 10.3390/antiox10020295] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Protein lipoxidation is a non-enzymatic post-translational modification that consists of the covalent addition of reactive lipid species to proteins. This occurs under basal conditions but increases in situations associated with oxidative stress. Protein targets for lipoxidation include metabolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory mechanisms is less understood. Here we review basic aspects of protein lipoxidation and discuss several features that could support its role in cell signalling, including its selectivity, reversibility, and possibilities for regulation at the levels of the generation and/or detoxification of reactive lipids. Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can contribute to the generation of multiple structurally and functionally diverse protein species. Finally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex interplay with other post-translational modifications, including redox and redox-regulated modifications, such as oxidative modifications and phosphorylation, thus strengthening the importance of detailed knowledge of this process.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Ophélie Langlois
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Idoia Company-Marín
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| |
Collapse
|
32
|
Xiao T, Huang J, Liu Y, Zhao Y, Wei M. Matrine Protects Cardiomyocytes Against Hyperglycemic Stress by Promoting Mitofusin 2-Induced Mitochondrial Fusion. Front Physiol 2021; 11:597429. [PMID: 33613300 PMCID: PMC7888534 DOI: 10.3389/fphys.2020.597429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Matrine, an active component of Sophora flavescens Ait root extracts, has been used in China for years to treat cancer and viral hepatitis. In the present study, we explored the effects of matrine on hyperglycemia-treated cardiomyocytes. Cardiomyocyte function, oxidative stress, cellular viability, and mitochondrial fusion were assessed through immunofluorescence, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assays, and RNA interference. Matrine treatment suppressed hyperglycemia-induced oxidative stress in cardiomyocytes by upregulating transcription of nuclear factor erythroid 2-like 2 and heme oxygenase-1. Matrine also improved cardiomyocyte contractile and relaxation function during hyperglycemia, and it reduced hyperglycemia-induced cardiomyocyte death by inhibiting mitochondrial apoptosis. Matrine treatment increased the transcription of mitochondrial fusion-related genes and thus attenuated the proportion of fragmented mitochondria in cardiomyocytes. Inhibiting mitochondrial fusion by knocking down mitofusin 2 (Mfn2) abolished the cardioprotective effects of matrine during hyperglycemia. These results demonstrate that matrine could be an effective drug to alleviate hyperglycemia-induced cardiomyocyte damage by activating Mfn2-induced mitochondrial fusion.
Collapse
Affiliation(s)
- Tong Xiao
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jie Huang
- Department of Ultrasonography, Affiliated Tumor Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Yuan Liu
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yujie Zhao
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Manman Wei
- Department of Cardiovascular, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis. Clin Chim Acta 2021; 513:25-33. [DOI: 10.1016/j.cca.2020.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
|
34
|
Vilar-Pereira G, Castaño Barrios L, da Silva AA, Martins Batista A, Resende Pereira I, Cruz Moreira O, Britto C, Mata dos Santos HA, Lannes-Vieira J. Memory impairment in chronic experimental Chagas disease: Benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue. PLoS One 2021; 16:e0244710. [PMID: 33400707 PMCID: PMC7785227 DOI: 10.1371/journal.pone.0244710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Memory impairment has been associated with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In degenerative diseases, memory loss has been associated with increased oxidative stress, revealed as enhanced lipid peroxidation, in the cerebral cortex. Benznidazole (Bz), a trypanocidal drug efficient to reduce blood parasite load in the acute and chronic phases of infection, showed controversial effects on heart disease progression, the main clinical manifestation of CD. Here, we evaluated whether C57BL/6 mice infected with the Colombian type I T. cruzi strain present memory deficit assessed by (i) the novel object recognition task, (ii) the open field test and (iii) the aversive shock evoked test, at 120 days post infection (dpi). Next, we tested the effects of Bz therapy (25mg/Kg/day, for 30 consecutive days) on memory evocation, and tried to establish a relation between memory loss, parasite load and oxidative stress in the central nervous system (CNS). At 120 dpi, T. cruzi-infected mice showed memory impairment, compared with age-matched non-infected controls. Bz therapy (from 120 to 150 dpi) hampered the progression of habituation and aversive memory loss and, moreover, reversed memory impairment in object recognition. In vehicle-administered infected mice, neuroinflammation was absent albeit rare perivascular mononuclear cells were found in meninges and choroid plexus. Bz therapy abrogated the infiltration of the CNS by inflammatory cells, and reduced parasite load in hippocampus and cerebral cortex. At 120 and 150 dpi, lipid peroxidation was increased in the hippocampus and cortex tissue extracts. Notably, Bz therapy reduced levels of lipid peroxidation in the cerebral cortex. Therefore, in experimental chronic T. cruzi infection Bz therapy improved memory loss, in association with reduction of parasite load and oxidative stress in the CNS, providing a new perspective to improve the quality of life of Chagas disease patients.
