1
|
Li B, Liu S, Han W, Song P, Sun H, Cao X, Di G, Chen P. Aquaporin five deficiency suppresses fatty acid oxidation and delays liver regeneration through the transcription factor PPAR. J Biol Chem 2025; 301:108303. [PMID: 39947476 PMCID: PMC11930093 DOI: 10.1016/j.jbc.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
After 70% partial hepatectomy (PHx), the metabolic pathways leading to hepatocyte lipid droplet accumulation during liver regeneration remain unclear. Aquaporin 5 (Aqp5) is an aquaporin that facilitates the transport of both water and hydrogen peroxide (H2O2). In this study, we observed delayed liver regeneration following PHx in Aqp5 knockout (Aqp5-/-) mice. Considering the role of Aqp5 in H2O2 transport, we hypothesized that deficiency in Aqp5 may induce oxidative stress and hepatocyte injury. Through the measurement of reactive oxygen species (ROS) and redox-related indices, we observed significant alterations in ROS levels as well as malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations in regenerating livers lacking Aqp5 compared to wild-type controls. Oil Red O and 4-hydroxynonenal (4-HNE) staining results indicated that Aqp5 deficiency caused lipid accumulation during liver regeneration. The transcriptome sequencing results showed that the PPAR pathway is inhibited during the liver regeneration process in Aqp5 gene-knockout mice. The administration of the WY-14643 agonist, which targets the PPAR pathway, significantly mitigated delayed liver regeneration by enhancing hepatocyte proliferation and reducing lipid accumulation caused by Aqp5 deficiency. Our findings highlight the crucial role of Aqp5 in regulating H2O2 levels and lipid metabolism through the PPAR pathway during liver regeneration.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shixu Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hetong Sun
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xin Cao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Li B, Di G, Ge H, Song P, Han W, Sun H, Wang D, Chen P, Wang Y. Aquaporin-5 facilitates liver regeneration following hepatectomy via ROS/GSDMD pathway. Cell Signal 2025; 127:111602. [PMID: 39814248 DOI: 10.1016/j.cellsig.2025.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
During the proliferative phase of liver regeneration, insufficient regulation of hepatocyte hydrogen peroxide (H2O2) overproduction can result in oxidative stress and hepatocyte death. This study aims to investigate the influence of Aquaporin 5 (Aqp5) on liver regeneration by evaluating its role in reactive oxygen species (ROS) generation and NLRP3-GSDMD-mediated pyroptosis. A 70 % partial hepatectomy (PHx) model was established in Aqp5-/- mice to evaluate the pathological changes in the liver. Reactive oxygen species (ROS) production was assessed using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay. Aqp5 deficiency significantly increased ROS production, the number of TUNEL-positive cells, and disrupted mitochondrial membrane potential in the liver of Aqp5-deficient mice. The impact of Aqp5 on ROS/NLRP3/Gasdermin-D (GSDMD)-mediated pyroptosis was examined through the administration of N-acetyl-L-cysteine (NAC, an ROS scavenger) or disulfiram (DSF, a GSDMD inhibitor). In Aqp5-deficient mice, the regenerative liver exhibited increased expression of NLRP3, enhanced activation of caspase-1 and GSDMD, as well as elevated secretion of IL-1β. Treatment with DSF significantly attenuated GSDMD-mediated pyroptosis triggered by Aqp5 deficiency in the regenerating liver. Furthermore, the administration of NAC to Aqp5-deficient mice resulted in a reduction in the expression levels of NLRP3, the activity levels of caspase-1 and GSDMD, as well as the release of IL-1β. Our findings indicate that the deficiency of Aqp5 facilitates GSDMD activation through the production of ROS. The suppression of ROS or inhibition of GSDMD significantly alleviates the damage and pyroptosis observed in Aqp5-deficient regenerative liver.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China.
| | - Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Hetong Sun
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Dianqiang Wang
- Qingdao Aier Eye Hospital, Qingdao, Shandong Province, 266400, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China; Department of Emergency Medicine, Qingdao Eighth People's Hospital, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), No. 127th, South Siliu Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
3
|
Wang T, Wang M, Liu W, Zhang L, Zhang J, Zhao J, Wu Z, Lyu Y, Wu R. Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice. Int J Mol Med 2025; 55:42. [PMID: 39791211 PMCID: PMC11758893 DOI: 10.3892/ijmm.2025.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism. The overall involvement of CIRP in liver regeneration and injury after hepatectomy was evaluated in CIRP‑deficient mice. C23, an antagonist of extracellular CIRP, was used to assess the effect of extracellular CIRP on liver regeneration and injury after hepatectomy. CIRP overexpression and short hairpin RNA plasmids were transfected into HepG2 cells to study the effect of intracellular CIRP on cell proliferation. The effects of extracellular CIRP on cell proliferation and injury were determined via the use of recombinant CIRP protein to stimulate HepG2 cells in vitro. The results indicated that both hepatic and serum CIRP levels significantly increased after partial hepatectomy. Additionally, CIRP deficiency impaired liver regeneration but alleviated liver injury after partial hepatectomy in mice. C23 administration attenuated liver injury and suppressed endoplasmic reticulum (ER) stress and oxidative stress. Loss‑ and gain‑of‑function analyses in HepG2 cells indicated that an increase in intracellular CIRP promoted cell proliferation via signal transducers and activation of transcription 3 (STAT3) signaling pathway activation. Moreover, recombinant CIRP had no effect on cell proliferation or STAT3 phosphorylation but induced ER stress, which was blocked by TAK242, an inhibitor of Toll‑like receptor 4 (TLR4), in HepG2 cells. Taken together, the results of the present study demonstrated that intracellular CIRP promotes liver regeneration by activating the STAT3 pathway, whereas extracellular CIRP induces ER stress possibly via the TLR4 signaling pathway after hepatectomy.
Collapse
Affiliation(s)
- Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
5
|
Li Y, Yang X, Li X, Wang S, Chen P, Ma T, Zhang B. Astragaloside IV and cycloastragenol promote liver regeneration through regulation of hepatic oxidative homeostasis and glucose/lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156165. [PMID: 39461202 DOI: 10.1016/j.phymed.2024.156165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The regenerative capacity of the liver is pivotal for mitigating various forms of liver injury and requires the rapid proliferation of hepatocytes. Aquaporin-9 (AQP9) provides vital support for hepatocyte proliferation by preserving hydrogen peroxide (H2O2) oxidative balance and glucose/lipid metabolism equilibrium within hepatocytes. Our previous study demonstrated that Radix Astragali (RA) decoction promotes liver regeneration by upregulating hepatic expression of AQP9, possibly via two major active constituents: astragaloside IV (AS-IV) and cycloastragenol (CAG). PURPOSE To verify that upregulated AQP9 expression in hepatocytes maintains liver oxidative balance and glucose/lipid metabolism homeostasis, and is the main pharmacological mechanism by which AS-IV and CAG promote liver regeneration. STUDY DESIGN/METHODS Effects of AS-IV and CAG on liver regeneration were scrutinized using a mouse model of 70 % partial hepatectomy (PHx). AQP9-targeted liver regeneration mediated by AS-IV and CAG was verified using AQP9 gene knockout mice (AQP9-/-). The AQP9 protein expression pattern in hepatocytes was determined using tdTomato-tagged AQP9 transgenic mice (AQP9-RFP). Potential mechanisms of AS-IV and CAG on liver regeneration were studied using real-time quantitative PCR, immunoblotting, staining with hematoxylin and eosin, oil red O, and periodic acid-Schiff, and immunofluorescence, immunohistochemistry, HyPerRed fluorescence, and biochemical analyses. RESULTS AS-IV and CAG promoted substantial liver regeneration and increased hepatic AQP9 expression in wild-type mice (AQP9+/+) following 70 % PHx, but had no discernible benefits in AQP9-/- mice. Both saponin compounds also helped maintain oxidative homeostasis by reducing levels of oxidative stress markers (reactive oxygen species [ROS], H2O2, and malondialdehyde) and elevating levels of ROS scavengers (glutathione and superoxide dismutase) in AQP9+/+ mice post-70 % PHx. This further activated the PI3K-AKT and insulin signaling pathways, thereby fostering liver regeneration. Furthermore, AS-IV and CAG both promoted hepatocyte glycerol uptake, increased gluconeogenesis, facilitated lipolysis, reduced glycolysis, and inhibited glycogen deposition, thus ensuring the energy supply required for liver regeneration. CONCLUSION This research is the first to demonstrate AS-IV and CAG as major active ingredients of RA that promote liver regeneration by upregulating hepatocyte AQP9 expression, improving hepatocyte glucose/lipid metabolism, and reducing oxidative stress damage, constituting a crucial pharmacological mechanism underlying the liver-protective effects of RA. The augmentation of hepatocyte AQP9 expression underscores an important aspect of the Qi-tonifying effect of RA. This study establishes AQP9 as an effective target for regulation of liver regeneration and provides a universal strategy for clinical drug intervention aimed at enhancing liver regeneration.
