1
|
Cheng P, Gan L, Wu J, Hao X, Li Q, Chen L. ALDH2 delays ventricular pressure overload-induced heart failure by promoting cardiomyocyte proliferation in mice. Exp Cell Res 2025; 448:114571. [PMID: 40273968 DOI: 10.1016/j.yexcr.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The adult mammalian heart is a terminally differentiated organ in which the majority of cardiomyocytes are in a state of cell cycle arrest, rendering them incapable of effectively proliferating to replace damaged cells. ALDH2, an enzyme known for alleviating oxidative stress, has been demonstrated to play a critical role in cardiac protection. However, whether ALDH2 regulates cardiomyocyte proliferation has not been conclusively established. We found that activation of ALDH2 activity significantly promotes cardiomyocyte proliferation and extends the proliferation window during early postnatal development in neonatal mice. Furthermore, administration of Alda-1 to activate ALDH2 in adult mice subjected to transverse aortic constriction markedly enhanced cardiomyocyte proliferation and delayed the onset of pressure overload-induced heart failure. In summary, our findings identify ALDH2 as a potential target for regulating cardiomyocyte proliferation and offer a novel therapeutic approach for treating heart failure.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jieyun Wu
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaodan Hao
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Chen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Han L, Zhai W. Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review). Mol Med Rep 2025; 31:105. [PMID: 40017132 PMCID: PMC11876945 DOI: 10.3892/mmr.2025.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Ischemia‑reperfusion injury (IRI) refers to tissue or organ damage that occurs following a period of inadequate blood supply (ischemia) followed by restoration of blood flow (reperfusion) within a short time frame. This phenomenon is prevalent in clinical conditions such as cardiovascular and cerebrovascular disease, organ transplantation and stroke. Despite its frequency, effective therapeutic strategies to mitigate IRI remain elusive in clinical practice, underscoring the need for a deeper understanding of its molecular mechanisms. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol metabolism, serves a role in alleviating oxidative stress and cell damage during IRI by modulating oxidative stress, decreasing apoptosis and inhibiting inflammatory responses. ALDH2 exerts protective effects by detoxifying reactive aldehydes, thereby preventing lipid peroxidation and maintaining cellular homeostasis. Furthermore, ferroptosis, a regulated form of cell death driven by iron accumulation and subsequent lipid peroxidation, is a key process in IRI. However, the precise role of ALDH2 in modulating ferroptosis during IRI remains incompletely understood. Although there is an interaction between ALDH2 activity and ferroptosis, the underlying mechanisms have yet to be clarified. The present review examines the role of ALDH2 and ferroptosis in IRI and the potential regulatory influence of ALDH2 on ferroptosis mechanisms, as well as potential targeting of ALDH2 and ferroptosis for IRI treatment and prevention. By elucidating the complex interplay between ALDH2 and ferroptosis, the present review aims to provide new insights for the development of innovative therapeutic strategies to mitigate ischemic tissue damage and improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
3
|
Dong Z, Zhu JB, Cheng S, Weng XY, Sun XL, Qian JY, Zou YZ, Sun AJ, Wang SJ, Ma LL, Ge JB. Bruton tyrosine kinase promotes wound healing after myocardial infarction by inhibiting the transcription of u-PA. Free Radic Biol Med 2025; 227:260-275. [PMID: 39643140 DOI: 10.1016/j.freeradbiomed.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUNDS Bruton tyrosine kinase (BTK), which is highly expressed in immune cells, plays a critical role in regulating the function of macrophages. A growing body of evidence has demonstrated that the accumulation of macrophages in cardiac tissue after myocardial infarction (MI) significantly affects wound healing and ventricular remodeling during the early phase of repair after MI. However, the role of BTK in cardiac repair post-MI, especially in macrophage-mediated repair, remains unclear. METHODS MI was induced by permanent left anterior descending (LAD) artery ligation in wild-type (WT) mice and macrophage-specific BTK-knockout (BTKMAC-KO) mice. Expression of BTK and phosphorylated BTK were assessed by western blotting. Then, RNA sequencing and ChIP-qPCR assay were performed to explore potential BTK targets and transcriptional regulatory sites. RESULTS BTK, which was mainly expressed in macrophages, was upregulated in mice after MI. Compared with WT mice, BTKMAC-KO mice had significantly greater mortality due to heart rupture, reduced wall