1
|
Segura A, Muriel J, Miró P, Agulló L, Arrarte V, Carracedo P, Zandonai T, Peiró AM. Erectile dysfunction in cardiovascular patients: A prospective study of the eNOS gene T-786C, G894T, and INTRON variable number of the tandem repeat functional interaction. Andrology 2025; 13:794-803. [PMID: 38946584 PMCID: PMC12006881 DOI: 10.1111/andr.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Cardiovascular disease induces erectile dysfunction modulated by endothelial nitric oxide synthase enzyme and an impaired ejection fraction that restricts penis vascular congestion. However, the mechanisms regulating endothelial dysfunction are not understood. OBJECTIVES Exploring the functional impact of endothelial nitric oxide synthase genetic polymorphisms on erectile dysfunction and drug therapy optimization in high-risk cardiovascular disease patients. MATERIALS AND METHODS Patients with erectile dysfunction symptoms and candidates for andrology therapy were included (n = 112). Clinical data and endothelial nitric oxide synthase rs1799983 (G894T) and rs2070744 (T-786C), genotyped by fluorescence polarization assays, were registered. The 27-bp variable number of the tandem repeat polymorphism in intron 4 (intron4b/a) was analyzed by polymerase chain reaction-restriction fragment length polymorphism. Association analyses were run with the R-3.2.0 software. RESULTS A significant association between endothelial nitric oxide synthase 786-TT (p = 0.005) and the aa/ac of intron 4 variable number of the tandem repeat (p = 0.02) with higher erectile dysfunction susceptibility was observed in cardiovascular disease patients (60 ± 9 years, 66% severe erectile dysfunction, 56% ejection fraction). After 3-months of phosphodiesterase type 5 inhibitors, erectile dysfunction (International Index of Erectile Function, 50 ± 16 scores, the International Index of Erectile Function-Erectile Function 21 ± 10 scores, p < 0.001) and sexual quality of life (modified Sexual Life Quality Questionnaire 55 ± 23 scores, p < 0.001) had significantly improved. The cardiovascular ejection fraction was influenced positively with better sexual quality of life (0.1941), and also in the endothelial nitric oxide synthase G894-T allele (p = 0.076) carriers, which could merit future analyses. Erectile dysfunction was present as the primary clinical manifestation in 62% of cases, with cardiovascular disease occurring concurrently. Only former smokers and obese subjects debuted prior to cardiovascular disease than to erectile dysfunction. CONCLUSIONS Our study provides comprehensive insights into the functional interaction linking endothelial nitric oxide synthase gene polymorphisms, erectile function, and ejection fraction in high-risk cardiovascular disease patients. Future therapeutic strategies could target endothelial nitric oxide synthase activity by including lifestyle changes and epigenetic modulations.
Collapse
Affiliation(s)
- Ana Segura
- Urology Department, Andrology UnitDr. Balmis General University HospitalAlicanteSpain
| | - Javier Muriel
- Clinical Pharmacology DepartmentPharmacogenetic UnitDr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
| | - Pau Miró
- Department of Applied Statistics and Operational Research, and QualityUniversitat Politecnica de València, Campus of Alcoi Plaza Ferrandiz y Carbonell s/nAlcoySpain
| | - Laura Agulló
- Clinical Pharmacology DepartmentPharmacogenetic UnitDr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
| | - Vicente Arrarte
- Cardiology DepartmentDr. Balmis General University HospitalAlicanteSpain
| | - Patricia Carracedo
- Department of Statistics and Applied Operational Research and QualityUniversitat Politècnica de ValènciaValenciaSpain
| | - Thomas Zandonai
- Clinical Pharmacology DepartmentPharmacogenetic UnitDr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
- Department of Psychology of Developmental and Socialization Processes“Sapienza” University of RomeRomeItaly
| | - Ana M Peiró
- Clinical Pharmacology DepartmentPharmacogenetic UnitDr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
- Clinical Pharmacology, Toxicology and Chemical Safety UnitInstitute of BioengineeringMiguel Hernández UniversityAvda. de la Universidad s/nElcheSpain
| |
Collapse
|
2
|
Kumar SD, Ghosh J, Ghosh S, Eswarappa SM. Emerging concepts in the molecular cell biology and functions of mammalian erythrocytes. J Biol Chem 2025; 301:108331. [PMID: 39984047 DOI: 10.1016/j.jbc.2025.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
Erythrocytes, or red blood cells, are essential components of vertebrate blood, comprising approximately 45% of human blood volume. Their distinctive features, including small size, biconcave shape, extended lifespan (∼115 days), and lack of a nucleus or other membrane-bound organelles, make them unique among mammalian cell types. Traditionally regarded as passive carriers of oxygen and carbon dioxide, erythrocytes were long thought to function merely as hemoglobin-filled sacs, incapable of gene expression or roles beyond gas transport. However, advancements in molecular biology have revealed a more complex picture. Recent studies have identified various RNA types within erythrocytes, demonstrated globin mRNA translation, and uncovered miRNA-mediated defenses against Plasmodium infection. Beyond gas exchange, erythrocytes play critical roles in regulating regional blood flow via nitric oxide, contribute to innate immunity through toll-like receptors, transport amino acids between tissues, and maintain water homeostasis. Furthermore, emerging technologies have repurposed erythrocytes as drug-delivery vehicles, opening new avenues for therapeutic applications. This review highlights these recent discoveries and explores the expanding functional landscape of erythrocytes, shedding light on their multifaceted roles in physiology and medicine.