Collapse
Affiliation(s)
- Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leda Castaño Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Alice da Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Angelica Martins Batista
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Hílton Antônio Mata dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
36
|
Oxidative Stress and Preeclampsia-Associated Prothrombotic State. Antioxidants (Basel) 2020; 9:antiox9111139. [PMID: 33212799 PMCID: PMC7696949 DOI: 10.3390/antiox9111139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) is a common obstetric disease characterized by hypertension, proteinuria, and multi-system dysfunction. It endangers both maternal and fetal health. Although hemostasis is critical for preventing bleeding complications during pregnancy, delivery, and post-partum, PE patients often develop a severe prothrombotic state, potentially resulting in life-threatening thrombosis and thromboembolism. The cause of this thrombotic complication is multi-factorial, involving endothelial cells, platelets, adhesive ligands, coagulation, and fibrinolysis. Increasing evidence has shown that hemostatic cells and factors undergo oxidative modifications during the systemic inflammation found in PE patients. However, it is largely unknown how these oxidative modifications of hemostasis contribute to development of the PE-associated prothrombotic state. This knowledge gap has significantly hindered the development of predictive markers, preventive measures, and therapeutic agents to protect women during pregnancy. Here we summarize reports in the literature regarding the effects of oxidative stress and antioxidants on systemic hemostasis, with emphasis on the condition of PE.
Collapse
|
37
|
Zhang J. The Promise of a Golden Era for Exploring the Frontiers of Aging, Metabolism and Redox Biology. FRONTIERS IN AGING 2020; 1:610406. [PMID: 36212526 PMCID: PMC9541140 DOI: 10.3389/fragi.2020.610406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Xin T, Lu C, Zhang J, Wen J, Yan S, Li C, Zhang F, Zhang J. Oxidized LDL Disrupts Metabolism and Inhibits Macrophage Survival by Activating a miR-9/Drp1/Mitochondrial Fission Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8848930. [PMID: 33204400 PMCID: PMC7655251 DOI: 10.1155/2020/8848930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction is associated with macrophage damage, but the role of mitochondrial fission in macrophage cholesterol metabolism is not fully understood. In this study, we explored the influences of miR-9 and mitochondrial fission on macrophage viability and cholesterol metabolism. Macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) in vitro, after which mitochondrial fission, cell viability, and cholesterol metabolism were examined using qPCR, ELISAs, and immunofluorescence. ox-LDL treatment significantly increased Drp1-associated mitochondrial fission. Transfection of Drp1 siRNA significantly reduced cell death, attenuated oxidative stress, and inhibited inflammatory responses in ox-LDL-treated macrophages. Interestingly, inhibition of Drp1-related mitochondrial fission also improved cholesterol metabolism by balancing the transcription of cholesterol influx/efflux enzymes. We also found that miR-9 was downregulated in ox-LDL-treated macrophages, and administration of a miR-9 mimic decreased Drp1 transcription and mitochondrial fission, as well as its effects. These results indicate that signaling via the novel miR-9/Drp1/mitochondrial fission axis is a key determinant of macrophage viability and cholesterol metabolism.