Collapse
Affiliation(s)
- Yanghao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xu Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiang Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaodong Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peng Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tonghui Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Bo Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
7
|
Zhang W, Liu XH, Zhou JT, Cheng C, Xu J, Yu J, Li X. Apolipoprotein A-IV restrains fat accumulation in skeletal and myocardial muscles by inhibiting lipogenesis and activating PI3K-AKT signalling. Arch Physiol Biochem 2024; 130:491-501. [PMID: 36594510 DOI: 10.1080/13813455.2022.2163261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND One of the pathological characteristics of obesity is fat accumulation of skeletal muscles (SKM) and the myocardium, involving mechanisms of insulin resistance and abnormal lipid metabolism. Apolipoprotein A-IV (ApoA-IV) is an essential gene in both glucose and lipid metabolisms. MATERIALS AND METHODS Using high-fat diet (HFD) induced obese apoA-IV-knockout mice and subsequent introduction of exogenous recombinant-ApoA-IV protein and adeno-associated virus (AAV)-transformed apoA-IV, we examined lipid metabolism indicators of SKM and the myocardium, which include triglyceride (TG) content, RT-PCR for lipogenic indicators and western blotting for AKT phosphorylation. Similarly, we used high-glucose-fed or palmitate (Pal)-induced C2C12 cells co-cultured with ApoA-IV protein to evaluate glucose uptake, the phosphoinositide 3-kinase (PI3K)-AKT pathway, and lipid metabolisms. RESULTS In stable obese animal models, we find ApoA-IV-knockout mice show elevated TG content, enhanced expression of lipogenic enzymes and diminished phosphorylated AKT in SKM and the myocardium, but both stable hepatic expression of AAV-apoA-IV and brief ApoA-IV protein administration suppress lipogenesis and promote AKT phosphorylation. In a myoblast cell line C2C12, ApoA-IV protein suppresses Pal-induced lipid accumulation and lipogenesis but enhances AKT activation and glucose uptake, and the effect is abolished by a PI3K inhibitor. CONCLUSION We find that ApoA-IV reduces fat accumulation by suppressing lipogenesis and improves glucose uptake in SKM and the myocardium by regulating the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Wenqian Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Xiao-Huan Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Jin-Ting Zhou
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Cheng Cheng
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Jing Xu
- Division of Endocrinology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yu
- OneHealth Technology Company, Xi'an, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Yao X, Liu Y, Sui Y, Zheng M, Zhu L, Li Q, Irwin MG, Yang L, Zhan Q, Xiao J. Dexmedetomidine facilitates autophagic flux to promote liver regeneration by suppressing GSK3β activity in mouse partial hepatectomy. Biomed Pharmacother 2024; 177:117038. [PMID: 39002441 DOI: 10.1016/j.biopha.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is widely used for sedation and anesthesia in patients undergoing hepatectomy. However, the effect of DEX on autophagic flux and liver regeneration remains unclear. OBJECTIVES This study aimed to determine the role of DEX in hepatocyte autophagic flux and liver regeneration after PHx. METHODS In mice, DEX was intraperitoneally injected 5 min before and 6 h after PHx. In vitro, DEX was co-incubated with culture medium for 24 h. Autophagic flux was detected by LC3-II and SQSTM1 expression levels in primary mouse hepatocytes and the proportion of red puncta in AML-12 cells transfected with FUGW-PK-hLC3 plasmid. Liver regeneration was assessed by cyclinD1 expression, Edu incorporation, H&E staining, ki67 immunostaining and liver/body ratios. Bafilomycin A1, si-GSK3β and Flag-tagged GSK3β, α2-ADR antagonist, GSK3β inhibitor, AKT inhibitor were used to identify the role of GSK3β in DEX-mediated autophagic flux and hepatocyte proliferation. RESULTS Pre- and post-operative DEX treatment promoted liver regeneration after PHx, showing 12 h earlier than in DEX-untreated mice, accompanied by facilitated autophagic flux, which was completely abolished by bafilomycin A1 or α2-ADR antagonist. The suppression of GSK3β activity by SB216763 and si-GSK3β enhanced the effect of DEX on autophagic flux and liver regeneration, which was abolished by AKT inhibitor. CONCLUSION Pre- and post-operative administration of DEX facilitates autophagic flux, leading to enhanced liver regeneration after partial hepatectomy through suppression of GSK3β activity in an α2-ADR-dependent manner.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yongheng Sui
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Miao Zheng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| |
Collapse
|
9
|