Collapse
Affiliation(s)
- Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Karnataka, Bengaluru, India
| | - Japita Ghosh
- Department of Biochemistry, Indian Institute of Science, Karnataka, Bengaluru, India
| | - Swati Ghosh
- Department of Biochemistry, Indian Institute of Science, Karnataka, Bengaluru, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Karnataka, Bengaluru, India.
| |
Collapse
|
3
|
Heuser SK, Li J, Pudewell S, LoBue A, Li Z, Cortese-Krott MM. Biochemistry, pharmacology, and in vivo function of arginases. Pharmacol Rev 2025; 77:100015. [PMID: 39952693 DOI: 10.1124/pharmrev.124.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
The enzyme arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea. The 2 existing isoforms Arg1 and Arg2 exhibit different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide (NO) production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell type-specific, species-specific, and profoundly different in mice and humans. The main differences are in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of l-ornithine, polyamine, and l-proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginases, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. SIGNIFICANCE STATEMENT: Further basic and translational research is needed to deepen our understanding of the regulation of Arg1 and Arg2 in different cell types in consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This will lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infectious diseases, and cancer.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
LoBue A, Li Z, Heuser SK, Li J, Leo F, Vornholz L, Dunaway LS, Suvorava T, Isakson BE, Cortese-Krott MM. Generation and characterization of a conditional eNOS knock out mouse model for cell-specific reactivation of eNOS in gain-of-function studies. Nitric Oxide 2024; 153:106-113. [PMID: 39419166 DOI: 10.1016/j.niox.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) in the vessel wall regulates blood pressure and cardiovascular hemodynamics. In this study, we generated conditional eNOS knock out (KO) mice characterized by a duplicated/inverted exon 2 flanked with two pairs of loxP regions (eNOSinv/inv); a Cre-recombinase activity induces cell-specific reactivation of eNOS, as a result of a flipping of the inverted exon 2 (eNOSfl). This work aimed to test the efficiency of the Cre-mediated cell-specific recombination and the resulting eNOS expression/function. As proof of concept, we crossed eNOSinv/inv mice with DeleterCrepos (DelCrepos) mice, expressing Cre recombinase in all cells. We generated heterozygous eNOSfl/inv or homozygous eNOSfl/fl mice, and eNOSinv/inv littermate mice. We found that both eNOSfl/fl and eNOSfl/inv mice express eNOS and the overall expression level depends on the number of mutated alleles, while eNOSinv/inv mice did not show any eNOS expression. Vascular endothelial function was restored in eNOSfl/fl and eNOSfl/inv mice, as determined by ACh-dependent vasodilation of aortic rings. Cre-dependent reactivation of eNOS in eNOSfl/fl and eNOSfl/inv mice rescued eNOSinv/inv (phenotypically global eNOS KO) mice from hypertension. These findings demonstrate that eNOS expression is restored in eNOSfl/fl mice at comparable physiological levels of WT mice, and its functional activity is independent on the number of the reactivated alleles. Therefore, eNOSinv/inv mice are a useful model for studying the effects of conditional reactivation of eNOS and gene dosage effects in specific cells for gain-of-function studies.
