1
|
Wen X, Fan J, Duan X, Zhu X, Bai J, Zhang T. Mitochondrial DNA in Exercise-Mediated Innate Immune Responses. Int J Mol Sci 2025; 26:3069. [PMID: 40243714 PMCID: PMC11988935 DOI: 10.3390/ijms26073069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondria are considered as "the plant of power" with cells for a long time. However, recent researches suggest that mitochondria also take part in innate immune response to a great extent. Remarkably, mtDNA was reported to have immunnostimulatory potential in 2004. Since then, there has been rapid growth in understanding the role of mtDNA in innate immune. The mtDNA is released into cytosol, extracellular environment, or circulating blood through BAK/BAX pore, mPTP, and GSDMD pore upon mitochondrial damage, where it is recognized by PRRs including TLR9, cGAS, and NLRP3, thereby triggering innate immune response. On the other hand, regular exercise has been recognized as an effective intervention strategy for innate immune response. Some studies show that chronic moderate-intensity endurance exercise, resistance training, HIIT, and moderate-intensity acute exercise enhance mitochondrial function by promoting mtDNA transcription and replication, thus blunting the abnormal release of mtDNA and excessive innate immune response. On the contrary, high-intensity acute exercise elicits the opposite effect. Nevertheless, only a very small body of research by far has been performed to illustrate the impact of exercise on mtDNA-driven innate immune response, and an overall review is lacking. In light of these, we summarize the current knowledge on the mechanism mediating the release of mtDNA, the role of mtDNA in innate immune response and the influence of exercise on mtDNA leakage, hoping to pave the way to investigate new diagnostic and therapeutic approaches for immunopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
3
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
4
|
Shin J, Hong J, Edwards-Glenn J, Krukovets I, Tkachenko S, Adelus ML, Romanoski CE, Rajagopalan S, Podrez E, Byzova TV, Stenina-Adongravi O, Cherepanova OA. Unraveling the Role of Sex in Endothelial Cell Dysfunction: Evidence From Lineage Tracing Mice and Cultured Cells. Arterioscler Thromb Vasc Biol 2024; 44:238-253. [PMID: 38031841 PMCID: PMC10842863 DOI: 10.1161/atvbaha.123.319833] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Biological sex differences play a vital role in cardiovascular diseases, including atherosclerosis. The endothelium is a critical contributor to cardiovascular pathologies since endothelial cells (ECs) regulate vascular tone, redox balance, and inflammatory reactions. Although EC activation and dysfunction play an essential role in the early and late stages of atherosclerosis development, little is known about sex-dependent differences in EC. METHODS We used human and mouse aortic EC as well as EC-lineage tracing (Cdh5-CreERT2 Rosa-YFP [yellow fluorescence protein]) atherosclerotic Apoe-/- mice to investigate the biological sexual dimorphism of the EC functions in vitro and in vivo. Bioinformatics analyses were performed on male and female mouse aortic EC and human lung and aortic EC. RESULTS In vitro, female human and mouse aortic ECs showed more apoptosis and higher cellular reactive oxygen species levels than male EC. In addition, female mouse aortic EC had lower mitochondrial membrane potential (ΔΨm), lower TFAM (mitochondrial transcription factor A) levels, and decreased angiogenic potential (tube formation, cell viability, and proliferation) compared with male mouse aortic EC. In vivo, female mice had significantly higher lipid accumulation within the aortas, impaired glucose tolerance, and lower endothelial-mediated vasorelaxation than males. Using the EC-lineage tracing approach, we found that female lesions had significantly lower rates of intraplaque neovascularization and endothelial-to-mesenchymal transition within advanced atherosclerotic lesions but higher incidents of missing EC lumen coverage and higher levels of oxidative products and apoptosis. RNA-seq analyses revealed that both mouse and human female EC had higher expression of genes associated with inflammation and apoptosis and lower expression of genes related to angiogenesis and oxidative phosphorylation than male EC. CONCLUSIONS Our study delineates critical sex-specific differences in EC relevant to proinflammatory, pro-oxidant, and angiogenic characteristics, which are entirely consistent with a vulnerable phenotype in females. Our results provide a biological basis for sex-specific proatherosclerotic mechanisms.