thickness and severe impairment of left ventricular (LV) function after MI. In addition, increased matrix metalloproteinase-9 (MMP-9) expression and decreased α-SMA and collagen expression were observed in BTKMAC-KO mice after MI. Further experiments revealed that BTK deficiency in macrophages reduces the expression of VEGF and impairs angiogenesis after MI. By RNA sequencing, we found that Nf-kB family genes, as well as the urokinase-type plasminogen activator (uPA), were significantly upregulated in BTK-deficient macrophages. By ChIP-qPCR analysis, we confirmed that uPA was transcriptionally activated by the Nf-kB p65 subunit. Finally, the application of plasminogen activator inhibitor-1 (PAI-1), an uPA inhibitor, markedly protected against cardiac rupture, lowered the mortality rate, and improved cardiac function by increasing collagen deposition and promoting tissue healing in BTKMAC-KO mice after MI. CONCLUSIONS The present study identifies PAI-1 as a novel cardioprotective agent for cardiac repair post-MI that increases collagen deposition and promotes tissue healing. A therapeutic strategy targeting BTK may be a promising treatment for cardiac repair post-MI.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jian-Bing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China" and "Jiangxi Hypertension Research Institute, Nanchang, China
| | - Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yu Weng
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiao-Lei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ju-Ying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Shi-Jun Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Minhang Hospital, Fudan University, Shanghai, China.
| | - Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Jun-Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
4
|
Deng B, Zhang G, Zeng Y, Li N, Hu C, Pang M, Lu S, Gu Y, Chen G, Zhou Y, Liu Y, Hua Y. Gualou Xiebai Banxia Decoction suppresses cardiomyocyte apoptosis in mice after myocardial infarction through activation of acetaldehyde dehydrogenase 2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119143. [PMID: 39577675 DOI: 10.1016/j.jep.2024.119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac apoptosis has been reported to be involved in the development of Heart failure (HF) after Myocardial infarction (MI). As a traditional Chinese medicine with cardioprotective properties, Gualou Xiebai Banxia Decoction (GXBD) is therapeutically effective in treating MI. However, whether GXBD regulates cardiac apoptosis in HF after MI remains unknown, and the underlying mechanisms still unclear. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of GXBD on cardiac apoptosis after MI. MATERIALS AND METHODS The MI model was constructed by ligating the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of GXBD were determined by echocardiography, masson staining, and haematoxylin and eosin (HE) staining. Bioinformatics analysis and network Pharmacology were used to explore the underlying molecular mechanisms of GXBD in MI. The effects of GXBD on cardiomyocyte apoptosis as well as the ALDH2 were examined by TUNEL staining, Immunohistochemistry (IHC), and Western blot (WB). Additionally, the effects of GXBD on oxidative stress, apoptosis and the ALDH2 in H9c2 cells were investigated using reactive oxygen species (ROS) detection, Hoechst33342/PI stainingand and WB. Moreover, the effects of suppressing and overexpressing ALDH2 in H9c2 cells were further examined. RESULTS Target prediction analysis showed that ALDH2 was a key target of GXBD which could ameliorate myocardial infarction. GXBD dose-dependently reduced cardiomyocyte apoptosis and ventricular dysfunction. In vivo experiments, GXBD activated ALDH2 enzymatic activity and inhibited the expression levels of Bax, Bcl-2, Cleaved Caspase 3, and Caspase 9. In vitro experiments, GXBD inhibited apoptosis in H9c2 cells. The inhibitory effects of GXBD on these were at least partially attributed to ALDH2 activation while silencing of ALDH2 significantly reversed these inhibitory effects of GXBD. CONCLUSION GXBD exerts inhibitory effects on cardiomyocyte apoptosis in mice after MI and suppresses H9c2 cells oxidative stress and apoptosis through activation of the enzyme activity of ALDH2.
Collapse
Affiliation(s)
- Bingying Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yixuan Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Nireng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sifan Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufeng Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Bi FF, Cao M, Pan QM, Jing ZH, Lv LF, Liu F, Tian H, Yu T, Li TY, Li XL, Liang HH, Shan HL, Zhou YH. ITFG2, an immune-modulatory protein, targets ATP 5b to maintain mitochondrial function in myocardial infarction. Biochem Pharmacol 2024; 226:116338. [PMID: 38848780 DOI: 10.1016/j.bcp.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.