Collapse
Affiliation(s)
- Anthea LoBue
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Sophia K Heuser
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Francesca Leo
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Lukas Vornholz
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tatsiana Suvorava
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden; CARID, Cardiovascular Research Institute Düsseldorf, Germany.
| |
Collapse
|
5
|
Tengbom J, Humoud R, Kontidou E, Jiao T, Yang J, Hedin U, Zhou Z, Jurga J, Collado A, Mahdi A, Pernow J. Red blood cells from patients with ST-elevation myocardial infarction and elevated C-reactive protein levels induce endothelial dysfunction. Am J Physiol Heart Circ Physiol 2024; 327:H1431-H1441. [PMID: 39392478 DOI: 10.1152/ajpheart.00443.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Endothelial dysfunction is an early consequence of vascular inflammation and a driver of coronary atherosclerotic disease leading to myocardial infarction. The red blood cells (RBCs) mediate endothelial dysfunction in patients at cardiovascular risk, but their role in patients with acute myocardial infarction is unknown. This study aimed to investigate if RBCs from patients with ST-elevation myocardial infarction (STEMI) induced endothelial dysfunction and the role of systemic inflammation in this effect. RBCs from patients with STEMI and aged-matched healthy controls were coincubated with rat aortic segments for 18 h followed by evaluation of endothelium-dependent (EDR) and endothelium-independent relaxation (EIDR). RBCs and aortic segments were also analyzed for arginase and oxidative stress. The patients were divided into groups depending on C-reactive protein (CRP) levels at admission. RBCs from patients with STEMI and CRP levels ≥2 mg/L induced impairment of EDR, but not EIDR, compared with RBCs from STEMI and CRP <2 mg/L and healthy controls. Aortic expression of arginase 1 was increased following incubation with RBCs from patients with STEMI and CRP ≥2, and arginase inhibition prevented the RBC-induced endothelial dysfunction. RBCs from patients with STEMI and CRP ≥2 had increased reactive oxygen species compared with RBCs from patients with CRP <2 and healthy controls. Vascular inhibition of NADPH oxidases and increased dismutation of superoxide improved EDR. RBCs from patients with STEMI and low-grade inflammation induce endothelial dysfunction through a mechanism involving arginase 1 as well as increased RBC and vascular superoxide by NADPH oxidases.NEW & NOTEWORTHY Red blood cells from patients with STEMI and systemic inflammation induce endothelial dysfunction ex vivo. The RBC-induced endothelial dysfunction is mediated through increased arginase 1 and a shift in the redox balance toward oxidative stress. Inhibition of arginase or free radicals attenuates the impairment of endothelial function. The study suggests that red blood cells deserve attention as a key player in systemic inflammation and STEMI.
Collapse
Affiliation(s)
- John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rawan Humoud
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juliane Jurga
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Guerra-Ojeda S, Suarez A, Belmonte B, Marchio P, Genovés P, Arias OJ, Aldasoro M, Vila JM, Serna E, Mauricio MD. Sodium valproate treatment reverses endothelial dysfunction in aorta from rabbits with acute myocardial infarction. Eur J Pharmacol 2024; 970:176475. [PMID: 38438061 DOI: 10.1016/j.ejphar.2024.176475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Andrea Suarez
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Begoña Belmonte
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain
| | - Oscar Julian Arias
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain; Department of Biomedical Sciences, CEU Cardenal Herrera, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - José M Vila
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Eva Serna
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain.