Collapse
Affiliation(s)
- Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jonnelle Edwards-Glenn
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Maria L. Adelus
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
- Clinical Translational Sciences Graduate Program, The University of Arizona, Tucson, AZ, USA
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Sanjay Rajagopalan
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eugene Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga Stenina-Adongravi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
5
|
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J, Tan R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med 2023; 208:846-858. [PMID: 37776918 DOI: 10.1016/j.freeradbiomed.2023.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Cardiovascular diseases (CVDs) are leading causes of global mortality; however, their underlying mechanisms remain unclear. The tumor suppressor factor p53 has been extensively studied for its role in cancer and is also known to play an important role in regulating CVDs. Abnormal p53 expression levels and modifications contribute to the occurrence and development of CVDs. Additionally, mounting evidence underscores the critical involvement of mitochondrial dysfunction in CVDs. Notably, studies indicate that p53 abnormalities directly correlate with mitochondrial dysfunction and may even interact with each other. Encouragingly, small molecule inhibitors targeting p53 have exhibited remarkable effects in animal models of CVDs. Moreover, therapeutic strategies aimed at mitochondrial-related molecules and mitochondrial replacement therapy have demonstrated their advantageous potential. Therefore, targeting p53 or mitochondria holds immense promise as a pioneering therapeutic approach for combating CVDs. In this comprehensive review, we delve into the mechanisms how p53 influences mitochondrial dysfunction, including energy metabolism, mitochondrial oxidative stress, mitochondria-induced apoptosis, mitochondrial autophagy, and mitochondrial dynamics, in various CVDs. Furthermore, we summarize and discuss the potential significance of targeting p53 or mitochondria in the treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Yu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ruihao Wu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifei Dai
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ye Deng
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272000, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
6
|
Zhang F, Lin DSY, Rajasekar S, Sotra A, Zhang B. Pump-Less Platform Enables Long-Term Recirculating Perfusion of 3D Printed Tubular Tissues. Adv Healthc Mater 2023; 12:e2300423. [PMID: 37543836 PMCID: PMC11469154 DOI: 10.1002/adhm.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/13/2023] [Indexed: 08/07/2023]
Abstract
The direction and pattern of fluid flow affect vascular structure and function, in which vessel-lining endothelial cells exhibit variable cellular morphologies and vessel remodeling by mechanosensing. To recapitulate this microenvironment, some approaches have been reported to successfully apply unidirectional flow on endothelial cells in organ-on-a-chip systems. However, these platforms encounter drawbacks such as the dependency on pumps or confinement to closed microfluidic channels. These constraints impede their synergy with advanced biofabrication techniques like 3D bioprinting, thereby curtailing the potential to introduce greater complexity into engineered tissues. Herein, a pumpless recirculating platform (UniPlate) that enables unidirectional media recirculation through 3D printed tubular tissues, is demonstrated.The device is made of polystyrene via injection molding in combination with 3D printed sacrifical gelatin templates. Tubular blood vessels with unidirectional perfusion are firstly engineered. Then the design is expanded to incorporate duo-recirculating flow for culturing vascularized renal proximal tubules with glucose reabsorption function. In addition to media recirculation, human monocyte recirculation in engineered blood vessels is also demonstrated for over 24 h, with minimal loss of cells, cell viability, and inflammatory activation. UniPlate can be a valuable tool to more precisely control the cellular microenvironment of organ-on-a-chip systems for drug discovery.
Collapse
Affiliation(s)
- Feng Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Dawn S. Y. Lin
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | | | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
7
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
8
|
Ma L, Li K, Wei W, Zhou J, li Z, Zhang T, Wangsun Y, Tian F, Dong Q, Zhang H, Xing W. Exercise protects aged mice against coronary endothelial senescence via FUNDC1-dependent mitophagy. Redox Biol 2023; 62:102693. [PMID: 37030149 PMCID: PMC10113862 DOI: 10.1016/j.redox.2023.102693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Vascular aging contributes to adverse changes in organ function and is a significant indicator of major cardiac events. Endothelial cells (ECs) participate in aging-provoked coronary vascular pathology. Regular exercise is associated with preservation of arterial function with aging in humans. However, the molecular basis is not well understood. The present study was aimed to determine the effects of exercise on coronary endothelial senescence and whether mitochondrial clearance regulator FUN14 domain containing 1 (FUNDC1)-related mitophagy and mitochondrial homeostasis were involved. In mouse coronary arteries, FUNDC1 levels showed gradually decrease with age. Both FUNDC1 and mitophagy levels in cardiac microvascular endothelial cells (CMECs) were significantly reduced in aged mice and were rescued by exercise training. Exercise also alleviated CMECs senescence as evidenced by senescence associated β-galactosidase activity and aging markers, prevented endothelial abnormal cell migration, proliferation, and eNOS activation in CMECs from aged mice, and improved endothelium-dependent vasodilation of coronary artery, reduced myocardial neutrophil infiltration and inflammatory cytokines evoked by MI/R, restored angiogenesis and consequently alleviated MI/R injury in aging. Importantly, FUNDC1 deletion abolished the protective roles of exercise and FUNDC1 overexpression in ECs with adeno-associated virus (AAV) reversed endothelial senescence and prevented MI/R injury. Mechanistically, PPARγ played an important role in regulating FUNDC1 expressions in endothelium under exercise-induced laminar shear stress. In conclusion, exercise prevents endothelial senescence in coronary arteries via increasing FUNDC1 in a PPARγ-dependent manner, and subsequently protects aged mice against MI/R injury. These findings highlight FUNDC1-mediated mitophagy as potential therapeutic target that prevents endothelial senescence and myocardial vulnerability.