Collapse
Affiliation(s)
- Ting Xin
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jing Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jiaxin Wen
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Shuangbin Yan
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chao Li
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Feng Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jin Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
39
|
Chen Y, Liu C, Zhou P, Li J, Zhao X, Wang Y, Chen R, Song L, Zhao H, Yan H. Liraglutide reduces coronary endothelial cells no-reflow damage through activating MAPK/ERK signaling pathway. J Recept Signal Transduct Res 2020; 41:553-557. [PMID: 33045879 DOI: 10.1080/10799893.2020.1833921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
40
|
Bin J, Bai T, Zhao Q, Duan X, Deng S, Xu Y. Parkin overexpression reduces inflammation-mediated cardiomyocyte apoptosis through activating Nrf2/ARE signaling pathway. J Recept Signal Transduct Res 2020; 41:451-456. [PMID: 33012239 DOI: 10.1080/10799893.2020.1825488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation has been acknowledged as one of the pathological alterations in various cardiovascular disorders. Parkin has been found to be associated with mitochondrial protection. In the present study, we explored the influence of Parkin overexpression on cardiomyocyte induced by LPS-mediated inflammation response. Our results demonstrated that cardiomyocyte viability was reduced and apoptotic rate was increased upon LPS treatment, an effect that may be caused by cardiomyocyte oxidative stress. At the molecular levels, LPS treatment promoted ROS production, a result that was followed by a drop in the levels of anti-oxidants. Interestingly, Parkin overexpression significantly promoted cardiomyocyte survival and this cardioprotective was attributable to the anti-oxidative property. Parkin overexpression enhanced the expression of anti-oxidative factors such as GSH, SOD and GPX, resulting into depressed ROS production. Further, we found that Parkin modulated cellular anti-oxidative capacity through the Nrf2/ARE signaling pathway. This finding demonstrates that oxidative stress could be considered as the core of inflammation response. Further, therapeutic approaches targeting Parkin would improve cardiomyocyte anti-oxidative capacity through activating Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Jianguo Bin
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Taizhu Bai
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Qingxi Zhao
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Xiaohua Duan
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Suxin Deng
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Yunjun Xu
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| |
Collapse
|
41
|
Thomas RC, Kheder R, Alaridhee H, Martin N, Stover CM. Complement Properdin Regulates the Metabolo-Inflammatory Response to a High Fat Diet. ACTA ACUST UNITED AC 2020; 56:medicina56090484. [PMID: 32971872 PMCID: PMC7558790 DOI: 10.3390/medicina56090484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/03/2023]
Abstract
Background and objectives: Overnutrition leads to a metabolic and inflammatory response that includes the activation of Complement. Properdin is the only amplifier of complement activation and increases the provision of complement activation products. Its absence has previously been shown to lead to increased obesity in mice on a high fat diet. The aim of this study was to determine ways in which properdin contributes to a less pronounced obese phenotype. Materials and Methods: Wild type (WT) and properdin deficient mice (KO) were fed a high-fat diet (HFD) for up to 12 weeks. Results: There was a significant increase in liver triglyceride content in the KO HFD group compared to WT on HFD. WT developed steatosis. KO had an additional inflammatory component (steatohepatitis). Analysis of AKT signalling by phosphorylation array supported a decrease in insulin sensitivity which was greater for KO than WT in liver and kidney. There was a significant decrease of C5L2 in the fat membranes of the KO HFD group compared to the WT HFD group. Circulating microparticles in KO HFD group showed lower presence of C5L2. Expression of the fatty acid transporter CD36 in adipose tissue was increased in KO on HFD and was also significantly increased in plasma of KO HFD mice compared to WT on HFD. CD36 was elevated on microparticles from KO on HFD. Ultrastructural changes consistent with obesity-associated glomerulopathy were observed for both HFD fed genotypes, but tubular strain was greater in KO. Conclusion: Our work demonstrates that complement properdin is a dominant factor in limiting the severity of obesity-associated conditions that impact on liver and kidney. The two receptors, C5L2 and CD36, are downstream of the activity exerted by properdin.