| |
Collapse
|
7
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
8
|
Yang J, Sundqvist ML, Zheng X, Jiao T, Collado A, Tratsiakovich Y, Mahdi A, Tengbom J, Mergia E, Catrina SB, Zhou Z, Carlström M, Akaike T, Cortese-Krott MM, Weitzberg E, Lundberg JO, Pernow J. Hypoxic erythrocytes mediate cardioprotection through activation of soluble guanylate cyclase and release of cyclic GMP. J Clin Invest 2023; 133:e167693. [PMID: 37655658 PMCID: PMC10471167 DOI: 10.1172/jci167693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Red blood cells (RBCs) mediate cardioprotection via nitric oxide-like bioactivity, but the signaling and the identity of any mediator released by the RBCs remains unknown. We investigated whether RBCs exposed to hypoxia release a cardioprotective mediator and explored the nature of this mediator. Perfusion of isolated hearts subjected to ischemia-reperfusion with extracellular supernatant from mouse RBCs exposed to hypoxia resulted in improved postischemic cardiac function and reduced infarct size. Hypoxia increased extracellular export of cyclic guanosine monophosphate (cGMP) from mouse RBCs, and exogenous cGMP mimicked the cardioprotection induced by the supernatant. The protection induced by hypoxic RBCs was dependent on RBC-soluble guanylate cyclase and cGMP transport and was sensitive to phosphodiesterase 5 and activated cardiomyocyte protein kinase G. Oral administration of nitrate to mice to increase nitric oxide bioactivity further enhanced the cardioprotective effect of hypoxic RBCs. In a placebo-controlled clinical trial, a clear cardioprotective, soluble guanylate cyclase-dependent effect was induced by RBCs collected from patients randomized to 5 weeks nitrate-rich diet. It is concluded that RBCs generate and export cGMP as a response to hypoxia, mediating cardioprotection via a paracrine effect. This effect can be further augmented by a simple dietary intervention, suggesting preventive and therapeutic opportunities in ischemic heart disease.
Collapse
Affiliation(s)
- Jiangning Yang
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Michaela L. Sundqvist
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tong Jiao
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Aida Collado
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mahdi
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - John Tengbom
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Evanthia Mergia
- Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miriam M. Cortese-Krott
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Myocardial Infarction Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Papapetropoulos A, Lefer DJ. sGC Stimulation Saves the Diabetic Heart: Red Blood Cells to the Rescue. JACC Basic Transl Sci 2023; 8:919-921. [PMID: 37719422 PMCID: PMC10504393 DOI: 10.1016/j.jacbts.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
- Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - David J. Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Jiao T, Collado A, Mahdi A, Tengbom J, Tratsiakovich Y, Milne GT, Alvarsson M, Lundberg JO, Zhou Z, Yang J, Pernow J. Stimulation of Erythrocyte Soluble Guanylyl Cyclase Induces cGMP Export and Cardioprotection in Type 2 Diabetes. JACC Basic Transl Sci 2023; 8:907-918. [PMID: 37719424 PMCID: PMC10504399 DOI: 10.1016/j.jacbts.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 09/19/2023]
Abstract
Reduced nitric oxide (NO) bioactivity in red blood cells (RBCs) is critical for augmented myocardial ischemia-reperfusion injury in type 2 diabetes. This study identified the nature of "NO bioactivity" by stimulating the intracellular NO receptor soluble guanylyl cyclase (sGC) in RBCs. sGC stimulation in RBCs from patients with type 2 diabetes increased export of cyclic guanosine monophosphate from RBCs and activated cardiac protein kinase G, thereby attenuating ischemia-reperfusion injury. These results provide novel insight into RBC signaling by identifying cyclic guanosine monophosphate from RBC as a mediator of protection against cardiac ischemia-reperfusion injury induced by sGC stimulation in RBCs.