Collapse
Affiliation(s)
- Fang-Fang Bi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Miao Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Qing-Ming Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ze-Hong Jing
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Li-Fang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Fu Liu
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, PR China
| | - Hua Tian
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, PR China
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Tian-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xue-Lian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Hai-Hai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Hong-Li Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yu-Hong Zhou
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
7
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
8
|
Yang K, Gao R, Chen H, Hu J, Zhang P, Wei X, Shi J, Chen Y, Zhang L, Chen J, Lyu Y, Dong Z, Wei W, Hu K, Guo Y, Ge J, Sun A. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J 2024; 45:1662-1680. [PMID: 38666340 PMCID: PMC11089336 DOI: 10.1093/eurheartj/ehae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND AND AIMS The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
- Department of Cardiac Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Hanchuan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Jingjing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310006, China
| | - Peng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, Minhang Hospital affiliated to Fudan University, 170 Xinsong Road, Shanghai 201100, China
| | - Xiang Wei
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Jiaran Shi
- Department of Cardiology, Lihuili Hospital Facilitated to Ningbo University, 57 Xingning Road, Ningbo 315040, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Department of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Liwei Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yang Lyu
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Wei Wei
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Heart Failure Center Alliance, 134 Dongjie Road, Fuzhou 350001, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 180 Fenglin Road, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
9
|
Gao R, Yang K, Le S, Chen H, Sun X, Dong Z, Gao P, Wang X, Shi J, Qu Y, Wei X, Hu K, Wang J, Jin L, Li Y, Ge J, Sun A. Aldehyde dehydrogenase 2 serves as a key cardiometabolic adaptation regulator in response to plateau hypoxia in mice. Transl Res 2024; 267:25-38. [PMID: 38181846 DOI: 10.1016/j.trsl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
High-altitude heart disease (HAHD) is a complex pathophysiological condition related to systemic hypobaric hypoxia in response to transitioning to high altitude. Hypoxia can cause myocardial metabolic dysregulation, leading to an increased risk of heart failure and sudden cardiac death. Aldehyde dehydrogenase 2 (ALDH2) could regulate myocardial energy metabolism and plays a protective role in various cardiovascular diseases. This study aims to determine the effects of plateau hypoxia (PH) on cardiac metabolism and function, investigate the associated role of ALDH2, and explore potential therapeutic targets. We discovered that PH significantly reduced survival rate and cardiac function. These effects were exacerbated by ALDH2 deficiency. PH also caused a shift in the myocardial fuel source from fatty acids to glucose; ALDH2 deficiency impaired this adaptive metabolic shift. Untargeted/targeted metabolomics and transmission electron microscopy revealed that ALDH2 deficiency promoted myocardial fatty-acid deposition, leading to enhanced fatty-acid transport, lipotoxicity and mitochondrial dysfunction. Furthermore, results showed that ALDH2 attenuated PH-induced impairment of adaptive metabolic programs through 4-HNE/CPT1 signaling, and the CPT1 inhibitor etomoxir significantly ameliorated ALDH2 deficiency-induced cardiac impairment and improved survival in PH mice. Together, our data reveal ALDH2 acts as a key cardiometabolic adaptation regulator in response to PH. CPT1 inhibitor, etomoxir, may attenuate ALDH2 deficiency-induced effects and improved cardiac function in response to PH.
Collapse
Affiliation(s)
- Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiguan Le
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hanchuan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xilu Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yi Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Gao R, Lv C, Qu Y, Yang H, Hao C, Sun X, Hu X, Yang Y, Tang Y. Remote Ischemic Conditioning Mediates Cardio-protection After Myocardial Ischemia/Reperfusion Injury by Reducing 4-HNE Levels and Regulating Autophagy via the ALDH2/SIRT3/HIF1α Signaling Pathway. J Cardiovasc Transl Res 2024; 17:169-182. [PMID: 36745288 DOI: 10.1007/s12265-023-10355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.