Collapse
Affiliation(s)
- Rόisín C. Thomas
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Ramiar Kheder
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Hasanain Alaridhee
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Naomi Martin
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
- Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Cordula M. Stover
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
- Correspondence: ; Tel.: +44-116-2525032
| |
Collapse
|
42
|
Fu G, Wang B, He B, Feng M, Yu Y. LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020; 41:32-37. [PMID: 32580628 DOI: 10.1080/10799893.2020.1783682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necroptosis is a new type of cell death. However, the role of necroptosis in LPS-related cardiomyocyte damage has not been fully understood. The aim of our study is to explore the molecular mechanism underlying inflammation-mediated cardiomyocyte necroptosis. H9C2 cardiomyocyte cell line was treated with LPS. Then, cell viability and necroptosis were measured through qPCR and ELISA. Pathway analysis was performed to verify whether Ripk3/Pgam5 signaling pathway is implicated into the regulation of cardiomyocyte necroptosis. The results demonstrated that LPS reduced cardiomyocyte viability and activated necroptosis. At the molecular levels, oxidative stress and inflammation were triggered by LPS and these alterations may contribute to the activation of necroptosis. Finally, we found that Ripk3/Pgam5 signaling pathway was activated by LPS in cardiomyocyte and this signaling pathway may explain the regulatory mechanism underlying LPS-mediated necroptosis. Altogether, our results demonstrated that septic cardiomyopathy is associated with an activation of necroptosis through the Ripk3/Pgam5 signaling pathway.
Collapse
Affiliation(s)
- Guohua Fu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Bin He
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Mingjun Feng
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yibo Yu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
43
|
Mui D, Zhang Y. Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury. J Recept Signal Transduct Res 2020; 41:1-5. [PMID: 32583708 DOI: 10.1080/10799893.2020.1784938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main therapeutic strategy currently used for acute myocardial infarction (AMI) is to open occluded coronary arteries, a process defined as blood reperfusion. However, blood reperfusion will increase cardiac mortality, tissue damage and cardiac dysfunction in patients with AMI, which is mechanically defined as "ischemia/reperfusion (I/R) injury". It is currently believed that mitochondrial dynamics plays a key role in myocardial I/R, especially excessive mitochondrial fission, which is the main cause of cardiac dysfunction. Therefore, in the process of I/R injury, effective drug intervention and correct treatment strategies can be used to regulate mitochondrial dynamic balance to combat ischemia-reperfusion injury, which can play a huge role in improving the prognosis of patients. This review summarized the effects of mitochondrial fission and mitochondrial fusion balance on myocardial and mitochondrial functional changes during myocardial I/R injury. Finally, combined with the previous injury mechanisms, this review also briefly described some drug intervention that may be beneficial to clinical practice to improve the postoperative quality of life of patients with AMI.
Collapse
Affiliation(s)
- David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Hu C, Lu K, Liu W. Exendin-4 attenuates inflammation-mediated endothelial cell apoptosis in varicose veins through inhibiting the MAPK-JNK signaling pathway. J Recept Signal Transduct Res 2020; 40:464-470. [PMID: 32338116 DOI: 10.1080/10799893.2020.1756326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Inflammation response has been found to be associated with endothelial cell death in the progression of varicose veins. Exendin-4 is able to reduce inflammation and thus attenuate cell apoptosis.Aim: The aim of our study is to explore the influence of Exendin-4 on LPS-treated endothelial cells.Methods: Cells were treated with LPS. Exendin-4 was added into the medium of cells. Western blots, qPCR, and ELISA were used to analyze the role of Exendin-4 in LPS-mediated cell death.Results: We found that LPS treatment caused significantly cell death. Whereas this trend could be attenuated by Exendin-4. After treatment with Exendin-4, inflammation factors upregulation and oxidative stress activation were significantly repressed, an effect that was followed by a drop in the levels of glucose production and lactic acid generation. At the molecular levels, Exendin-4 treatment inhibited the activity of MAPK-JNK signaling pathway in the presence of LPS treatment.Conclusions: LPS causes cell apoptosis through inducing inflammation response, oxidative stress and energy stress. Exendin-4 treatment enhances cell survival, reduces inflammation, and improves energy stress through inhibiting the MAPK-JNK signaling pathway.