Hu Y, Li J, Hu L, Liu F, Chen R, Xu L, Tang Z, Lu B, Yu J. BACH1 impairs hepatocyte regeneration after hepatectomy with repeated ischemia/reperfusion by reprogramming energy metabolism and exacerbating oxidative stress. Biochem Pharmacol 2024; 226:116377. [PMID: 38906228 DOI: 10.1016/j.bcp.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BTB and CNC homology 1 (BACH1) regulates biological processes, including energy metabolism and oxidative stress. Insufficient liver regeneration after hepatectomy remains an issue for surgeons. The Pringle maneuver is widely used during hepatectomy and induces ischemia/reperfusion (I/R) injury in hepatocytes. A rat model of two-thirds partial hepatectomy with repeated I/R treatment was used to simulate clinical hepatectomy with Pringle maneuver. Delayed recovery of liver function after hepatectomy with the repeated Pringle maneuver in clinic and impaired liver regeneration in rat model were observed. Highly elevated lactate levels, along with reduced mitochondrial complex III and IV activities in liver tissues, indicated that the glycolytic phenotype was promoted after hepatectomy with repeated I/R. mRNA expression profile analysis of glycolysis-related genes in clinical samples and further verification experiments in rat models showed that high BACH1 expression levels correlated with the glycolytic phenotype after hepatectomy with repeated I/R. BACH1 overexpression restricted the proliferative potential of hepatocytes stimulated with HGF. High PDK1 expression and high lactate levels, together with low mitochondrial complex III and IV activities and reduced ATP concentrations, were detected in BACH1-overexpressing hepatocytes with HGF stimulation. Moreover, HO-1 expression was downregulated, and oxidative stress was exacerbated in the BACH1-overexpressing hepatocytes with HGF stimulation. Cell experiments involving repeated hypoxia/reoxygenation revealed that reactive oxygen species accumulation triggered the TGF-β1/BACH1 axis in hepatocytes. Finally, inhibiting BACH1 with the inhibitor hemin effectively restored the liver regenerative ability after hepatectomy with repeated I/R. These results provide a potential therapeutic strategy for impaired liver regeneration after repeated I/R injury.
Collapse
Affiliation(s)
- Yanxin Hu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Liangfeng Hu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Fang Liu
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Ruanchang Chen
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Luohang Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Zekai Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Baochun Lu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
10
|
Yang X, Zhang J, Li Y, Hu H, Li X, Ma T, Zhang B. Si-Ni-San promotes liver regeneration by maintaining hepatic oxidative equilibrium and glucose/lipid metabolism homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117918. [PMID: 38382654 DOI: 10.1016/j.jep.2024.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of clinical treatments for various liver diseases is intricately tied to the liver's regenerative capacity. Insufficient or failed liver regeneration is a direct cause of mortality following fulminant hepatic failure and extensive hepatectomy. Si-Ni-San (SNS), a renowned traditional Chinese medicine prescription for harmonizing liver and spleen functions, has shown clinical efficacy in the alleviation of liver injury for thousands of years. However, the precise molecular pharmacological mechanisms underlying its effects remain unclear. AIMS OF THE STUDY This study aimed to investigate the effects of SNS on liver regeneration and elucidate the underlying mechanisms. MATERIALS AND METHODS A mouse model of 70% partial hepatectomy (PHx) was used to analyze the effects of SNS on liver regeneration. Aquaporin-9 knockout mice (AQP9-/-) were used to demonstrate that SNS-mediated enhancement of liver regeneration was AQP9-targeted. A tandem dimer-Tomato-tagged AQP9 transgenic mouse line (AQP9-RFP) was utilized to determine the expression pattern of AQP9 protein in hepatocytes. Immunoblotting, quantitative real-time PCR, staining techniques, and biochemical assays were used to further explore the underlying mechanisms of SNS. RESULTS SNS treatment significantly enhanced liver regeneration and increased AQP9 protein expression in hepatocytes of wild-type mice (AQP9+/+) post 70% PHx, but had no significant effects on AQP9-/- mice. Following 70% PHx, SNS helped maintain hepatic oxidative equilibrium by increasing the levels of reactive oxygen species scavengers glutathione and superoxide dismutase and reducing the levels of oxidative stress molecules H2O2 and malondialdehyde in liver tissues, thereby preserving this crucial process for hepatocyte proliferation. Simultaneously, SNS augmented glycerol uptake by hepatocytes, stimulated gluconeogenesis, and maintained glucose/lipid metabolism homeostasis, ensuring the energy supply required for liver regeneration. CONCLUSIONS This study provides the first evidence that SNS maintains liver oxidative equilibrium and glucose/lipid metabolism homeostasis by upregulating AQP9 expression in hepatocytes, thereby promoting liver regeneration. These findings offer novel insights into the molecular pharmacological mechanisms of SNS in promoting liver regeneration and provide guidance for its clinical application and optimization in liver disease treatment.
