1
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
2
|
Chiang WY, Yu HW, Wu MC, Huang YM, Chen YQ, Lin JW, Liu YW, You LR, Chiou A, Kuo JC. Matrix mechanics regulates muscle regeneration by modulating kinesin-1 activity. Biomaterials 2024; 308:122551. [PMID: 38593710 DOI: 10.1016/j.biomaterials.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.
Collapse
Affiliation(s)
- Wan-Yu Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Man Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jong-Wei Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
3
|
Gasparella F, Nogara L, Germinario E, Tibaudo L, Ciciliot S, Piccoli G, Venegas FC, Fontana F, Sales G, Sabbatini D, Foot J, Jarolimek W, Blaauw B, Canton M, Vitiello L. A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice. Antioxidants (Basel) 2024; 13:622. [PMID: 38929061 PMCID: PMC11201281 DOI: 10.3390/antiox13060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most frequent and severe childhood muscle diseases. Its pathophysiology is multifaceted and still incompletely understood, but we and others have previously shown that oxidative stress plays an important role. In particular, we have demonstrated that inhibition of mitochondrial monoamine oxidases could improve some functional and biohumoral markers of the pathology. In the present study we report the use of dystrophic mdx mice to evaluate the efficacy of a dual monoamine oxidase B (MAO-B)/semicarbazide-sensitive amine oxidase (SSAO) inhibitor, PXS-5131, in reducing inflammation and fibrosis and improving muscle function. We found that a one-month treatment starting at three months of age was able to decrease reactive oxygen species (ROS) production, fibrosis, and inflammatory infiltrate in the tibialis anterior (TA) and diaphragm muscles. Importantly, we also observed a marked improvement in the capacity of the gastrocnemius muscle to maintain its force when challenged with eccentric contractions. Upon performing a bulk RNA-seq analysis, PXS-5131 treatment affected the expression of genes involved in inflammatory processes and tissue remodeling. We also studied the effect of prolonged treatment in older dystrophic mice, and found that a three-month administration of PXS-5131 was able to greatly reduce the progression of fibrosis not only in the diaphragm but also in the heart. Taken together, these results suggest that PXS-5131 is an effective inhibitor of fibrosis and inflammation in dystrophic muscles, a finding that could open a new therapeutic avenue for DMD patients.
Collapse
Affiliation(s)
- Francesca Gasparella
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.G.); (F.F.); (G.S.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
| | - Lucia Tibaudo
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.G.); (F.F.); (G.S.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Giorgia Piccoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
| | - Francisca Carolina Venegas
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy
| | - Francesca Fontana
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.G.); (F.F.); (G.S.)
| | - Gabriele Sales
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.G.); (F.F.); (G.S.)
| | - Daniele Sabbatini
- Department of Neurosciences, University of Padova, 35128 Padova, Italy;
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35131 Padova, Italy
| | - Jonathan Foot
- Syntara Ltd., Sydney, NSW 2086, Australia; (J.F.); (W.J.)
| | | | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
| | - Marcella Canton
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.N.); (E.G.); (G.P.); (F.C.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy
| | - Libero Vitiello
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.G.); (F.F.); (G.S.)
| |
Collapse
|
4
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
5
|
Harriot AD, Altair Morris T, Vanegas C, Kallenbach J, Pinto K, Joca HC, Moutin MJ, Shi G, Ursitti JA, Grosberg A, Ward CW. Detyrosinated microtubule arrays drive myofibrillar malformations in mdx muscle fibers. Front Cell Dev Biol 2023; 11:1209542. [PMID: 37691825 PMCID: PMC10485621 DOI: 10.3389/fcell.2023.1209542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Altered myofibrillar structure is a consequence of dystrophic pathology that impairs skeletal muscle contractile function and increases susceptibility to contraction injury. In murine Duchenne muscular dystrophy (mdx), myofibrillar alterations are abundant in advanced pathology (>4 months), an age where we formerly established densified microtubule (MT) arrays enriched in detyrosinated (deTyr) tubulin as negative disease modifiers impacting cell mechanics and mechanotransduction. Given the essential role of deTyr-enriched MT arrays in myofibrillar growth, maintenance, and repair, we examined the increased abundance of these arrays as a potential mechanism for these myofibrillar alterations. Here we find an increase in deTyr-tubulin as an early event in dystrophic pathology (4 weeks) with no evidence myofibrillar alterations. At 16 weeks, we show deTyr-enriched MT arrays significantly densified and co-localized to areas of myofibrillar malformation. Profiling the enzyme complexes responsible for deTyr-tubulin, we identify vasohibin 2 (VASH2) and small vasohibin binding protein (SVBP) significantly elevated in the mdx muscle at 4 weeks. Using the genetic increase in VASH2/SVBP expression in 4 weeks wild-type mice we find densified deTyr-enriched MT arrays that co-segregate with myofibrillar malformations similar to those in the 16 weeks mdx. Given that no changes in sarcomere organization were identified in fibers expressing sfGFP as a control, we conclude that disease-dependent densification of deTyr-enriched MT arrays underscores the altered myofibrillar structure in dystrophic skeletal muscle fibers.