Collapse
Affiliation(s)
- Changfu Hu
- Shenzhen University General Hospital, Shenzhen, China
| | - Kai Lu
- Daqing Oilfield General Hospital, Daqing, China
| | - Weili Liu
- Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
45
|
Qi X, Wang J. Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging (Albany NY) 2020; 12:7299-7312. [PMID: 32305957 PMCID: PMC7202489 DOI: 10.18632/aging.103078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Cardiac ischemia/reperfusion injury is associated with reduced mitochondrial turnover and regeneration. There is currently no effective approach to stimulate mitochondrial biogenesis in the reperfused myocardium. In this study, we investigated whether melatonin could increase mitochondrial biogenesis and thus promote mitochondrial homeostasis in cardiomyocytes. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) injury with or without melatonin treatment, and various mitochondrial functions were measured. H/R injury repressed mitochondrial biogenesis in cardiomyocytes, whereas melatonin treatment restored mitochondrial biogenesis through the 5’ adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) pathway. Melatonin enhanced mitochondrial metabolism, inhibited mitochondrial oxidative stress, induced mitochondrial fusion and prevented mitochondrial apoptosis in cardiomyocytes subjected to H/R injury. The melatonin-induced improvement in mitochondrial biogenesis was associated with increased cardiomyocyte survival during H/R injury. On the other hand, silencing of PGC1α attenuated the protective effects of melatonin on cardiomyocyte viability, thereby impairing mitochondrial bioenergetics, disrupting the mitochondrial morphology, and activating mitochondrial apoptosis. Thus, H/R injury suppressed mitochondrial biogenesis, while melatonin activated the AMPK/PGC1α pathway and restored mitochondrial biogenesis, ultimately protecting the reperfused heart.
Collapse
Affiliation(s)
- Xueyan Qi
- Department of Cardiology, Tianjin First Central Hospital, Tianjing 300192, China
| | - Jin Wang
- Department of Cardiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
46
|
Xing J, Wang Z, Xu H, Liu C, Wei Z, Zhao L, Ren L. Pak2 inhibition promotes resveratrol-mediated glioblastoma A172 cell apoptosis via modulating the AMPK-YAP signaling pathway. J Cell Physiol 2020; 235:6563-6573. [PMID: 32017068 DOI: 10.1002/jcp.29515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
As a polyphenolic compound, resveratrol (Res) is widely present in a variety of plants. Previous studies have shown that Res can inhibit various tumors. However, its role in c remains largely unexplored. In the present study, we first demonstrated that Res inhibited cell viability and induced apoptosis of glioblastoma A172 cell. Further experiments showed that Res induced mitochondrial dysfunction and activated the activity of caspase-9. Functional studies have found that Res treatment is associated with an increase in the expression of Pak2. Interestingly, inhibition of Pak2 could further augment the proapoptotic effect of Res. Mechanistically, Pak2 inhibition induced reactive oxygen species overproduction, mitochondria-JNK pathway activation, and AMPK-YAP axis suppression. However, overexpression of YAP could abolish the anticancer effects of Res and Pak2 inhibition, suggesting a necessary role played by the AMPK-YAP pathway in regulating cancer-suppressive actions of Res and Pak2 inhibition. Altogether, our results indicated that Res in combination with Pak2 inhibition could further enhance the anticancer property of Res and this effect is mediated via the AMPK-YAP pathway.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Li P, Hu F, Cao X, Luo L, Tu Q. Melatonin receptor protects cardiomyocyte against oxidative stress-induced apoptosis through the MAPK-ERK signaling pathway. J Recept Signal Transduct Res 2020; 40:117-125. [PMID: 31986953 DOI: 10.1080/10799893.2020.1719151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Li
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Xin Cao
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Liyun Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Qiuyun Tu
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| |
Collapse
|
48
|
Ouyang H, Li Q, Zhong J, Xia F, Zheng S, Lu J, Deng Y, Hu Y. Combination of melatonin and irisin ameliorates lipopolysaccharide-induced cardiac dysfunction through suppressing the Mst1-JNK pathways. J Cell Physiol 2020; 235:6647-6659. [PMID: 31976559 DOI: 10.1002/jcp.29561] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Despite significant advances in therapies in past decades, the mortality rate of septic cardiomyopathy remains high. The aim of this study is to explore the therapeutic effects of combined treatment using melatonin and irisin in a mouse model of lipopolysaccharide (LPS)-mediated septic cardiomyopathy. Our data found that melatonin and irisin could further attenuate LPS-induced myocardial depression. Molecular investigation illustrated that melatonin and irisin cotreatment sustained cardiomyocyte viability and improved mitochondrial function under LPS stress. Pathway analysis demonstrated that macrophage-stimulating 1 (Mst1), which was significantly activated by LPS, was drastically inhibited by melatonin/irisin cotreatment. Mechanically, Mst1 activated c-Jun N-terminal kinase (JNK) pathway and the latter induced oxidative stress, adenosine triphosphate metabolism disorder, mitochondrial membrane potential reduction, and cardiomyocyte death activation. Melatonin and irisin cotreatment effectively inhibited the Mst1-JNK pathway and, thus, promoted cardiomyocyte survival and mitochondrial homeostasis. Interestingly, Mst1 overexpression abolished the beneficial effects of melatonin and irisin in vivo and in vitro. Altogether, our results confirmed that melatonin and irisin combination treatment could protect heart against sepsis-induced myocardial depression via modulating the Mst1-JNK pathways.