Collapse
Affiliation(s)
- Rifeng Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, Shanghai, China
| | - Chunyu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Hen Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chuangze Hao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaolei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xiaosheng Hu
- First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Yiqing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, Shanghai, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
11
|
Zampieri M, Schoonvelde SAC, Vinci M, Meattini I, Visani L, Fornaro A, Coppini R, Romei A, Marchi A, Morelli I, van Slegtenhorst MA, Palinkas ED, Livi L, Michels M, Olivotto I. Cancer Treatment-Related Complications in Patients With Hypertrophic Cardiomyopathy. Mayo Clin Proc 2024; 99:218-228. [PMID: 38180395 DOI: 10.1016/j.mayocp.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/25/2023] [Accepted: 10/05/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To describe the potential clinical cardiotoxicity of oncological treatments in a cohort of consecutive patients with hypertrophic cardiomyopathy (HCM), systematically followed-up at two national referral centers for HCM. Cardiotoxicity relates to the direct effects of cancer-related treatment on heart function, commonly presenting as left ventricular contractile dysfunction. However, limited data are available regarding cardiotoxic effects on HCM as most studies have not specifically analyzed the effects of oncological treatment in HCM populations. This gap in knowledge may lead to unjustified restriction of HCM patients from receiving curative cancer treatments. METHODS We retrospectively analyzed clinical and instrumental data of all consecutive HCM patients who underwent oncological treatment between January 2000 and December 2020 collected in a centralized database. RESULTS Of 3256 HCM patients, 121 (3.7%) had cancer; 110 (90.9%) underwent oncological surgery, 45 (37.2%) received chemotherapy, and 22 (18.2%) received chest radiation therapy (cRT). After a median follow-up of 5.2 years (Q1-Q3: 2-13 years) from oncological diagnosis, 32 patients died. The cumulative survival at 5 years was 79.9%. The cause of death was mainly attributed to the oncological condition, whereas four patients died of sudden cardiac death without receiving previous chemotherapy or cRT. No patient interrupted or reduced the dose of oncological treatment due to cardiac dysfunction. No sustained ventricular tachyarrhythmia was induced by chemotherapy or radiation therapy. CONCLUSION Cancer treatment was well tolerated in HCM patients. In our consecutive series, none died of cardiovascular complications induced by chemotherapy or cRT and they did not require interruption or substantial treatment tapering due to cardiovascular toxic effects. Although a multidisciplinary evaluation is necessary and regimens must be tailored individually, the diagnosis of HCM per se should not be considered a contraindication to receive optimal curative cancer treatment.
Collapse
Affiliation(s)
- Mattia Zampieri
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Pediatric Cardiology, Meyer Children's University Hospital IRCCS, Florence, Italy.
| | - Stephan A C Schoonvelde
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, Netherlands
| | - Michele Vinci
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Icro Meattini
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Luca Visani
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Raffaele Coppini
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Andrea Romei
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Alberto Marchi
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Ilaria Morelli
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eszter Dalma Palinkas
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Lorenzo Livi
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, Netherlands
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Pediatric Cardiology, Meyer Children's University Hospital IRCCS, Florence, Italy; Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| |
Collapse
|
12
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
13
|
Hui W, Song T, Yu L, Chen X. The Binding of HSPA8 and Mitochondrial ALDH2 Mediates Oxygen-Glucose Deprivation-Induced Fibroblast Senescence. Antioxidants (Basel) 2023; 13:42. [PMID: 38247467 PMCID: PMC10812545 DOI: 10.3390/antiox13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cellular senescence refers to the permanent and irreversible cessation of the cell cycle. Recently, it has gained significant interest as a promising target for preventing cardiovascular diseases. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that has been closely linked with an increased risk of cardiovascular diseases. In this study, bioinformatics analysis revealed that the signaling pathway for fibroblast senescence is significantly activated in mice after myocardial infarction (MI), and that ALDH2 might be a crucial molecule responsible for inducing this change. Therefore, we created an NIH3T3 fibroblast cell line oxygen-glucose deprivation (OGD) model to replicate the conditions of MI in vitro. We further revealed that decreased ALDH2 enzyme activity is a critical factor that affects fibroblast senescence after OGD, and the activation of ALDH2 can improve the mitochondrial damage caused by OGD. We identified Heat Shock 70-kDa Protein 8 (HSPA8) as an interacting protein of ALDH2 through co-immunoprecipitation (Co-IP) and mass spectrometry (MS) detection. Subsequently, our studies showed that HSPA8 translocates to the mitochondria after OGD, potentially binding to ALDH2 and inhibiting its enzyme activity. By transfecting siRNA to inhibit HSPA8 expression in cells, it was found that ALDH2 enzyme activity can be significantly increased, and the senescence characteristics induced by OGD in NIH3T3 cells can be improved. In conclusion, the data from this study suggest that HSPA8, in conjunction with ALDH2, could regulate fibroblast senescence after oxygen-glucose deprivation, providing a new direction and foundation for effectively intervening in fibroblast senescence after myocardial infarction.