Collapse
Affiliation(s)
- Xu Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junqi Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huiting Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Yu M, Shi Y, Gao Y, Luo Y, Jin Y, Liang X, Tao Z, Zhu G, Lin H, Li H, Qin J, Cao Z, Zhong M. Targeting AQP9 enhanced the anti-TNF therapy response in Crohn's disease by inhibiting LPA-hippo pathway. Pharmacol Res 2024; 203:107172. [PMID: 38583685 DOI: 10.1016/j.phrs.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1β⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.
Collapse
Affiliation(s)
- Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Shi
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yihua Jin
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoyi Liang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhuoran Tao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guojun Zhu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haiping Lin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Zhijun Cao
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases;Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
12
|
Amro Z, Collins-Praino L, Yool A. Protective roles of peroxiporins AQP0 and AQP11 in human astrocyte and neuronal cell lines in response to oxidative and inflammatory stressors. Biosci Rep 2024; 44:BSR20231725. [PMID: 38451099 PMCID: PMC10965398 DOI: 10.1042/bsr20231725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024] Open
Abstract
In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.
Collapse
Affiliation(s)
- Zein Amro
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Zhang C, Sun C, Zhao Y, Ye B, Yu G. Signaling pathways of liver regeneration: Biological mechanisms and implications. iScience 2024; 27:108683. [PMID: 38155779 PMCID: PMC10753089 DOI: 10.1016/j.isci.2023.108683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - GuoYing Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
14
|
Li Y, Yang X, Bao T, Sun X, Li X, Zhu H, Zhang B, Ma T. Radix Astragali decoction improves liver regeneration by upregulating hepatic expression of aquaporin-9. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155166. [PMID: 37918281 DOI: 10.1016/j.phymed.2023.155166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The therapeutic efficacy of liver injuries heavily relies on the liver's remarkable regenerative capacity, necessitating the maintenance of glycose/lipids homeostasis and oxidative eustasis during the recovery process. Astragali Radix, an herbal tonic widely used in China and many other countries, is believed to have many positive effects, including immune stimulation, nourishing, antioxidant, liver protection, diuresis, anti-diabetes, anti-cancer and expectorant. Astragali Radix is widely integrated into hepatoprotective formulas as it is believed to facilitate liver regeneration. Nevertheless, the precise molecular pharmacological mechanisms underlying this hepatoprotective effect remain elusive. PURPOSE To investigate the improving effects of Astragali Radix on liver regeneration and the underlying mechanisms. METHODS A mouse model of 70% partial hepatectomy (PHx) was employed to investigate the impact of Radix Astragali decoction (HQD) on liver regeneration. HQD was orally administered for 7 days before the PHx procedure and throughout the experiment. N-acetylcysteine (NAC) was used as a positive control for liver regeneration. Liver regeneration was assessed by evaluating the liver-to-body weight ratio (LW/BW) and the expression of representative cell proliferation marker proteins. Oxidative stress and glucose metabolism were analyzed using biochemical assays, Western blotting, dihydroethidium (DHE) fluorescence, and periodic acid-Schiff (PAS) staining methods. To understand the role of AQP9 as a potential molecular target of HQD in promoting liver regeneration, td-Tomato-tagged AQP9 transgenic mice (AQP9-RFP) were employed to determine the expression pattern of AQP9 protein. AQP9 knockout mice (AQP9-/-) were used to assess the specific targeting of AQP9 in the promotion of liver regeneration by HQD. RESULTS HQD significantly upregulated hepatic AQP9 expression, alleviated liver injury and promoted liver regeneration in wild-type (AQP9+/+) mice after 70% PHx. However, the beneficial impact of HQD on liver regeneration was absent in AQP9 gene knockout (AQP9-/-) mice. Moreover, HQD facilitated the uptake of glycerol by hepatocytes, enhanced gluconeogenesis, and concurrently reduced H2O2 content and oxidative stress levels in AQP9+/+ but not AQP9-/- mouse livers. Additionally, main active substance of Radix Astragali, astragaloside IV (AS-IV) and cycloastragenol (CAG), demonstrated substantial upregulation of AQP9 expression and promoted liver regeneration in AQP9+/+ but not AQP9-/- mice. CONCLUSION This study is the first to demonstrate that Radix Astragali and its main active constituents (AS-IV and CAG) improve liver regeneration by upregulating the expression of AQP9 in hepatocytes to increase gluconeogenesis and reduce oxidative stress. The study revealed novel molecular pharmacological mechanisms of Radix Astragali and provided a promising therapeutic target of liver diseases.