Collapse
Affiliation(s)
- Anicca D. Harriot
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tessa Altair Morris
- Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States
| | - Camilo Vanegas
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jacob Kallenbach
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kaylie Pinto
- Department of Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Humberto C. Joca
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marie-Jo Moutin
- INSERM U1216 Centre National de la Recherche Scientifique, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Guoli Shi
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeanine A. Ursitti
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna Grosberg
- Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, Sue and Bill Gross Stem Cell Research, University of California, Irvine, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, Sue and Bill Gross Stem Cell Research, University of California, Irvine, Irvine, CA, United States
| | - Christopher W. Ward
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Effects of NADPH Oxidase Isoform-2 (NOX2) Inhibition on Behavioral Responses and Neuroinflammation in a Mouse Model of Neuropathic Pain. Biomedicines 2023; 11:biomedicines11020416. [PMID: 36830952 PMCID: PMC9953009 DOI: 10.3390/biomedicines11020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
NADPH oxidase isoform-2 (NOX2) has been implicated in the pathophysiology of neuropathic pain (NP), mostly through the modulation of neuroinflammation. Since it is also accepted that some neuroimmune mechanisms underlying NP are sex-dependent, we aimed to evaluate the effects of early systemic treatment with the NOX2-selective inhibitor (NOX2i) GSK2795039 on behavioral responses and spinal neuroinflammation in spared nerve injury (SNI)-induced NP in male and female mice. Mechanical sensitivity was evaluated with the von Frey test, while general well-being and anxiety-like behavior were assessed with burrowing and light/dark box tests. Spinal microglial activation and cytokines IL-1β, IL-6, and IL-10, as well as macrophage colony-stimulating factor (M-CSF) were evaluated by immunofluorescence and multiplex immunoassay, respectively. NOX2i treatment reduced SNI-induced mechanical hypersensitivity and early SNI-induced microglial activation in both sexes. SNI-females, but not males, showed a transient reduction in burrowing activity. NOX2i treatment did not improve their burrowing activity, but tendentially reduced their anxiety-like behavior. NOX2i marginally decreased IL-6 in females, and increased M-CSF in males. Our findings suggest that NOX2-selective inhibition may be a potential therapeutic strategy for NP in both male and female individuals, with particular interest in females due to its apparent favorable impact in anxiety-like behavior.
Collapse
|
7
|
Knudsen JR, Madsen AB, Li Z, Andersen NR, Schjerling P, Jensen TE. Gene deletion of γ-actin impairs insulin-stimulated skeletal muscle glucose uptake in growing mice but not in mature adult mice. Physiol Rep 2022; 10:e15183. [PMID: 35224890 PMCID: PMC8882697 DOI: 10.14814/phy2.15183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 04/14/2023] Open
Abstract
The cortical cytoskeleton, consisting of the cytoplasmic actin isoforms β and/or γ-actin, has been implicated in insulin-stimulated GLUT4 translocation and glucose uptake in muscle and adipose cell culture. Furthermore, transgenic inhibition of multiple actin-regulating proteins in muscle inhibits insulin-stimulated muscle glucose uptake. The current study tested if γ-actin was required for insulin-stimulated glucose uptake in mouse skeletal muscle. Based on our previously reported age-dependent phenotype in muscle-specific β-actin gene deletion (-/- ) mice, we included cohorts of growing 8-14 weeks old and mature 18-32 weeks old muscle-specific γ-actin-/- mice or wild-type littermates. In growing mice, insulin significantly increased the glucose uptake in slow-twitch oxidative soleus and fast-twitch glycolytic EDL muscles from wild-type mice, but not γ-actin-/- . In relative values, the maximal insulin-stimulated glucose uptake was reduced by ~50% in soleus and by ~70% in EDL muscles from growing γ-actin-/- mice compared to growing wild-type mice. In contrast, the insulin-stimulated glucose uptake responses in mature adult γ-actin-/- soleus and EDL muscles were indistinguishable from the responses in wild-type muscles. Mature adult insulin-stimulated phosphorylations on Akt, p70S6K, and ULK1 were not significantly affected by genotype. Hence, insulin-stimulated muscle glucose uptake shows an age-dependent impairment in young growing but not in fully grown γ-actin-/- mice, bearing phenotypic resemblance to β-actin-/- mice. Overall, γ-actin does not appear required for insulin-stimulated muscle glucose uptake in adulthood. Furthermore, our data emphasize the need to consider the rapid growth of young mice as a potential confounder in transgenic mouse phenotyping studies.