Collapse
Affiliation(s)
- Tong Jiao
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aida Collado
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Lisi V, Senesi G, Bertola N, Pecoraro M, Bolis S, Gualerzi A, Picciolini S, Raimondi A, Fantini C, Moretti E, Parisi A, Sgrò P, Di Luigi L, Geiger R, Ravera S, Vassalli G, Caporossi D, Balbi C. Plasma-derived extracellular vesicles released after endurance exercise exert cardioprotective activity through the activation of antioxidant pathways. Redox Biol 2023; 63:102737. [PMID: 37236143 DOI: 10.1016/j.redox.2023.102737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases (CVD) can cause various conditions, including an increase in reactive oxygen species (ROS) levels that can decrease nitric oxide (NO) availability and promote vasoconstriction, leading to arterial hypertension. Physical exercise (PE) has been found to be protective against CVD by helping to maintain redox homeostasis through a decrease in ROS levels, achieved by increased expression of antioxidant enzymes (AOEs) and modulation of heat shock proteins (HSPs). Extracellular vesicles (EVs) circulating in the body are a major source of regulatory signals, including proteins and nucleic acids. Interestingly, the cardioprotective role of EVs released after PE has not been fully described. The aim of this study was to investigate the role of circulating EVs, obtained through Size Exclusion Chromatography (SEC) of plasma samples from healthy young males (age: 26.95 ± 3.07; estimated maximum oxygen consumption rate (VO2max): 51.22 ± 4.85 (mL/kg/min)) at basal level (Pre_EVs) and immediately after a single bout of endurance exercise (30' treadmill, 70% heart rate (HR) -Post_EVs). Gene ontology (GO) analysis of proteomic data from isolated EVs, revealed enrichment in proteins endowed with catalytic activity in Post_EVs, compare to Pre_EVs, with MAP2K1 being the most significantly upregulated protein. Enzymatic assays on EVs derived from Pre and Post samples showed increment in Glutathione Reductase (GR) and Catalase (CAT) activity in Post_EVs. At functional level, Post_EVs, but not Pre_EVs, enhanced the activity of antioxidant enzymes (AOEs) and reduced oxidative damage accumulation in treated human iPS-derived cardiomyocytes (hCM) at basal level and under stress conditions (Hydrogen Peroxide (H2O2) treatment), resulting in a global cardioprotective effect. In conclusion, our data demonstrated, for the first time, that a single 30-min endurance exercise is able to alter the cargo of circulating EVs, resulting in cardioprotective effect through antioxidant activity.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Giorgia Senesi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, 16132, Genova, Italy
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alice Gualerzi
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Silvia Picciolini
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Centro Imaging Sperimentale, IRCCS Istituto Scientifico San Raffaele, Via Olgettina 52, 20132, Milan, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Elisa Moretti
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Attilio Parisi
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Paolo Sgrò
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132, Genova, Italy
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland.
| |
Collapse
|
12
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
13
|
Jiao T, Collado A, Mahdi A, Jurga J, Tengbom J, Saleh N, Verouhis D, Böhm F, Zhou Z, Yang J, Pernow J. Erythrocytes from patients with ST-elevation myocardial infarction induce cardioprotection through the purinergic P2Y 13 receptor and nitric oxide signaling. Basic Res Cardiol 2022; 117:46. [PMID: 36112326 PMCID: PMC9481504 DOI: 10.1007/s00395-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Red blood cells (RBCs) are suggested to play a role in cardiovascular regulation by exporting nitric oxide (NO) bioactivity and ATP under hypoxia. It remains unknown whether such beneficial effects of RBCs are protective in patients with acute myocardial infarction. We investigated whether RBCs from patients with ST-elevation myocardial infarction (STEMI) protect against myocardial ischemia-reperfusion injury and whether such effect involves NO and purinergic signaling in the RBCs. RBCs from patients with STEMI undergoing primary coronary intervention and healthy controls were administered to isolated rat hearts subjected to global ischemia and reperfusion. Compared to RBCs from healthy controls, RBCs from STEMI patients reduced myocardial infarct size (30 ± 12% RBC healthy vs. 11 ± 5% RBC STEMI patients, P < 0.001), improved recovery of left-ventricular developed pressure and dP/dt and reduced left-ventricular end-diastolic pressure in hearts subjected to ischemia-reperfusion. Inhibition of RBC NO synthase with L-NAME or soluble guanylyl cyclase (sGC) with ODQ, and inhibition of cardiac protein kinase G (PKG) abolished the cardioprotective effect. Furthermore, the non-selective purinergic P2 receptor antagonist PPADS but not the P1 receptor antagonist 8PT attenuated the cardioprotection induced by RBCs from STEMI patients. The P2Y13 receptor was expressed in RBCs and the cardioprotection was abolished by the P2Y13 receptor antagonist MRS2211. By contrast, perfusion with PPADS, L-NAME, or ODQ prior to RBCs administration failed to block the cardioprotection induced by RBCs from STEMI patients. Administration of RBCs from healthy subjects following pre-incubation with an ATP analog reduced infarct size from 20 ± 6 to 7 ± 2% (P < 0.001), and this effect was abolished by ODQ and MRS2211. This study demonstrates a novel function of RBCs in STEMI patients providing protection against myocardial ischemia-reperfusion injury through the P2Y13 receptor and the NO-sGC-PKG pathway.
Collapse
Affiliation(s)
- Tong Jiao
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Aida Collado
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mahdi
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Juliane Jurga
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Nawzad Saleh
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Dinos Verouhis
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Böhm
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|