Collapse
Affiliation(s)
- Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xu Yang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Tiantian Bao
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiaojuan Sun
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Huilin Zhu
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
15
|
Cheng Q, Zhang J, Ding H, Wang Z, Fang J, Fang X, Li M, Li R, Meng J, Liu H, Lu X, Xu Y, Chen C, Zhang W. Integrated multiomics analysis reveals changes in liver physiological function in Aqp9 gene knockout mice. Int J Biol Macromol 2023:125459. [PMID: 37353119 DOI: 10.1016/j.ijbiomac.2023.125459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Aquaporin 9 (AQP9) is the main channel by which blood glycerol enters the liver, where it plays key roles in osmotic pressure regulation and energy metabolism. Previous studies have shown that AQP9 is involved in the pathogenesis of many liver diseases. In this study, we aimed to clarify the role of AQP9 in maintaining the physiological environment of the liver using Aqp9-/- mice. We constructed Aqp9 knockout mice and used comprehensive multiomics analysis to elucidate the potential molecular effects of AQP9 expression on liver tissue. Knockout of Aqp9 reduced mouse body weight by affecting glycerol metabolism and led to hepatocyte death and inflammatory cell infiltration, which was confirmed by transcriptomics, proteomics and metabolomics. Moreover, knockout of Aqp9 triggered immune and inflammatory responses, leading to scattered and mild liver cell pyroptosis and compensatory liver cell proliferation.
Collapse
Affiliation(s)
- Quancheng Cheng
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huiru Ding
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinyu Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Rui Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jieyi Meng
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huaicun Liu
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Chunhua Chen
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Weiguang Zhang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
16
|
Ma JT, Xia S, Zhang BK, Luo F, Guo L, Yang Y, Gong H, Yan M. The pharmacology and mechanisms of traditional Chinese medicine in promoting liver regeneration: A new therapeutic option. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154893. [PMID: 37236047 DOI: 10.1016/j.phymed.2023.154893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The liver is renowned for its remarkable regenerative capacity to restore its structure, size and function after various types of liver injury. However, in patients with end-stage liver disease, the regenerative capacity is inhibited and liver transplantation is the only option. Considering the limitations of liver transplantation, promoting liver regeneration is suggested as a new therapeutic strategy for liver disease. Traditional Chinese medicine (TCM) has a long history of preventing and treating various liver diseases, and some of them have been proven to be effective in promoting liver regeneration, suggesting the therapeutic potential in liver diseases. PURPOSE This review aims to summarize the molecular mechanisms of liver regeneration and the pro-regenerative activity and mechanism of TCM formulas, extracts and active ingredients. METHODS We conducted a systematic search in PubMed, Web of Science and the Cochrane Library databases using "TCM", "liver regeneration" or their synonyms as keywords, and classified and summarized the retrieved literature. The PRISMA guidelines were followed. RESULTS Forty-one research articles met the themes of this review and previous critical studies were also reviewed to provide essential background information. Current evidences indicate that various TCM formulas, extracts and active ingredients have the effect on stimulating liver regeneration through modulating JAK/STAT, Hippo, PI3K/Akt and other signaling pathways. Besides, the mechanisms of liver regeneration, the limitation of existing studies and the application prospect of TCM to promote liver regeneration are also outlined and discussed in this review. CONCLUSION This review supports TCM as new potential therapeutic options for promoting liver regeneration and repair of the failing liver, although extensive pharmacokinetic and toxicological studies, as well as elaborate clinical trials, are still needed to demonstrate safety and efficacy.