Collapse
Affiliation(s)
- Jonas R. Knudsen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Agnete B. Madsen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Zhencheng Li
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Nicoline R. Andersen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Peter Schjerling
- Department of Orthopedic Surgery MInstitute of Sports Medicine CopenhagenBispebjerg HospitalCopenhagenDenmark
| | - Thomas E. Jensen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Wang Z, Niu Y, Lei B, Yu L, Ke Z, Cao C, Wang R, Li J. Downhill Running Decreases the Acetylation of Tubulins and Impairs Autophagosome Degradation in Rat Skeletal Muscle. Med Sci Sports Exerc 2021; 53:2477-2484. [PMID: 34115728 DOI: 10.1249/mss.0000000000002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study was designed to probe the effect of downhill running on microtubule acetylation and autophagic flux in rat skeletal muscle. METHODS Sprague-Dawley rats were subjected to an exercise protocol of a 90-min downhill run with a slope of -16° and a speed of 16 m·min-1, and then the soleus was sampled at 0, 12, 24, 48, and 72 h after exercise. Protein expression levels of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome 1 (p62), α-tubulin, and acetylated α-tubulin (AcK40 α-tubulin) were detected by Western blotting. Alpha-tubulin was costained with AcK40 α-tubulin or cytoplasmic dynein intermediate chain in a single muscle fiber, and LC3 was costained with lysosomal-associated membrane protein 1 in cryosections. To assess autophagic flux in vivo, colchicine or vehicle was injected intraperitoneally 3 d before the exercise experiment, and the protein levels of LC3 and p62 were measured by Western blotting. RESULTS Downhill running induced a significant increase in the protein levels of LC3-II and p62, whereas the level and proportion of AcK40 α-tubulin were markedly decreased. Furthermore, the amount of dynein on α-tubulin was decreased after downhill running, and autophagosomes accumulated in the middle of myofibrils. Importantly, LC3-II flux was decreased after downhill running compared with that in the control group. CONCLUSIONS A bout of downhill running decreases microtubule acetylation, which may impair dynein recruitment and autophagosome transportation, causing blocked autophagic flux.
Collapse
Affiliation(s)
- Zhen Wang
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | | | - Bingkai Lei
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Liang Yu
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Zhifei Ke
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Chunxia Cao
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Ruiyuan Wang
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Junping Li
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
9
|
Lindsay A, Kemp B, Larson AA, Baumann CW, McCourt PM, Holm J, Karachunski P, Lowe DA, Ervasti JM. Tetrahydrobiopterin synthesis and metabolism is impaired in dystrophin-deficient mdx mice and humans. Acta Physiol (Oxf) 2021; 231:e13627. [PMID: 33580591 DOI: 10.1111/apha.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
AIM Loss of dystrophin causes oxidative stress and affects nitric oxide synthase-mediated vascular function in striated muscle. Because tetrahydrobiopterin is an antioxidant and co-factor for nitric oxide synthase, we tested the hypothesis that tetrahydrobiopterin would be low in mdx mice and humans deficient for dystrophin. METHODS Tetrahydrobiopterin and its metabolites were measured at rest and in response to exercise in Duchenne and Becker muscular dystrophy patients, age-matched male controls as well as wild-type, mdx and mdx mice transgenically overexpressing skeletal muscle-specific dystrophins. Mdx mice were also supplemented with tetrahydrobiopterin and pathophysiology was assessed. RESULTS Duchenne muscular dystrophy patients had lower urinary dihydrobiopterin + tetrahydrobiopterin/specific gravity1.020 compared to unaffected age-matched males and Becker muscular dystrophy patients. Mdx mice had low urinary and skeletal muscle dihydrobiopterin + tetrahydrobiopterin compared to wild-type mice. Overexpression of dystrophins that localize neuronal nitric oxide synthase restored dihydrobiopterin + tetrahydrobiopterin in mdx mice to wild-type levels while utrophin overexpression did not. Mdx mice and Duchenne muscular dystrophy patients did not increase tetrahydrobiopterin during exercise and in mdx mice tetrahydrobiopterin deficiency was likely because of lower levels of sepiapterin reductase in skeletal muscle. Tetrahydrobiopterin supplementation improved skeletal muscle strength, resistance to fatiguing and injurious contractions in vivo, increased utrophin and capillary density of skeletal muscle and lowered cardiac muscle fibrosis and left ventricular wall thickness in mdx mice. CONCLUSION These data demonstrate that impaired tetrahydrobiopterin synthesis is associated with dystrophin loss and treatment with tetrahydrobiopterin improves striated muscle histopathology and skeletal muscle function in mdx mice.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Bailey Kemp
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexie A Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Cory W Baumann
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - John Holm
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Abstract
Duchenne muscular dystrophy is a severe, progressive, muscle-wasting disease that leads to difficulties with movement and, eventually, to the need for assisted ventilation and premature death. The disease is caused by mutations in DMD (encoding dystrophin) that abolish the production of dystrophin in muscle. Muscles without dystrophin are more sensitive to damage, resulting in progressive loss of muscle tissue and function, in addition to cardiomyopathy. Recent studies have greatly deepened our understanding of the primary and secondary pathogenetic mechanisms. Guidelines for the multidisciplinary care for Duchenne muscular dystrophy that address obtaining a genetic diagnosis and managing the various aspects of the disease have been established. In addition, a number of therapies that aim to restore the missing dystrophin protein or address secondary pathology have received regulatory approval and many others are in clinical development.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology and Department of Neurology, School of Medicine; Department of Biomedical Sciences, College of Veterinary Medicine; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Eugenio Mercuri
- Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
- Peadiatric Neurology, Catholic University, Rome, Italy
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|