Collapse
Affiliation(s)
- Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China;
| | - Tongtong Song
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China;
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130022, China;
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
14
|
Pan Q, Xie X, Yuan Q. Monocarboxylate transporter 4 protects against myocardial ischemia/reperfusion injury by inducing oxidative phosphorylation/glycolysis interconversion and inhibiting oxidative stress. Clin Exp Pharmacol Physiol 2023; 50:954-963. [PMID: 37771072 DOI: 10.1111/1440-1681.13821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the primary cause of heart damage in the treatment of myocardial infarction, and the imbalance of the energy metabolism in the pathogenesis of myocardial I/R is one of the main triggers of cardiac dysfunction. Monocarboxylate transporter 4 (MCT4) is a key transporter of lactate, which plays a vital role in cellular metabolism. The present study investigated the role and underlying mechanism of MCT4 in myocardial I/R injury. The results of this study showed that MCT4 was upregulated during oxygen-glucose deprivation (OGD) and restored after reoxygenation in cardiomyocytes HL-1. Interestingly, the overexpression of MCT4 increased cell viability and decreased apoptosis of OGD/R-induced HL-1 cells. Furthermore, MCT4 boosted glucose uptake and lactate levels and promoted protein expression of glycolysis regulator LDHA, while also impeding oxidative phosphorylation (OXPHOS) regulators C-MYC and NDUFB8 in OGD/R-induced HL-1 cells. A reduction in reactive oxygen species and oxidative stress markers malonaldehyde and superoxide dismutase was also observed within the OGD/R stimulated HL-1 cells. Additionally, the in vivo exogenous application of MCT4 restored cardiac function, as demonstrated by the reduced infarct size and decreased myocardial apoptosis in I/R rats. OXPHOS and oxidative stress declined, while glycolysis was activated when the I/R mice were injected with AAV-MCT4. Our findings indicate that MCT4 could exert a cardioprotective effect after myocardial I/R injury by inducing OXPHOS/glycolysis interconversion and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Qiao Pan
- Department of Cardiology, Xi'An International Medical Center Hospital, Xi'an, China
| | - Xiaobo Xie
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Qingxia Yuan
- Intensive Care Unit, Xi'An International Medical Center Hospital, Xi'an, China
| |
Collapse
|
15
|
Xie J, Zheng C, Shen M, Lu W, Li M, He M, Chen L, Ma S, Zhu Y, Lin H, Xiu J, Liao W, Bin J, Liao Y. Pregnancy-induced physiological hypertrophic preconditioning attenuates pathological myocardial hypertrophy by activation of FoxO3a. Cell Mol Life Sci 2023; 80:267. [PMID: 37626241 PMCID: PMC11072725 DOI: 10.1007/s00018-023-04909-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Previous studies show a woman's pregnancy is correlated with post-reproductive longevity, and nulliparity is associated with higher risk of incident heart failure, suggesting pregnancy likely exerts a cardioprotection. We previously reported a cardioprotective phenomenon termed myocardial hypertrophic preconditioning, but it is unknown whether pregnancy-induced physiological hypertrophic preconditioning (PHP) can also protect the heart against subsequent pathological hypertrophic stress. We aimed to clarify the phenomenon of PHP and its mechanisms. The pluripara mice whose pregnancy-induced physiological hypertrophy regressed and the nulliparous mice underwent angiotensin II (Ang II) infusion or transverse aortic constriction (TAC). Echocardiography, invasive left ventricular hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. Silencing or overexpression of Foxo3 by adeno-associated virus was used to investigate the role of FoxO3a involved in the antihypertrophic effect. Compared with nulliparous mice, pathological cardiac hypertrophy induced by Ang II infusion, or TAC was significantly attenuated and heart failure induced by TAC was markedly improved in mice with PHP. Activation of FoxO3a was significantly enhanced in the hearts of postpartum mice. FoxO3a inhibited myocardial hypertrophy by suppressing signaling pathway of phosphorylated glycogen synthase kinase-3β (p-GSK3β)/β-catenin/Cyclin D1. Silencing or overexpression of Foxo3 attenuated or enhanced the anti-hypertrophic effect of PHP in mice with pathological stimulation. Our findings demonstrate that PHP confers resistance to subsequent hypertrophic stress and slows progression to heart failure through activation of FoxO3a/GSK3β pathway.