Collapse
|
9
|
Busek M, Aizenshtadt A, Koch T, Frank A, Delon L, Martinez MA, Golovin A, Dumas C, Stokowiec J, Gruenzner S, Melum E, Krauss S. Pump-less, recirculating organ-on-a-chip (rOoC) platform. LAB ON A CHIP 2023; 23:591-608. [PMID: 36655405 DOI: 10.1039/d2lc00919f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We developed a novel, pump-less directional flow recirculating organ-on-a-chip (rOoC) platform that creates controlled unidirectional gravity-driven flow by a combination of a 3D-tilting system and an optimized microfluidic layout. The rOoC platform was assembled utilizing a layer-to-layer fabrication technology based on thermoplastic materials. It features two organoid compartments supported by two independent perfusion channels and separated by a hydrogel barrier. We developed a computational model to predict wall shear stress values and then measured the flow rate in the microfluidic channels with micro-Particle-Image-Velocimetry (μPIV). The suitability of the rOoC for functional culture of endothelial cells was tested using HUVECs seeded in the perfusion channels. HUVECs aligned in response to the directional flow, formed a barrier and were able to sprout into the organoid compartments. Next, we demonstrated the viability of human stem-cell derived liver organoids in the organoid compartments. Finally, we show the possibility to circulate immune cells in the microfluidic channels that retain viability without being trapped or activated. The rOoC platform allows growing and connecting of two or more tissue or organ representations on-chip with the possibility of applying gradients, endothelial barriers, microvasculature and circulating cells independent of external tubing and support systems.
Collapse
Affiliation(s)
- Mathias Busek
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
- Dep. of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway.
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
| | - Timo Koch
- Dep. of Mathematics, University of Oslo, P.O. Box 1083, 0316 Oslo, Norway
| | - Anna Frank
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Ludivine Delon
- Dep. of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway.
| | - Mikel Amirola Martinez
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
| | - Alexey Golovin
- Dep. of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway.
| | - Clotilde Dumas
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
| | - Stefan Gruenzner
- Chair of Microsystems, Technische Universität Dresden, 01069 Dresden, Germany
| | - Espen Melum
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Science, University of Oslo, P.O. Box 1110, 0317 Oslo, Norway
- Dep. of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway.