Collapse
Affiliation(s)
- Haichun Ouyang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Fengfan Xia
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yuanyan Deng
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
49
|
Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci 2020; 21:ijms21030732. [PMID: 31979129 PMCID: PMC7037660 DOI: 10.3390/ijms21030732] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/07/2023] Open
Abstract
High Density Lipoprotein (HDL) particles, beyond serving as lipid transporters and playing a key role in reverse cholesterol transport, carry a highly variable number of proteins, micro-RNAs, vitamins, and hormones, which endow them with the ability to mediate a plethora of cellular and molecular mechanisms that promote cardiovascular health. It is becoming increasingly evident, however, that the presence of cardiovascular risk factors and co-morbidities alters HDLs cargo and protective functions. This concept has led to the notion that metrics other than HDL-cholesterol levels, such as HDL functionality and composition, may better capture HDL cardiovascular protection. On the other hand, the potential of HDL as natural delivery carriers has also fostered the design of engineered HDL-mimetics aiming to improve HDL efficacy or as drug-delivery agents with therapeutic potential. In this paper, we first provide an overview of the molecules known to be transported by HDL particles and mainly discuss their functions in the cardiovascular system. Second, we describe the impact of cardiovascular risk factors and co-morbidities on HDL remodeling. Finally, we review the currently developed HDL-based approaches.
Collapse
|
50
|
Campos-Pinto I, Méndez L, Schouten J, Wilkins J, Fedorova M, Pitt AR, Davis P, Spickett CM. Epitope mapping and characterization of 4-hydroxy-2-nonenal modified-human serum albumin using two different polyclonal antibodies. Free Radic Biol Med 2019; 144:234-244. [PMID: 31075498 DOI: 10.1016/j.freeradbiomed.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
Lipids are susceptible to damage by reactive oxygen species, and from lipid oxidation reactions many short chain lipid peroxidation products can be formed. 4-Hydroxy-2-nonenal (HNE) is one of the most abundant and cytotoxic lipid oxidation products and is known to form covalent adducts with nucleophilic amino acids of proteins. HNE-modified proteins have value as biomarkers and can be detected by antibody-based techniques, but most commercially available antibodies were raised against HNE-keyhole limpet hemocyanin. We used HNE-treated human serum albumin (HSA) to raise sheep antiserum and report for the first time the use of covalently modified peptide arrays to assess epitope binding of antibodies (Abs). Peptide arrays covering the sequence of HSA and treated post peptide synthesis with HNE were used to compare the different binding patterns of a commercial polyclonal antibody (pAb) raised against HNE-treated KLH and an in-house anti-HNE enriched pAb. The results were correlated with analysis of HNE-modified HSA by high-resolution tandem mass spectrometry. Both anti-HNE pAbs were found to bind strongly to eight common peptides on the HNE-treated HSA membranes, suggesting that HNE adducts per se induced an immune response in both cases even though different immunogens were used. Both antibodies bound with the highest affinity to the peptide 365DPHECYAKVFDEFKPLV381, which contains K378 and was also shown to be modified by the mass spectrometry analysis. Overall, the commercial anti-HNE pAb showed better specificity, recognizing nine out of the eleven adducts found by MS/MS, while the in-house enriched pAb only recognizes six. Nevertheless, the in-house pAb recognized specific peptides that were not recognized by the commercial pAb, which suggests the presence of clones uniquely specific to HNE adducts on HSA.
Collapse
Affiliation(s)
- Isabel Campos-Pinto
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK; School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Lucía Méndez
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany; Institute of Marine Research, Spanish Council for Scientific Resesarch, (IIM-CSIC), Vigo, Spain
| | - James Schouten
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK
| | - John Wilkins
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Paul Davis
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|