Collapse
Affiliation(s)
- Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Weiling Lu
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Liu Y, Ji X, Zhou Z, Zhang J, Zhang J. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc Res 2023:104565. [PMID: 37307911 DOI: 10.1016/j.mvr.2023.104565] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in developed countries. Among cardiovascular disorders, myocardial infarction remains a life-threatening problem predisposing to the development and progression of ischemic heart failure. Ischemia/reperfusion (I/R) injury is a critical cause of myocardial injury. In recent decades, many efforts have been made to find the molecular and cellular mechanisms underlying the development of myocardial I/R injury and post-ischemic remodeling. Some of these mechanisms are mitochondrial dysfunction, metabolic alterations, inflammation, high production of ROS, and autophagy deregulation. Despite continuous efforts, myocardial I/R injury remains a major challenge in medical treatments of thrombolytic therapy, heart disease, primary percutaneous coronary intervention, and coronary arterial bypass grafting. The development of effective therapeutic strategies to reduce or prevent myocardial I/R injury is of great clinical significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiang Ji
- Department of Integrative, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jingwen Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
17
|
Dayani A, Faritous SZ, Amniati S, Bakhshande H, Zamani A, Ghanbari M. Anesthesia Management for the Patient with Chronic Decompensated Heart Failure and Low Cardiac Output Undergoing CABG with Advanced Cardiac Monitoring: A Case Report. Anesth Pain Med 2023; 13:e133796. [PMID: 37404260 PMCID: PMC10317024 DOI: 10.5812/aapm-133796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 07/06/2023] Open
Abstract
Introduction Heart failure (HF) is a complex clinical syndrome caused by a structural or functional heart disorder. One of the most important challenges for anesthesiologists is the management of anesthesia in patients with severe heart failure, which has been facilitated by advanced monitoring systems. Case Presentation The patient was a 42-year-old man with a history of hypertension (HTN) and HF with involvement of the three coronary arteries (3VD) with ejection fraction (EF) 15%. He was also a candidate for elective CABG. In addition to the insertion of arterial line in the left radial artery and the Swan-Ganz catheter in the pulmonary artery, the patient was also monitored by the Edwards Lifesciences Vigilance II for cardiac index (CI) and intravenous mixed blood oxygenation (ScvO2). Hemodynamic changes during and after surgery, as well as during inotrope infusion, were controlled, and the amount of fluid therapy was calculated by gold direct therapy (GDT) method. Conclusions Using PA catheter with advanced monitoring and GDT-based fluid therapy guaranteed a safe anesthesia in this patient with severe heart failure and EF < 20%. Moreover, the postoperative complications and duration of ICU stays were significantly reduced.
Collapse
Affiliation(s)
- Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Faritous
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saied Amniati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Bakhshande
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Afarin Zamani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbari
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Icariside II, a Naturally Occurring SIRT3 Agonist, Protects against Myocardial Infarction through the AMPK/PGC-1α/Apoptosis Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11081465. [PMID: 36009184 PMCID: PMC9405218 DOI: 10.3390/antiox11081465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Myocardial infarction (MI) refers to the death of cardiomyocytes triggered by a lack of energy due to myocardial ischemia and hypoxia, and silent mating type information regulation 2 homolog 3 (SIRT3) plays an essential role in protecting against myocardial oxidative stress and apoptosis, which are deemed to be the principal causes of MI. Icariside II (ICS II), one of the main active ingredients of Herbal Epimedii, possesses extensive pharmacological activities. However, whether ICS II can protect against MI is still unknown. Therefore, this study was designed to investigate the effect and possible underlying mechanism of ICS II on MI both in vivo and in vitro. The results showed that pretreatment with ICS II not only dramatically mitigated MI-induced myocardial damage in mice but also alleviated H9c2 cardiomyocyte injury elicited by oxygen and glucose deprivation (OGD), which were achieved by suppressing mitochondrial oxidative stress and apoptosis. Furthermore, ICS II elevated the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) expression, thereby activating SIRT3. However, these protective effects of ICS II on MI injury were largely abolished in SIRT3-deficient mice, manifesting that ICS II-mediated cardioprotective effects are, at least partly, due to the presence of SIRT3. Most interestingly, ICS II directly bound with SIRT3, as reflected by molecular docking, which indicated that SIRT3 might be a promising therapeutic target for ICS II-elicited cardioprotection in MI. In conclusion, our findings illustrate that ICS II protects against MI-induced oxidative injury and apoptosis by targeting SIRT3 through regulating the AMPK/PGC-1α pathway.