| |
Collapse
|
10
|
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol 2023; 11:1125405. [PMID: 36824369 PMCID: PMC9941961 DOI: 10.3389/fcell.2023.1125405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cartilage organoids have emerged as powerful modelling technology for recapitulation of joint embryonic events, and cartilage regeneration, as well as pathophysiology of cartilage-associated diseases. Recent breakthroughs have uncovered "mini-joint" models comprising of multicellular components and extracellular matrices of joint cartilage for development of novel disease-modifying strategies for personalized therapeutics of cartilage-associated diseases. Here, we hypothesized that LGR5-expressing embryonic joint chondroprogenitor cells are ideal stem cells for the generation of cartilage organoids as "mini-joints" ex vivo "in a dish" for embryonic joint development, cartilage repair, and cartilage-associated disease modelling as essential research models of drug screening for further personalized regenerative therapy. The pilot research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells are promising for generation of cartilage organoids through gel embedding method, which may exert various preclinical and clinical applications for realization of personalized regenerative therapy in the future.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Min Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| |
Collapse
|
11
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
12
|
Hong SG, Shin J, Choi SY, Powers JC, Meister BM, Sayoc J, Son JS, Tierney R, Recchia FA, Brown MD, Yang X, Park JY. Flow pattern-dependent mitochondrial dynamics regulates the metabolic profile and inflammatory state of endothelial cells. JCI Insight 2022; 7:e159286. [PMID: 36134656 PMCID: PMC9514384 DOI: 10.1172/jci.insight.159286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial mitochondria play a pivotal role in maintaining endothelial cell (EC) homeostasis through constantly altering their size, shape, and intracellular localization. Studies show that the disruption of the basal mitochondrial network in EC, forming excess fragmented mitochondria, implicates cardiovascular disease. However, cellular consequences underlying the morphological changes in the endothelial mitochondria under distinctively different, but physiologically occurring, flow patterns (i.e., unidirectional flow [UF] versus disturbed flow [DF]) are largely unknown. The purpose of this study was to investigate the effect of different flow patterns on mitochondrial morphology and its implications in EC phenotypes. We show that mitochondrial fragmentation is increased at DF-exposed vessel regions, where elongated mitochondria are predominant in the endothelium of UF-exposed regions. DF increased dynamin-related protein 1 (Drp1), mitochondrial reactive oxygen species (mtROS), hypoxia-inducible factor 1, glycolysis, and EC activation. Inhibition of Drp1 significantly attenuated these phenotypes. Carotid artery ligation and microfluidics experiments further validate that the significant induction of mitochondrial fragmentation was associated with EC activation in a Drp1-dependent manner. Contrarily, UF in vitro or voluntary exercise in vivo significantly decreased mitochondrial fragmentation and enhanced fatty acid uptake and OXPHOS. Our data suggest that flow patterns profoundly change mitochondrial fusion/fission events, and this change contributes to the determination of proinflammatory and metabolic states of ECs.
Collapse
Affiliation(s)
- Soon-Gook Hong
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
| | - Junchul Shin
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
| | - Soo Young Choi
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
| | | | - Benjamin M. Meister
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
| | - Jacqueline Sayoc
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ryan Tierney
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
| | - Fabio A. Recchia
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Michael D. Brown
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
| | - Joon-Young Park
- Cardiovascular Research Center, Lewis Katz School of Medicine, and
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
| |
Collapse
|
13
|
Liu W, Song H, Xu J, Guo Y, Zhang C, Yao Y, Zhang H, Liu Z, Li YC. Low shear stress inhibits endothelial mitophagy via caveolin-1/miR-7-5p/SQSTM1 signaling pathway. Atherosclerosis 2022; 356:9-17. [PMID: 35952464 DOI: 10.1016/j.atherosclerosis.2022.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Mitophagy plays a crucial role in mitochondrial homeostasis and is closely associated with endothelial function. However, the mechanism underlying low blood flow shear stress (SS), detrimental cellular stress, regulating endothelial mitophagy is unclear. This study aimed to investigate whether low SS inhibits endothelial mitophagy via caveolin-1 (Cav-1)/miR-7-5p/Sequestosome 1 (SQSTM1) signaling pathway. METHODS Low SS in vivo modeling was induced using a perivascular SS modifier implanted in the carotid artery of mice. In vitro modeling, low and physiological SS (4 and 15 dyn/cm2, respectively) were exerted on human aortic endothelial cells using a parallel plate chamber system. RESULTS Compared with physiological SS, low SS significantly inhibited endothelial mitophagy shown by down-regulation of SQSTM1, PINK1, Parkin, and LC 3II expressions. Deficient mitophagy deteriorated mitochondrial dynamics shown by up-regulation of Mfn1 and Fis1 expression and led to decreases in mitochondrial membrane potential. Cav-1 plays a bridging role in the process of low SS inhibiting mitophagy. The up-regulated miR-7-5p expression induced by low SS was suppressed after Cav-1 was silenced. The results of dual-luciferase reporter assays showed that miR-7-5p targeted inhibiting the SQSTM1 gene. Oxidative stress reaction shown by the elevation of reactive oxygen species and O2●- and endothelial dysfunction by the decrease in nitric oxide and the increase in macrophage chemoattractant protein-1 were associated with the low SS inhibiting endothelial mitophagy process. CONCLUSIONS Cav-1/miR-7-5p/SQSTM1 signaling pathway was the mechanism underlying low SS inhibiting endothelial mitophagy that involves mitochondrial homeostasis impairment and endothelial dysfunction.
Collapse
Affiliation(s)
- Weike Liu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huajing Song
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuqi Guo
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chunju Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanli Yao
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hua Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhendong Liu
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
14
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|