Collapse
Affiliation(s)
- Jia-Ting Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Fen Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| |
Collapse
|
17
|
Shan E, Yu Y, Tang W, Wang W, Wang X, Zhou S, Gao Y. miR-330-3p alleviates the progression of atherosclerosis by downregulating AQP9. Funct Integr Genomics 2023; 23:77. [PMID: 36879069 DOI: 10.1007/s10142-023-01001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular diseases. However, the role of AQP9 in AS is not well understood. In the present study, we predicted that miR-330-3p might regulate AQP9 in AS through bioinformatics analysis, and we established AS model using ApoE-/- mouse (C57BL/6) with high-fat diet (HFD). Hematoxylin and eosin (H&E) and Oil red O staining were used to determine atherosclerotic lesions. CCK8 and Ethyny1-2-deoxyuridine (EdU) assays were used to investigate human umbilical vein endothelial cells (HUVECs) proliferation after treatment with 100 μg/mL ox-LDL. Wound scratch healing and transwell assays were used to measure the cell invasion and migration ability. Flow cytometry assay was used to determine apoptosis and cell cycle. A dual-luciferase reporter assay was performed to investigate the binding of miR-330-3p and AQP9. We identified that the expression of miR-330-3p in AS mice model decreased while the expression level of AQP9 increased. miR-330-3p overexpression or down-regulation of AQP9 could reduce cell apoptosis, promote cell proliferation, and migration after ox-LDL treatment. Dual-luciferase reporter assay result presented that AQP9 was directly inhibited by miR-330-3p. These results suggest that miR-330-3p inhibits AS by regulating AQP9. miR-330-3p/AQP9 axis may be a new therapeutic target for AS.
Collapse
Affiliation(s)
- Erbo Shan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanyuan Yu
- The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenbo Tang
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233004, China
| | - Wei Wang
- The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiangkui Wang
- Department of Vascular Surgery, Huaibei General Miner Hospital, Huaibei, China
| | - Shaobo Zhou
- The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong Gao
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233004, China.
| |
Collapse
|
18
|
Li Y, Cen CQ, Liu B, Zhou L, Huang XM, Liu GY. Overexpression of circ PTK2 suppresses the progression of nonalcoholic fatty liver disease via the miR-200c/SIK2/PI3K/Akt axis. Kaohsiung J Med Sci 2022; 38:869-878. [PMID: 35791807 DOI: 10.1002/kjm2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/01/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Excessive hepatic lipid accumulation is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A previous study showed that the circular RNA (circRNA) PTK2 was significantly downregulated in NAFLD mice. However, the detailed function of circ PTK2 in NAFLD remains unclear. A high-fat diet (HFD) was used to establish a mouse model of NAFLD, and free fatty acid (FFA) treatment was used to establish an in vitro model of NAFLD. Oil red O staining was used to evaluate lipid accumulation. The pathological changes in mice were observed by HE staining. Western blotting and RT-qPCR were applied to assess protein and mRNA levels, respectively. A dual luciferase reporter assay and RIP were used to explore the relationship among circ PTK2, miR-200c and SIK2. Circ PTK2 and SIK2 were downregulated and miR-200c was upregulated in NAFLD. Upregulation of circ PTK2 reversed lipid accumulation in FFA-treated HepG2 cells. Moreover, circ PTK2 bound to miR-200c, and SIK2 was identified as the direct target of miR-200c. Moreover, the miR-200c inhibitor-induced decrease in lipid accumulation was reversed by SIK2 knockdown. Furthermore, the impact of circ PTK2 overexpression on PI3K/Akt signaling was partially reversed by SIK2 silencing. Circ PTK2 overexpression alleviates NAFLD development via the miR-200c/SIK2/PI3K/Akt axis. Thus, our work might provide new methods for NAFLD treatment.
Collapse
Affiliation(s)
- Yong Li
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao-Qun Cen
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Miao Huang
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Geng-Yan Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|