Collapse
|
19
|
Zhu Y, Zheng C, Zhang R, Yan J, Li M, Ma S, Chen K, Chen L, Liu J, Xiu J, Liao W, Bin J, Huang J, Lin H, Liao Y. Circ-Ddx60 contributes to the antihypertrophic memory of exercise hypertrophic preconditioning. J Adv Res 2022; 46:113-121. [PMID: 35718079 PMCID: PMC10105073 DOI: 10.1016/j.jare.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION We previously reported a phenomenon called exercise hypertrophic preconditioning (EHP), the underlying mechanisms of which need further clarification. OBJECTIVES We aimed to investigate whether circular RNAs (circRNAs) are involved in EHP. METHODS CircRNA sequencing of myocardial tissue was performed in male C57BL/6 mice with EHP and sedentary. Bioinformatics analysis and Sanger sequencing were used to screen hub circRNA expression and to detect full-length circRNAs, respectively. Loss-of-function analyses were conducted to assess the effects of circ-Ddx60 (c-Ddx) on EHP. After 21 days of swimming training or resting, mice underwent transverse aortic constriction (TAC) or sham surgery. Echocardiography, invasive hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. The presence of interaction between c-Ddx and proteins was investigated using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). RESULTS In this study, we identified a novel circRNA, named c-Ddx that was preferentially expressed in myocardial tissue and significantly up-regulated in EHP mice. Silencing of c-Ddx attenuated the antihypertrophic effect of EHP and worsened heart failure in mice that underwent TAC. ChIRP-MS and molecular docking analysis validated the combination of c-Ddx and eukaryotic elongation factor 2 (eEF2). Mechanistically, c-Ddx silencing inhibited the increase of phosphorylation of eEF2 and its upstream AMP-activated protein kinase (AMPK) induced by EHP. CONCLUSIONS C-Ddx contributes to the antihypertrophic memory of EHP by binding and activating eEF2, which would provide opportunity to search new therapeutic targets for pathological hypertrophy of heart.
Collapse
Affiliation(s)
- Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rui Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junyu Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jichen Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianhua Huang
- Key Laboratory of Surgery of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
20
|
Cucu I, Nicolescu MI, Busnatu ȘS, Manole CG. Dynamic Involvement of Telocytes in Modulating Multiple Signaling Pathways in Cardiac Cytoarchitecture. Int J Mol Sci 2022; 23:5769. [PMID: 35628576 PMCID: PMC9143034 DOI: 10.3390/ijms23105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart's mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Ștefan-Sebastian Busnatu
- Department of Cardiology-“Bagdasar Arseni” Emergency Clinical Hospital, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 041915 Bucharest, Romania
| | - Cătălin Gabriel Manole
- Department of Cellular & Molecular Biology and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Laboratory of Ultrastructural Pathology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
21
|
Buelna-Chontal M, García-Niño WR, Silva-Palacios A, Enríquez-Cortina C, Zazueta C. Implications of Oxidative and Nitrosative Post-Translational Modifications in Therapeutic Strategies against Reperfusion Damage. Antioxidants (Basel) 2021; 10:749. [PMID: 34066806 PMCID: PMC8151040 DOI: 10.3390/antiox10050749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications based on redox reactions "switch on-off" the biological activity of different downstream targets, modifying a myriad of processes and providing an efficient mechanism for signaling regulation in physiological and pathological conditions. Such modifications depend on the generation of redox components, such as reactive oxygen species and nitric oxide. Therefore, as the oxidative or nitrosative milieu prevailing in the reperfused heart is determinant for protective signaling, in this review we defined the impact of redox-based post-translational modifications resulting from either oxidative/nitrosative signaling or oxidative/nitrosative stress that occurs during reperfusion damage. The role that cardioprotective conditioning strategies have had to establish that such changes occur at different subcellular levels, particularly in mitochondria, is also presented. Another section is devoted to the possible mechanism of signal delivering of modified proteins. Finally, we discuss the possible efficacy of redox-based therapeutic strategies against reperfusion damage.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (M.B.-C.); (W.R.G.-N.); (A.S.-P.); (C.E.-C.)
| |
Collapse
|